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Abstract 

In this work, an experimental investigation on a partial shape memory polymer (PSMP) 

which is transformed into shape memory material is presented. Multicycle shape 

memory tests are performed on thermoplastic polyurethane (TPU) at 70°C. At the end of 

each cycle, the capacity of the shape memory material increases. At the end of the first 

cycle, the recovery rate of TPU is only 67%; this partial shape memory effect (PSME) has 

been improved by successive cycles of shape memory tests.  After the fourth cycle it 

becomes nearly 100% shape memory material. The results of fifth and sixth cycles 

confirm this modification. These original results indicate that a polymer with partial 

shape memory may be transformed into an SMP without any chemical modification. This 

increase of SME could be related to the creation of residual stresses during the tensile 

tests. The residual stresses are the origin of the driving force responsible for SME.     

 

Keywords: Polymers, shape memory effect (SME), partial shape memory effect (PSME), 

thermoplastic polyurethane, multi-cycle tensile test. 

1. INTRODUCTION 

Shape memory polymers (SMPs) are a type of polymeric smart materials that have the 

ability to return from a temporary shape (deformed state) to their original shape 

triggered by an external stimulus. SMP can be classified as chemical-responsive, light-

responsive, and thermal-responsive and so on depending on the nature of external 
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stimulus [1]. It is generaly accepted that shape memory effect (SME) is related to the 

presence of two different hard and soft segments in the structure of polymers. The hard 

segment  morphology stabilizes the permanent shape of the structure while the soft 

segment  morphology allows the passage from permanent to temporary state or vice 

versa [2-7]. Even though this explanation is correct, it cannot be the answer to all of the 

questions related to the SME mechanism; it cannot illustrate the chemical and physical 

origin of SME. So our objective is to explain the mechanism of SME and to show the role 

of driving force during recovery. 

In the case of cross-linked polymers (elastomers), the cross-linkage nodes and the chain 

segments are directly linked to the points may be considered as the hard zones of the 

morphology. These zones are responsible for the permanent state of the polymer 

because of their high stability [1, 8]. Moreover, there is no significant molecular motion 

in these zones. However, between the crosslinking points, the molecular chains are 

generally long, with more mobility. The zones far from cross-linking nodes may be 

considered as soft segments of the network. 

In the case of blend, a mixture of at least two themoplastics polymers, one of the 

polymers (with higher glass transition temperature) may play the role of the hard 

segment and the other one that of the soft segment. In this case, the compatibility of 

these two polymers has a high influence on SME. In case of copolymers, SME can be 

observed in block copolymers synthesized by two monomers with different rigidities 

specially when one of them has aromatic structure; in this case, one would expect the 

formation of two different phases, hard and soft segments in structure of polymer. In the 

case of homopolymers (thermoplastics), SME can be found in some semi-crystalline 

polymers. Because in this case the amorphous phase (soft segment) and the crystalline 

phase (hard segment) form two distinct phases which may give the capcity of shape 

memory  to polymer [9-12]. 

The shape memory effect is also observed in some polymer matrix composites. In this 

case the heterogenity and orientation of the fibre may induce this phenomena to the 

composite [13-18]. 

The brittle polymers also have shape memory effect because they show very low 

deformation at break under static loading and the failure of these polymers takes place 

in elastic deformation zone. However the poeple who work in this field are not 
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interested in investigating these type of polymer because of their limited industrial 

applications. 

Partial shape memory effect is the properties of the polymers that can recover only a 

part of deformation imposed on them during mechanical loading [19]. This property is 

found practically in all the polymers. In fact the polymers may be devided in two 

categories: shape memory polymers and partial shape memory polymers. 

In the present study we have used thermoplastic polyurethane having partial shape 

memory effect. We will demonstrate how the shape memory capacity of this polymer 

will  be increased by multi-cycle tests.  

The polurethanes are well known to have different interesting properties, besides shape 

memory effect [20-24] such as high resistance to organic solvent, stability against 

sunlight and oxydation, high elastic property, and possible biocompatibility. The 

preparation of these polymers are not very difficult [25].  

