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ABSTRACT 
    
 A promising way to model fracture mechanics with the use of an original 
Discrete Element Method (DEM) is proposed. After proving the ability of the 
method to capture kinetic damage induced by cracking phenomena in brittle 
materials such as silica [1], taking advantage of the method for composite materials 
applications is the main purpose of this work. This paper highlights recent 
developments to prove capabilities of the DEM and to give some answers to 
challenges :  i) use the present DEM to model damage mechanisms (matrix 
cracking, debonding, fiber break and delamination) in a composite material  ii) deal 
with impact applications using the DEM. All developments are made in the  home 
made software GRANOO (GRANular Objet Oriented) [2]. The capability of the 
DEM to model matrix cracking, debonding and fiber break is first demonstrated on 
a so-called representative elementary volume (REV) made of a fiber flooded in a 
matrix. Modelize the REV with DEM and retrieve suitable homogenized properties 
is the first challenge reached.  Secondly,  the ability of the method to capture matrix 
cracking, debonding and fiber break is qualitatively demonstrated through basic 
static simulations performed on the REV. The ongoing developments  to improve 
are presented. Then, the  Double Cantilever Beam (DCB) test using Discrete 
Element (DE)  is investigated.  Contact cohesive laws are identified from 
experiments and implemented in GRANOO.  Simulations of DCB test using DEM 
are then performed. Results are discussed and ways of improvements are proposed. 
Finally, the ability of the DEM to simulate impact damage on textile is pointed out. 
Numerical investigations are based on Ha-Minh & co. Works in [3, 4] taken for 
reference. The weaving is exactly reproduced with DE. The contact between yarns 
is naturally taken into account in the DEM. The promising results are commented 
and the on going developments are exposed. 
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INTRODUCTION 
 

The increasing market of composite in the aeronautical sector in particular imposes 
statutory requirements for the safety of the properties and the persons. Concerning 
the composite material, a major industrial stake is to propose a structural material 
performing against impacts such as falls of tools during the maintenance, tire debris 
projections or hail storm but also composite textile for the debris containment.  
Faced with the need to strongly reduce experiments for the benefit of numerical 
simulations, the issue is then to develop numerical models always more efficient. 
Then, the trend is to favor multiscale approaches allowing a dialogue between a 
local damaged zone and the global behavior of the considered structure.  

Within this framework, several approaches are proposed in literature [5, 6, 7, 8, 9]. 
The one developed by the research team in the lab consists in a direct coupling 
approach between a Discrete Element Method (DEM) [10] in the process zone and 
a more conventional continuous method, the Constrained Natural Element Method 
(CNEM) beyond the process zone. This coupling, based on Arlequin technique [11] 
has already led to very good results in static application of glass indentation [1] and 
more recently, in dynamic application of a laser impact on glass [12].  
The new challenge is now to use the DEM developed in the laboratory [18] to treat 
the damage propagation in composite material (composite textile, Composite Fiber 
Reinforced Polymer (CFRC), Composite Fiber Reinforced Ceramic (CFRC)) and 
then, to deal with the case of impact on composite structure using the arlequin 
coupling method. 

Through this paper, our objective is precisely to prove the DEM capability and its 
relevance to model the damage propagation in composite, Figure 1. This paper 
highlights recent and current developments to give some answers to challenges :  i) 
use the present DEM to model damage mechanisms (matrix cracking, debonding, 
fiber break and delamination) in a composite material  ii) deal with impact 
applications using the DEM. All developments are made in the  home made 
software GRANOO [2].  

  

Figure 1 : Structural failure of the laminated composite material 

 

The first section gives the general concepts of the DEM developed in the 
laboratory. The second one concerns the geometrical and mechanical modelization 
of a simple composite media made of a fiber flooded in a matrix, called 
representative elementary volume (REV), with the DEM. Tensile and shearing tests 



on the REV are simulated to assess the homogenized properties. The ability of the 
method to capture matrix cracking, debonding and fiber break using two failure 
criterions is also demonstrated through the simulations. The on going developments  
are presented. The next section focuses on the DCB test performed with the DEM.  
Contact cohesive laws are identified from experiments and implemented in 
GRANOO.  Results are discussed and the ways of improvements are notified. 
Finally, impact on textile using the DEM is pointed out in the last section. The way 
to modelize the dry textile weaving with DE is exposed. The contact between yarns 
is naturally taken into account in the DEM. Numerical investigations based on Ha-
Minh & co. Works in [3, 4] taken for reference are performed. The promising 
results are commented and the on going developments are exposed. Some 
conclusions and perspectives complete this paper.  
 

