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Abstract—This paper presents a new method to produce and
control the vibration amplitude and direction of a travelling wave
in a finite beam, using multi-modal approach. A closed loop
control of the transducer vibration is applied using vector control
method. the modelling in rotating frame and the decoupling ac-
cording to two-axis allows to obtain a double independent closed
loop control. This allows to regulate the vibration amplitude of
the travelling wave directly. An analytical modelling is presented,
with experimental validation, showing good performances even
in the presence of perturbations.
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I. INTRODUCTION

Several studies are focused on the generation of travelling

waves on a beam, to realize linear motor for instance. In [1],

a travelling wave using two transducers is presented in an

early work by Sashida. One transducer is used to produce

the travelling wave, while the other absorbs it to prevent

the formation of standing wave. It should be noted that this

method requires impedance matching, between the beam and

a transducer as described in [2]. The second method [3]–[7]

is based on the excitation of two successive flexion modes

of the beam, which are excited by forces produced by two

transducers. These forces are shifted by 90◦ and generated at

the center frequency between the two modes. The advantage

is that the impedance matching is no more required and so

changing direction can be achieved by changing the phase

difference from 90◦ to −90◦. However, these methods are in

open loop control and cannot control the vibration amplitude

in the presence of disturbance. In [8], the authors proposed

a closed-loop control of transducers to produce a travelling

wave using the second method, even changing frequency, the

travelling wave can be obtained by this control. However the

vibration amplitude is low because of the used piezoelectric

actuator, this travelling wave is controlled in direction but not

in amplitude.

In this work, this latest approach is improved by controlling

the vibration of each transducer in a rotating frame. It is then

possible to control the amplitude of each actuator and their

relative phase shift. This allows the control of both direction

and vibration amplitude of the produced travelling wave, and

the effect of the beam is rejected as a perturbation. Hence, it

is necessary to model only the transducers. Experiments have

shown that it was possible to control phase and amplitude even

in transient and obtained a large travelling wave with standing

wave ratio nearly equal to one. The principal applications

domain of travelling wave are acoustic levitation [9]–[11],

piezoelectric miniature robot [12], [13], Transportation of

objects using linear ultrasonic motor [14]–[18].

In the first part, the principle of a new excitation method

of vibration modes, using multi-modal approach is presented,

with analytical modelling, showing the possibility to excite

the beam with vibration amplitude. In the second part, the

design of the beam and horns are addressed, then the control

method is proposed, allowing to control the travelling wave in

both direction and vibration amplitude, using vector control

method. Finally experimental results are provided in the last

part.

II. MULTI-MODAL APPROACH

A. Forced vibration in finite beam

We consider a thin beam, with rectangular cross section

denoted by A, length by L. ρ , E are respectively density and

modulus of elasticity, I is the quadratic momentum of the

beam. The transverse vibration of a uniform elastic homo-

geneous isotropic Euler-Bernoulli beam [19] can be written in

Cartesian coordinates as

EI
δ 4w

x4
+ρA

δ 2w

δ t2
+ ra

δw

δ t
= p(x, t) (1)

with: w(x,y,z, t) =w(x, t) the deflection of the beam at point x

and time t, and p(x, t) denotes the load per unit length of the

beam at point x and time t, while ra represents the coefficient

of external damping of the beam.

It is possible to determine the deformation mode shapes, and

the frequency spectrum of the beam, by using the analytical



model of Euler-Bernoulli eq.1 developed in [20]. In this paper,

harmonic vibrations are only considered enabling the use of

the complex notation so that: w, with w is the real part of w. If

we take into account the contribution of every vibration mode

excited in the beam, then the vibration can be written by:

w(x, t) =
∞

∑
n=1

Wnφn(x)e
jωt (2)

Where w includes real and imaginary part of the vibration,

at location x, and time t, ω is the angular frequency of the

flexural wave, and j =
√
−1.

φn(x) is the deformation mode shapes of the nth mode, and is

fixed for the beam.