2. EXPERIMENTAL 

Material 

The polymer used in this study is a thermoplastic polyurethane (TPU). The formulations 

of this polymer are based on 1,6-hexamethylene diisocyanate (HDI, Sigma Aldrich, 

France), polyethylene glycol (PEG 1000, VWR International, France) as macrodiol, 1,3-

propanediol (PDO, Sigma Aldrich, France) as petrochemical CE or Susterra® 1,3-

propanediol (bio-PDO™, DuPont Tate & Lyle Bio Products, USA) as bio-based CE, which 

is a 100% renewably sourced material derived from corn sugar, in presence of dibutyl 

tin dilaurate (DBTDL, Fluka, France) as catalyst. Recently, this polymer has been 

developed as new polymer for reactive rotational moulding [26]. 

Segmented TPUs generally display several thermal transitions, corresponding to the soft 

and hard segments. So, the Soft segment could present a (low) glass transition 

temperature, and, if semi-crystalline, a melting transition, whereas the hard segment 

may display a glass transition and/or multiple melting transitions. In the present study, 

the glass transitions (Tg) and melting peaks (Tm) of SS and HS were determined using 

differential scanning calorimetry (DSC). First cooling and second heating curves were 

used to compare the thermal behavior of samples. Table 1 shows a summary of the 

results of the DSC thermograms for TPU-912 under study. 
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Table 1. Thermal properties of SS and HS domains of the investigated TPU-912 [26]. 

Sample 

HS 

content 

(wt%) 

Soft segment  domain Hard segment domain 

 

Tg 

(°C) 

 

Tm 

(°C) 

 

Tc 

(°C) 

 

Hf 

 

Tg 

(°C) 

 

Tm 

(°C) 

 

Tc 

(°C) 

 

Hf 

TPU 

912 
35 -54 16 -3 105 89 128 98 109 

Tc: Crystallization temperature 

Hf: Enthalpy of fusion values are per gram of SS and HS, respectively 

 

A typical SEM image corresponding to the segmented TPU is shown in figure 1. The TPUs 

developed in the present study exhibited a hetero-phase structure consisting of hard and soft 

segments.  

  

Figure 1. SEM micrographs of fractured surface of bio-TPU 822, with two different magnifications 

 

 

Methods 

A shape memory cycle test consists of the following successive steps: tensile test, stress-

relaxation test, fixing and recovery test. For reproducibility of the results, the shape 

memory tests have been carried out on at least three samples, each time. 

 

(a) (b) 
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i) Tensile test: Tensile tests have been carried out with the Instron 5881, loading cell of 

1 kN, according to the standard NF ISO 6239. The strain rate is 5 mm/min. This machine 

is equipped with a temperature controlled thermo chamber for heating the samples and 

performing the tests at different temperatures. The tensile tests have been performed at 

70°C and the dimensions of the samples were: length 75 mm, length of rectangular part 

25 mm, width 4 mm, and thickness 1 mm. 

 

ii) Stress–Relaxation test: This test has been performed at the end of the tensile test with 

the same machine. The strain has been taken constant (100 and 150 %) and the 

decrease of stress has been measured versus time up to 300min. This test has been 

performed to eliminate the residual stress induced during the tensile test in the samples. 

The stress-relaxation tests have been performed at 70°C. 

 

iii) Fixing: By cooling the sample with a ventilator at the end of the stress-relaxation test 

(or tensile test) to room temperature (23°C) during 2 hours. The dimension of the 

sample, of the 100%, and/or 150% strain has been conserved in the sample. 

  

iv) Recovery test: The recovery tests are carried out in a thermal chamber at 70°C and 

90°C and must follow the changes in size (length) of the samples as a function of time. 

Due to the shape memory effect, the specimens regain a percentage of their initial shape. 

In multi-cycle shape memory tests successive shape memory tests on the same sample 

were conducted. After the first cycle (at the end of the recovery test) the sample has 

been used for a second cycle in order to do the same tests successively; that means 

tensile, fixing (with or without relaxation test) and recovery test. The cycle has been 

repeated several times. 