ABOUT THE DEM DEVELOPED IN THE LAB AND CHALLENGES IN 
COMPOSITE  

Origin and evolution  
Originally, the DEM permits to model granular medias taking into account the 
contact between the grains. For instance, it has been useful to treat the friction 
between two bodies involving a third body [13]. The method has been recently 
adapted [14] to model continuous media liable to crack under loading. The bet is to 
use the DEM as an alternative to the continuum damage mechanics and the fracture 
mechanics to represent damage propagations in materials. The DEM seems to be a 
relevant method from this point of view. 

Scales addressed  
The DEM can address several scales depending on the physical phenomenon to 
highlight. In our applications, it usually takes place at microscale involving discrete 
element as a cluster of one thousand atoms.  
 
Geometrical and mechanical modeling  
The shape of the discrete element (DE) can be chosen. It must be adapted to the 
problem to deal with. By convenience, spherical DE are employed most of the time 
but more complex geometries could be however envisaged by the use of Voronoi 
cells for instance [15, 16]. The DE are characterized by their inertial matrix 
necessary for dynamic applications aimed. In GRANOO software, an explicit 
integration scheme, Verlet [17] is used in the DEM method naturally formulated to 
rather deal with fast dynamic applications. To model the mechanical behavior, 
cohesive bonds are introduced between the DE at microscale. These bonds can be 
simple springs or beams [14] for more complex behaviors. The idea is to use the 
simplest interaction laws as much as possible sufficient to emerge macroscopic 
behaviors. 
In brief, the DE geometry associated with the density carries the inertial quantities 
whereas the cohesive bonds between DE pilot the behavior.  
 
 
 



Challenges in composite  
After proving the ability of the method to capture kinetic damage induced by 
cracking phenomena in brittle materials such as silica [1], the motivation of authors 
is now to take advantage of the method for composite materials applications.  
Recent and current developments to face the challenges in composite are reported in 
the sections below. 
 

FIRST CHALLENGE : MODEL A COMPOSITE MEDIA AND CRACKS 
PROPAGATIONS WITH THE DEM 
Modeling a VER : fiber blooded in matrix  

The geometrical modeling of the fiber and the matrix is guided by the following 
requirements and assumptions: i) use the simplest DE shape, ii) adopt a compatible 
DE size with the scale of mechanisms to observe, iii) adopt a radius distribution to 
get a correct representation of the continuous medium (compaction and isotropy), 
iv) use a sufficient number of DE to ensure the macroscopic results are not sensitive 
to the discretization.  
As mentioned above, DE of spherical shape are used for efficiency reasons. The 
size of spheres is varying according to a Gaussian distribution. It is chosen in such a 
way to be able to analyse the mechanisms of degradation at the scale they occur; the 
matrix micro-cracking, the fiber/matrix debonding and the failure of fibers are the 
interesting mechanisms. Their number and their size have also to allow a good 
geometrical representation of the fiber/matrix interface. Practically, building the 
continuous medium (fiber or matrix) consists of placing at one time a set of DE 
whose radius has been beforehand chosen according to the required distribution. 
This stuffing operation is followed by a phase of relaxation to get the best cohesion 
of the isotropic continuous. The last is governed by two criteria : an optimal rate of 
compaction (ratio between the volume of spherical DE and the enveloping volume) 
of 6.3 and a minimal number of coordination (number of contacts by DE) of 6 [18].  
Even if the objective at this stage is not to study the degradation of the fiber, its 
modeling uses the same distribution (casting) of DE as the matrix. This choice 
allows: i) to avoid prohibitive filling times due to significant differences of size, ii) 
to get a sufficient fine representation of both the media (fiber and matrix) and the 
interface. At this stage, being able to represent damage mechanisms at the fiber 
scale does not present any interest except for the final failure but this will be usefull 
in the future when intra yarn fissuring will be considered. 
A cubic domain is considered as the representative elementary volume (REV). It is 
made of a cylindrical carbon fiber flooded in an epoxy matrix. Results are widely 
available in the literature [19] for such a REV. It also corresponds to a will to avoid 
too prohibitive times of simulations. The main objective at this stage is to prove the 
interest of the present DEM for the modeling of the damage mechanisms in 
composite. For the present REV, the fiber is assumed to be of a cylindrical shape. 
Its diameter is such as the fraction of fiber is of the order of 51.3%. This 
corresponds to an arbitrary fixed value. The length of the cell in the fiber direction 
results from an analysis of sensibility [20]. The Figure 2 presents the elementary 
volume by distinguishing the cylindrical volume of the fiber of that cubic of the 
matrix.  