Wn represents the modal amplitude of the nth mode. We

suppose that we can control each mode independently. Hence,

the deformation w(x, t) depends theoretically on an infinite

degrees of freedom which are Wn. This property is used to

generate and to control the travelling wave detailed here after.

we restrict the study to two vibration modes denoted A and

B. In this paper, only harmonic vibrations are considered

enabling the use of the complex notation with x=Xe jωt , where

X = Xe jα , α and X are respectively the argument and the

magnitude of X so much that:

W (x) =W AφA(x)+WBφB(x) (3)

From the superposition of two flexion modes, it is possible to

obtain a function W (x) which depends on the modal amplitude

W A and W B. To obtain this, we need a specific excitation

conditions of vibration modes W n, a multi-modal approach

thus is required to realize this.

B. Two modes excitation

The multi-modal approach consists in exciting two succes-

sive flexion modes of the beam. The frequency is chosen in the

vicinity of the center frequency of their resonant frequency,

as depicted in Fig.1. In this work the frequency does not

have to be chosen right in the middle. The dimensions of the

Fig. 1. Excitation between two successive flexion modes

beam are adjusted in order to have the modes A and B placed

apart of the transducers resonance frequency which is 28 kHz.

Figure 2 shows a beam operated by two piezoelectric actuators

located at distance x1, x2 from each end of the beam,(the

Fig. 2. Generating principle of two successive flexion modes

red and blue curve represent vibration mode A, and mode B

respectively). A travelling wave is obtained if WA is shifted by

90◦ compared to WB with a same amplitude accordingly to [6],

the vibration amplitude on the beam W (xi), depends on both

of the deformation mode shapes, and their modal amplitude. If

we consider two given points of the beam x1 and x2 (position

of the actuators), the harmonic vibration at these positions is

given by:

W (x1) =W AφA(x1)+WBφB(x1) (4)

W (x2) =W AφA(x2)+WBφB(x2) (5)

where W (x1) and W (x2) are the vibration amplitude of the

first and the second actuator, denoted respectively by W1, W2.

Introducing the matrix notation, eq.4 and eq.5 become:

(

W 1

W 2

)

=

(

φA(x1) φB(x1)
φA(x2) φB(x2)

)(

W A

W B

)

(6)

giving rise to :

(

W 1

W 2

)

= φx1,x2

(

W A

W B

)

(7)

Inversely if the position of transducers does not represent

nodes

(

W A

W B

)

= φ−1
x1,x2

(

W 1

W 2

)

(8)

The vibrations of transducers impose the dynamic of the modal

amplitudes. Then W A and W B can be controlled directly by

the vibration amplitude of the transducers. In this paper this

principle is used to produce control a travelling wave, using

excitation with vibration amplitude.

C. Condition for travelling wave

It has been shown in [3] that at fixed frequency a travelling

wave can be obtained with the same modal amplitudes (WA =
WB) shifted by 90◦. In rotating frame this is modelled by :

WA =WAe jψA (9)

WB =WAe jψB (10)

with:

ψ = ψA −ψB =±π

2
(11)

then the necessary condition is

WA =± jWB (12)



Where WA and WB are rotating in the fixed frame, and fixed in

the (d,q) frame as described in Fig.3(a). To achieve this, these

modal amplitudes must be controlled in order to generate a

travelling wave.
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Fig. 3. Argument and magnitude in rotating frame

III. EXPERIMENT VALIDATION

A. Design of the beam

The analytical model of Euler-Bernoulli eq.1 was simulated

to determine the frequency spectrum of the beam given in

Fig.5, the deformed mode shapes presented in Fig 5. A beam

made of aluminium was chosen, because of the excellent

acoustical characteristics of this material, which parameters are

given in Tab.I. The dimensions of the beam has been chosen in

such a way that the resonance frequency of transducers 28 kHz

is in the range between the two resonance modes.

TABLE I
BEAM’S CHARACTERISTIC

Young’s modulus E 57 GPa

Poisson’s ratio γ 0.33

Density ρ 2561 kg/m3

Length L 350 mm

height h 6 mm

width b 6 mm

Fig. 4. Frequency spectrum at a given position of the beam

From Fig.4, the choice of the vibration modes was laid

on the 16th and 17th mode shape corresponding to 26460 Hz

and 29760 Hz which are denoted by mode shape A, and B

respectively. It should be noted that there are other vibration

modes between two successive flexion modes, as extensional

and torsional mode, but only bending mode are excited

transversely.