 

3. RESULTS  

Tensile tests have been performed on the samples at 70°C (Figure 2). Unfortunately the 

test has been stopped before rupture of sample because of the limit of the height of the 

machine. However the result shows that the strain at break (at 70°C) is higher than 

550%.  It can be seen also a significant change of the slope of the curve from 150% of 

deformation perhaps because of molecular chains orientation.  
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Figure 2. Tensile tests of TPU-912 at 70°C. 

 

Engineering and real stresses are plotted versus strain on figure 3. The samples are 

stretched up to 150% of deformation.  

 

Figure 3. Engineering stress (1) and real stress (2) versus strain of thermoplastic 

polyuretane at 70°C. 

 

The results show two different linear deformation zones; elastic zone (almost 10%) and 

plastic zone (>50%) with a relatively wide transition zone between them. At 150% 

strain the value of engineering and real stresses are about respectively 3 MPa and 6.1 

MPa.  

The Stress-relaxation isothermal test has been performed at the end of the tensile test 

with the same machine. The strain has been taken constantly and the decrease of stress 
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has been measured versus time. This test has been performed to eliminate the residual 

stress induced during the tensile test in the samples. The stress-relaxation tests have 

been performed at 70°C (Figure 4). 

All stress-relaxation curves show two different regimes. At the beginning, the decrease 

of stress is relatively fast, and then it becomes slow. For example, at 70°C, the value of 

stress has been decreased from 2.9 MPa to 2.1 MPa after 15 minutes. Then, it decreased 

to 1.8 MPa after 300 minutes before reaching to a relatively stable level. It can be seen 

that the relaxation does not lead the sample to zero stress. 

The rate of relaxation and the value of stress at the end of the test depend on the 

temperature. The rate of decrease of stress is more important when the temperature is 

higher.  

 

Figure 4. Stress relaxation tests of TPU-912 at 70°C.     

Fixing can be performed after tensile tests or after stress-relaxation tests. During this 

step, the sample obtains a temporary shape. By cooling the sample with ventilator to 

room temperature, the maximum deformation (100% and/or 150%) obtained at the 

end of tensile tests has been conserved in the sample. 

The recovery tests are carried out in a thermal chamber at 90°C after fixing at 100% (or 

150%) of deformation. The percentage of recovery has been determined using equation 

1:   

100(%)
0
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Where: 

L0n is the iIinitial length at the beginig of  cycle number n (mm) 

Ln represents the length of sample after fixing test of cycle number n (mm) 

Lfn is the length of sample after recovery test of cycle number n (mm) 

 

The results (Figure 5) show that the percentage of recovery is about 67% after 64hours. 

That means this polymer is not 100% shape memory polymer. It has partial shape 

memory effect. The recovery curve presents two different stages. In the first stage, the 

recovery rate is relatively high. During 10 minutes, the sample regains 55% of its initial 

shape. In the second stage, in order to regain 10% of its initial shape, the sample needs 

more 80 minutes.  

 

  

Figure 5. Recovery test at 90°C 

 

4. MULTI-CYCLE SHAPE MEMORY TESTS  

Before performing the multi-cycle shape memory tests, the loading-unloading tensile 

tests have been realised on the samples at 23°C (room temperature) and 70°C. 

The results (Figure 6) show in each case that the elastic part of deformation is very 

important. 
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Figure 6. Loading-Unloading tensile test at 23°C (a) and 70°C (b). 

The multi-cycle tests have been performed on the same sample according to the 

procedure, explained before. At each cycle the sample has been stretched up to 100% 

before recovery tests. The results of the tensile tests (at 70°C) of the different cycles 

have been presented in figure 7 where real stress is plotted versus strain. 

These tests have been repeated with at least two other samples; the same results have 

been obtained.  

 

Figure 7. Real stress versus strain (tensile tests) at the beginning of each cycle of shape memory 

tests.  