 
Figure 2 :  REV discrete modelization using 80 000 DE. 

 
For mechanical modeling, cohesive beams are placed between the fiber DE and the 
matrix DE but also between the fiber/matrix DE in order to model the behavior of 
each continuum and the interface. For the REV in Figure 2, 130516 fiber bonds, 
115096 matrix bonds and 8282 fiber-matrix bonds were generated between DEs. 
The beams are supposed to be brittle elastic. Their mechanical properties, 
introduced at the microscopic scale, are calibrated to find the elastic and failure 
properties observable at a superior scale. Continum fiber, matrix, and interface 
elastic and failure properties are mainly adressed. The REV has material properties 
extracted from literature [21] and listed in Table 1. Thereafter, the subscripts M and 
µ denote respectively the macroscopic and microscopic variables whereas the 
superscripts fib, mat and f−m denote respectively a variable concerning the fiber, the 
matrix and the fiber-matrix. EM , ρM , νM , σ failM are respectively the macroscopic 
Young modulus, the density, the Poisson ratio, the macroscopic stress failure and D, 
the fiber diameter. Hereafter, isotropic properties are adopted for the carbon fiber 
by convenience. This assumption has no consequence for primary studies presented 
here. The transverse isotropy of the carbon fiber will be introduced in future works. 
Moreover, the interface cohesive bonds are chosen identical to those of the matrix 
at this stage of work.  

 

Table 1: Calibration of the discrete bounds properties of fiber and matrix. 

Homogeneized elastic properties  
The first motivation is to see if the homogeneized elastic and failure  properties are 
correctly evaluated with the DEM. In this purpose, longitudinal (L) and transversal 
(T) tensile tests but also in plane (LT) and out of plane (TT’) tests are performed on 
the REV. The boundary conditions are shown shematically in Figure 3. Five 
discrete domains, Table 2, are built for simulations to check the influence of the 
number of DE and the influence of the random position of the DE. A volumic 



fraction of fiber of 51.3% is arbitrary chosen. 

 

Figure 3 : Boundary conditions (displacements and loading) for elementary tests. 

 

Table 2: Characteristics of numerical samples 

A numerical sensor located at the loading face for each test has been used to 
measure the evolution of the force in order to calculate a macroscopic stress in the 
elementary cell. The time step is about 10-9 s. In this validation step, the viscous 
behavior of the epoxy matrix is first neglected. Only a brittle elastic behavior is 
taken into account. Figure 4 illustrates typical responses obtained for EL and ET 
with the DEM. Non-stabilized oscillations subsist due to the explicit time 
integration and the fact that no numerical or physical damping have been 
introduced.  



Figure 4 : Determination of elastic moduli with elementary tests on the UD composite cell. (a) 
Determination of EL. (b) Determination of ET . 

Table 3 summarizes both the numerical results obtained with the present DEM,  
analytical ones issued from literature [21, 22, 23] and numerical ones obtained with 
conventionnal FEM. 

 

Table 3: Elastic properties of the UD composite obtained with the theory, the DEM and the FEM. 

The value of elastic properties reported in Table 3 are finally obtained by a sliding 
average value calculated over several time periods excluding the 10000 first 
iterations of the loading ramp. Despite the assumptions made by convenience at this 
stage of work, the results using present DEM are in the same range with the 
theoretical ones. They confirm a good tendency. They could be significantly 
improved using more matrix DE in the narrowest area of (a D)/2 size to reduce edge 
effects for example. Moreover, it can be observed that elastic and shear moduli are 
rather influenced by the way of building discrete samples than by the number of 
DE. So, the filling procedure leading to different discrete domains for a same 
number of DE can be a natural way to take into account material variability. 