Fig. 5. Simulated normalized mode shape A and B

B. design of the horns

In order to design the horns, the contact nature between the

actuator and the beam must be ensure:

• Punctual Contact: for not to change the boundary condi-

tions (free-free)

• Contact ensuring the stability of the beam: to prevent

cause side movements (rotation, translation ...).

• Continuous and reversible contact for transmitting the

vibrations. In this case: a screwed contact on a smallest

possible diameter of the cone, to limit the surface of

contact as shown in Fig.6. The horn is designed with

λ/2 wavelength, to avoid the interaction forces between

the different parts of the transducer. The design of the

horns can be found in [22].

C. Position of transducers

The two piezoelectric actuators are positioned near the anti-

nodes of each mode, in order to optimizing the electromechan-

ical couplings and to obtain a purely transverse displacement

for a non a non zero matrix φx1,x2
. The modal analysis of Fig.5

can be used to determine the position of the transducers on

the anti-nodes, or the formula described in [21] can be used.

x1 = x2 = n
λ

2
+

7

8
(13)

where x1, x2 are the position of the transducers from both

ends of the beam, n is an integer, λ is the wavelength. The

two transducers are placed at x1 = x2 = 60 mm, at the ends of

the beam, with wavelength of 41.5 mm.



Fig. 6. Design of the horn and simulation of the vibration mode at 28 kHz

D. Experimental test bench

An aluminium beam is actuated by two Langevin transduc-

ers, which were associated with horns. The whole system is

fixed on a solid support, which allows to move the beam for

measuring the vibration velocity at every point of the beam,

using an interferometer (OFV-525/-5000-S) as shown in Fig.7.

A graphical user interface is used to control the vibrations

Fig. 7. The experimental setup

amplitude of the two actuators independently, through a DSP

(TI 2812) and two amplifiers (HSA 4051).

E. Identification of vibration modes

A cartography was performed to measure the vibration

amplitude of each point in the beam, for the mode shape A and

B as shown in Fig.8. This is used to determine the deformation

mode shapes φx1,x2
we obtain:

(

φA(x1) φB(x1)
φA(x2) φB(x2)

)

=

(

−0.9680 −0.6949

1 −0.7447

)

(14)

(a) Normalized measured mode A at 26373 Hz

(b) Normalized measured mode B at 29369 Hz

Fig. 8. Normalized measured mode A and B

F. Control of excitation’s vibration amplitude

The modal amplitude and its relative phase can be controlled

directly by controlling the vibration amplitude of transducers

accordingly to eq.8. By substituting eq.12 in eq.6 we obtain:

(

W 1

W 2

)

=W B

(

φA(x1) φB(x1)
φA(x2) φB(x2)

)(

1

j

)

(15)

In this paper ψB is fixed to zero (W B =WB) giving rise to:

(

W 1

W 2

)

=WB

(

φA(x1)+ jφB(x1)
φA(x2)+ jφB(x2)

)

(16)

This may be expressed as

(

W 1

W 2

)

=WB





∣

∣

∣φA,B(x1)
∣

∣

∣e jα1

∣

∣

∣
φA,B(x2)

∣

∣

∣
e jα2



 (17)

α1 and α2 are the phase shift between real and imaginary

part of the deformation mode shape A and B, at the position

of transducers. Now a travelling wave can be obtained by

imposing these phases on the right and the left transducer, or

by imposing a phase shift α between the vibration amplitude

of transducers with α = α1 − α2 accordingly to Fig.3(b).

The vibration amplitude of travelling wave can be controlled

directly by the vibration amplitude of transducers, then eq.17

becomes:

(

W 1

W 2

)

=WA

(

|φA,B(x1)|e jα

|φA,B(x2)|

)

(18)

A rotating reference frame related to the frequency of the

vibration wave is introduced, using a Langevin transducer. The

complex notation of the equation of motion about a vibration

mode, and the decoupling according to two-axis allow a

double independent closed loop control to regulate the real

and imaginary parts of the vibration amplitude and its relative

phase at any frequency, it acts directly on the amplitude of

the supply voltage as a classical electromagnetic machines.