The different cycles may be analysed as follows: 

-Cycle 1 can be divided in to two zones with:                                                               

a. Elastic stage up to 10% of deformation and with a Young modulus of 10.83 MPa 

b. Wide transition zone from 10% to 50% 

c. Plastic linear stage up to 100% of engineering strain. After recovery test, the 

sample regains 67.3% of its initial shape. 

(a) (b) 
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- Cycle 2 begins at the end of the first cycle and after the recovery test. This cycle is also 

divided into 2 linear stages.  

a. Elastic zone with practically the same yield stress and yield strain as the first 

cycle. 

b. Transition zone  

c. Plastic zone up to 100% of deformation. After recovery test, the sample regains 

80.5% of deformation. 

-Cycle 3 begins at the end of the second cycle and after the recovery test. This cycle is 

also divided in 2 linear stages; linear elastic and plastic zones with a transition zone 

between them. At the end of this cycle, and after recovery test, the sample regains 93.7% 

of its shape of the beginning of this cycle. 

-Cycle 4 begins at the end of the third cycle and after the recovery test. As in previous 

cycles, it is separated in to 2 different stages, elastic and plastic zone. After recovery test 

at the end of this cycle, the sample becomes practically a polymer with 100% shape 

memory effect.  

As we can see, TPU initially has a partial shape memory effect. At the end of each cycle 

this property improves and shape memory capacity of the polymer increases. After 

fourth cycle, it becomes a shape memory polymer (table 2 and figure 8). 

 

Table 2. Modulus and percentage of recovery at the end of each cycle. 

Number of cycle 
1 2 3 4 5 6 

Modulus 

(MPa) 

E1 10.83 11.49 12.09 12.85 11.15 11.02 

E2 2.8 5.13 5.95 6.78 7.17 7.25 

% Recovery 
67.4 80.5 93.7 99.0 99.2 99.5 
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Figure 8. Evolution of recovery capacity of TPU by number of cycle. 

 

Table 2 presents also the evolution of modulus at end of each cycle. The modulus related 

to the elastic (E1) and plastic (E2) deformation zones have been reported in this table. 

Figure 9 shows the relationship between modulus especially E2 and the rate of recovery. 

 

 

Figure 9. Relationship between tensile modulus and recovery percentage related to the first 

zone (E1) and the second zone (E2) of stress-strain curves (at 70°C) of different successive cycles 

 

Multicycle tests, when the sample has been stretched up to 150% of deformation, give 

the same results (Figure 10). 
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Figure 10. Real stress versus real strain (tensile tests) at the beginning of each cycle of shape 

memory tests on TPU samples.  

 

5. ORIGIN OF THE RECOVERY/DRIVING FORCE 

The driving force responsible for the shape memory effect may be the residual stress 

introduced in the sample during the tensile test.  

In the case of polymers without shape memory, the deformation in the plastic zone is 

irreversible. Releasing the sample after deformation in the plastic zone, it will recover 

only the elastic portion of deformation. In this case if the test temperature is below the 

T and the polymer is in its glassy state, due to a low mobility, the elastic deformation 

will be small and the sample remains relatively far from its original form. However, if the 

test temperature is above the T and especially when the polymer is in the rubbery state, 

with a high molecular mobility, the elastic deformation may be very important and when 

the sample is released at the end of the tensile test, it can regain important part of its 

original shape. 

In the case of shape memory polymers, after the tensile test (especially at higher 

deformation level) a stress will be introduced in the sample. One can distinguish two 

portions of residual stress: 

The first portion, σr1, will be eliminated at the end of the relaxation test (Figure 4); but 

the second portion of this residual stress σr2, remains in the structure of the sample. This 

stress is the origin of shape memory effect. If the shape memory cycle test is performed 

without the relaxation test, as the value of residual stress is higher, the SMP regains its 
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initial form faster. In any case the SMP regains its initial shape with or without the 

relaxation test. The residual stress then can be considered as the driving force of a SMP 

for regaining the initial shape. 