Cracks propagations capabilities 
The ability of the present method to capture cracks propagation is illustrated 
through the longitudinal tensile test. Two failure criterion based on a stress 
formulation have been implemented. The simplest one consists in breaking the 
cohesive beam between two DE when the limit tensile stress  is reached in this 
beam. Then, the failure process is represented by the successive beam failures. It is 
called breakable bonds failure process (BBF). The second criterion takes into 
account all the cohevive beam attached to a DE by the use of a virial tensor. This 



virial tensor is calculated from the generalized efforts (forces and torques) in the 
beam by the relation, Eq. 1 :  

     

The failure criterion is satisfied when the microscopic failure limit σfail µ is reached. 
It is evaluated for each DE ; that is to say that for a given DE, the bonds (beams) 
attached to this DE are deleted when the criterion is satisfied but the DE can be 
stored and the contact with the adjacent DE can be treated. It may be a convenient 
way to model debris introduced by damages in composite. This failure process is 
called the removed discrete element failure process (RDEF). 
A pure qualitative comparison of the two failure criterions, BBF and RDEF, is 
given through the tensile test (L). Following illustrations are given using the #2b 
discrete domain. It is not sought specific physical interpretations at this stage but 
just to highlight the method capabilities. The evolutions of the broken bonds in 
matrix, fiber and at interface fiber-matrix are plotted on Figures 5 and 6 in relation 
with the macroscopic stress-strain curve for respectively BBF and RDEF criterion. 
The broken bonds are also displayed on Figures 7 and 8 to illustrate the propagation 
of the failure inside the elementary cell. For clarity, only the fiber-matrix beams and 
the broken beams in the REV are represented respectively in red and blue color.  

Figure 5 : (a) Evolution of  % broken beams in matrix, fiber and at the interface with BBF criterion. 
  (b) Zoom of (a) for strains between 0.0085 and 0.01 

(1) 



Figure 6 : (a) Evolution of  % broken beams in matrix, fiber and at the interface with RDEF criterion 
 (b) Zoom of (a) for strains between 0.008 and 0.011. 

 
Figure 7 : Display of broken beams (in blue) using BBF criterion at different strain stages – (a,e) εM 
= 8.82 · 10-3  (b,f ) εM = 9.00 · 10-3  (c,g) εM = 9.25 · 10-3  (d,h) εM = 9.50 · 10-3 (a,b,c,d) Profile 
views (e,f,g,h) Face views. 

 

Figure 8 : Display of broken beams (in blue) using RDEF criterion at different strain stages -  (a,e) 
εM = 10.00·10-3 (b,f) εM = 10.25·10-3 (c,g) εM = 10.50·10-3 (d,h) εM = 12.00 · 10-3 (a,b,c,d) Profile 
views (e,f,g,h) Face views. 



Some qualitative remarks can be done from this test : i) using RDEF criterion, 
damages appear progressively in the fiber during a longer strain duration than with 
using BBF criterion ; ii) cracks inititate differently using BBF or RDEF criterion. 
Indeed, a more local initiation can be noticed using BBF ; iii) using RDEF criterion, 
the crack mainly propagates through the matrix, see Figures 8(c) and 8(g),  whereas 
it mainly propagates through the interface fiber-matrix with BBF criterion ; iv) the 
macroscopic failure strain εfailM is higher with the RDEF process than with BBF one. 
The same test has been simulated using the other discrete domains presented in 
Table 2. Table 4 summarizes the macroscopic failure properties obtained. Results 
appear fairly dispersed. Otherwise, the use of RDEF criterion seems to led to higher 
values than those obtained with BBf criterion. The theorical macroscopic failure 
strain values for the present fiber and matrix are respectively εfib

M = 9.6·103 and 

εmat
M = 20.3·103 

 

Table 4 : Failure properties of the UD composite obtained with present DEM. 