The voltage Vq is used to control the vibration amplitude Wd ,

while Vd is used to control the vibration amplitude Wq, through

a regulator C(s) for each closed loop [8]. This control does

not depend on frequency accordingly to Fig.9.

Fig. 9. schematic diagram control of a Langevin transducer

The vibration amplitude in rotating frame can be determined

by

W =Wd + jWq (19)

W =We jα (20)

where W =
√

W 2
d +W2

q and α = arctan
Wq

Wd
are respectively

the magnitude and the argument of W . Then the vibration

amplitude of the transducers in rotating frame are done by:

(

W 1

W 2

)

=

(

Wd1 + jWq1

Wd2 + jWq2

)

(21)

by substitution the identified modes eq.14 in eq.18 leads to

(

Wd1 + jWq1

Wd2 + jWq2

)

=WA

(

1.24e− j108◦

1.19

)

(22)

IV. RESULTS AND DISCUSSIONS

A. Travelling wave generation

The generation of a travelling wave was possible by excita-

tion with vibration amplitude. The frequency was in the range

between the two resonance modes, 26373 Hz and 29369 Hz.

Accordingly to eq.22 a travelling wave can be obtained by

imposing approximatively the same vibration amplitude in

each transducer shifted with 108◦.
In this paper a travelling wave was performed with a vibration

amplitude of 0.5 µm, corresponding to vibration mode WA

of 0.4 µm. Figure.10 depicts the evolution of the vibration

amplitude of each transducer in rotating frame eq.22. For

a reference step amplitude W1re f
from 0 to 0.5 µm, with

α1 = 108◦ for the first actuator (the red curve), ie a step

reference Wd1re f
= 0 to 0.47 µm, and a step of Wq1re f

= 0

to −0.15 µm. And for a reference step amplitude W2re f
from

0 to 0.5 µm with α2 = 0◦ for the second actuator (the blue

curve), ie a step reference Wd2re f
= 0 to 0.5 µm, and a step of

Wq2re f
= 0 µm.
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Fig. 10. Measured and simulated vibration amplitude of transducers

A pure travelling wave is obtained with standing wave

ratio (SWR) nearly equal to 1 at each points of the beam as

shown in Fig.11, even if we change the frequency between

two neighboured neutral modes shapes [26373 29369] Hz.

It should be noted that, when the beam is excited near the

frequency of one vibration mode, the SWR is distancing from

1.
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Fig. 11. Complex amplitude along the beam with SWR ≈ 1

This complex amplitude is obtained by measuring the vi-

bration amplitude and its phase shift with the voltage supply

of the first actuator [5]. During the test, a normal force is

applied on the beam surface, this force or this load is rejected

as a perturbation, and the vibration amplitude of this travelling

wave is kept constant along the beam.

B. Direction change of the travelling wave

The direction of travelling wave can be inverted by changing

the phase difference of the first transducer from 108◦ to - 108◦.
Figure13 depicts the evolution of Wd and Wq as a function of

time with a step phase shift from from 108◦ to - 108◦, with

vibration amplitude of 0.5 µm, while the vibration amplitude

of the second actuator is kept to 0.5 µm with α = 0◦, ie a

step reference w1re f
= 0.5e j108◦

µm to 0.5e− j108◦
µm.



0.02 0.04 0.06 0.08 0.1 0.12 0.14
−600

−400

−200

0

200

400

600

Time[s]

V
ib

ra
tio

n 
am

pl
itu

de
 W

d a
nd

 W
q [n

m
]

response to a step phase −108° to 108°

 

 

Measured wd1
Measured wq1

Simulated

Fig. 12. Measured and simulated vibration amplitude of the left transducer
for a step phase

A perfect travelling wave in the opposite direction is ob-

tained in 10 ms accordingly the steady state.
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Fig. 13. Complex amplitude along the beam with in the opposite direction

V. CONCLUSION

In this paper, a new method is presented to generate a

travelling wave, with excitation in vibration amplitude. A

closed loop control is applied to each transducer to achieve

this thanks to vector control method. A travelling wave has

been produced and controlled in both direction and amplitude,

with an optimum standing wave ratio.
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