Here the question is how this residual stress is formed and why it is not completely 

eliminated after relaxation test. To answer this question it is necessary to see what 

happens in the morphology of this polymer during different cycles of shape memory 

tests: 

- First, as it was explained in previous sections, the polymer under study is semi-

crystalline thermoplastic polyurethane. With two different phases (Figure 1). Each of 

them shows a glass transition temperature (related to the amorphous phase) and a 

melting point (related to the crystalline phase). It is difficult to determine the degree of 

crystallinity of them but from the result of SEM observations, it can be supposed that the 

clear part of the picture (Figure 1-b) is the phase with less degree of crystallinity. So 

logically, this phase may be considered as soft segment, and the dark part as hard 

segment of the polymer. The PSME of this polymer may be related partially to the 

presence of these two phases with different degree of crystallinity that means with 

different mechanical properties. 

- In this study the deformation at each cycle of shape memory tests is relatively high 

(100%). Even this polymer shows a very high elastic deformation zone as the result of 

tensile test shows (Figure 2), at the end of each cycle of shape memory test, the 

molecular chains in amorphous phase and the spherulites in crystalline phase may be 

deformed and oriented partially (Figure 11). 

 

 

Figure 11. Orientation of amorphous and crystalline phases during tensile test. 

 

At this state of study, it is not so easy to say which part of residual stress will released 

after stress-relaxation test. It is also difficult to say how a part of residual stress is 

trapped in the polymer after this test. Perhaps the polymer doesn’t regain exactly its 
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original morphology form. But it is certain that this residual stress is the origin of the 

partial shape memory effect.  

In order to show the role of this driving force, the residual stress is plotted versus 

percentage of recovery respectively in figure 12, using the values recapitulated in table 

3. In this table the residual stress is measured at the end of fixing step (2 hours after 

tensile test at room temperature). The recovery rate is determined by using the equation 

1.  

Table 3. Relationship between residual real stress and percentage of recovery. 

N° 1 Residual real 

stress (MPa) 

Recovery rate 

(%) 

1 2.62 67.4 

2 3.79 80.5 

3 3.98 93.7 

4 4.24 99.0 

5 4.33 99.2 

 

 

 

Figure 12. Percentage of recovery versus residual real stress. 
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6. PARTIAL SHAPE MEMORY EFFECT 

As we have seen before, the thermoplastic polyurethane under study is not a 100% 

shape memory polymer. At the beginning, the polymer has a partial shape memory 

effect with a recovery rate of 67%. Figure 13 shows schematically the results of 6 

successive cycles of shape memory tests. The numbers on this figure show the sample at 

different steps of a multi-cycles (6 cycles) shape memory test. As it can be seen, at the 

end of each cycle and at the beginning of next one, the sample is the same. This figure 

shows also that the recovery rate, obtained from equation 1, increases after each cycle; 

from 67% to  80.5% after the second cycle, 93.7% after the third cycle and reaches 99%, 

99.2% and 99.5% after respectively fourth, fifth and sixth cycle.  

The evolution of shape memory capacity of a polymer which is not originally an SMP can 

reinforce the following idea: A polymer with partial shape memory can be transformed 

into a 100% SMP by multi-cycle loading. 

 

 

Figure 13. Evolution of SME capacity of TPU by succesive shape memory tests. 
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7. CONCLUSION 

This study has focused on partial shape memory effect of thermoplastic polyurethane 

(TPU). The multi-cycle shape memory tests showed that the TPU regains only 67% of its 

initial shape at the end of the first cycle. These tests showed also the shape capacity of 

polymer increases by number of cycle. The same polymer after the second, third and 

fourth, fifth and sixth cycle regains respectively, 80.5%, 93.4%, 99%, 99.2% and 99.5% 

of its initial shape. This new concept of shape memory effect has very important value. 

We can in a legitimate way suppose that a polymer without shape memory effect can be 

transformed into a shape memory polymer. This study also demonstrate the driving 

force for the shape memory effect, is in fact the residual stress introduced in the sample 

during the tensile test. At the end of each cycle this residual stress increases and the 

driving force becomes more and more prominent. 
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