Current and future works on this first challenge 

Developments concern the identification of the cohesive law between fiber and 
matrix (debonding). Pull-out tests are planned in this purpose. Then, the idea is to 
model a statistical elementary volume (SEV) made of a few fibers randomly 
distributed within an elementary volume, Figure 9, using the previous cohesive law 
for modeling debonding. A focus on this SEV during loading will allow to locally 
follow the damage evolution (debonding and matrix cracks) and then, degrated 
properties could be returned to a more global continuous model after 
homogeneization. For now, the bonds (beams) are identical for a given medium but 
a natural variability is envisaged in the future by simply varying the properties of 
these bonds.  

   

Figure 9 : Statistical elementary volume modeled with DEM 

SECOND CHALLENGE : MODEL A DELAMINATION WITH THE DEM  



Currently, various numerical methods from continuum mechanics have been 
adapted to study the delamination problems in composite material. The elastic 
fracture mechanics is one of the most methods used, it considers a composite 
structure with the pre-cracked, where strain energy release rate is normally used as 
a criterion for damage propagation [24]. Other studies have used the finite element 
method (FEM) to study this problem [25, 26, 27] implementing the cohesive zone 
model into FEM code. This model allows to study the delamination at the interface 
of the composite when the path is known. However, some difficulties like the re-
meshing process during the crack propagation or the mesh sensitivity can occur. 
Moreover, a very few studies have been conducted concerning delamination under 
dynamic loading. In addition, the use of cohesive element becomes delicate when 
the crack path can not be predicted in advance in case of intralaminar fissuration for 
instance. XFEM methods can be used carefully but they can be very costly. For 
these reasons, we propose to apply cohesive contact laws (as a cohesive model) in 
the discrete element method (DEM) to study the delamination of the composite 
material but also the behavior at the interface fiber/matrix (debonding).  
 
Cohesive contact laws 

To study the mechanical behavior at interface fiber/matrix, a cohesive contact takes 
place between a DE belonging to the fiber and a one of the matrix. It is represented 
by the contact laws presented in Figure 10. A normal or shear cohesive force 
follows an elastic by piece law. Its value depends on the displacement between two 
particles in contact at the interface. This contact softening model is similar to the 
cohesive zone model in the continuum mechanics [28, 29]. 

     
 (a) normal contact      (b) shear contact 

Figure 10 : Constitutive behavior of contact softening model. 

It describes the behavior of contact bonds in elastic and represents a damage by 
linearly softening the bond after the contact force reaches the bond strength. In both 
tensile and shear case, the bond strength decreases to zero when the displacement 
reaches the maximum displacement ui

p , i=n or s. ui
p is related to the fracture energy 

release rate G. The crack at interface can propagate in mode I (crack opening), mode 
II or mode III (shear) and mixte-mode [30]. The fracture energy release rate for 
mode I and mode II is expressed by Eq. 2 :  

    GI=0,5 σn
max un

p and GII=0,5 σs
max us

p    (2) 



with σi
max= Fi

max/S, S=πR2, R=0,5(R1+R2) and R1,R2 are the radius of the particles in 
contact, Figure 11. 

 

Figure 11 : Cohesive contact in DEM. 

 

Modeling the DCB test 
To study and validate the cohesive contact model in mode I, a Double Cantilever 
Beam (DCB) test in 3D is firstly investigated. The material used is a UD composite 
carbon / epoxy. The usefull mechanical properties are: E11=135GPa, E22=9.0GPa, 
υ12=0.24. The interface strength is σmax=5.7 MPa, and the strain energy release rate 
is GI=0.56 N/mm. The DE modeling of the cantilever beam is shown in Figure 
12(a) with the geometrical characteristics L = 45 mm (length), b = 6 mm (width) 
and 2h = 3 mm (thickness). A pre-crack has length of a0 = 0.3L. The number of DE 
is 40000. A displacement Δ is applied at the left end of the specimen.  The cohesive 
beam micro parameters to represent the homogeneized composite material behavior 
are classically obtained by a calibration procedure.  

 
(a) 

 
(b) 

Figure 12 : Modelisation of DCB test with DEM (a) before loading (b) during loading. 

For DCB test, the specimen compliance can be expressed by Eq. 3 :  

    C=2Δ/P=2a3/(3EI)      (3) 



where a is the crack length and EI is the flexural rigidity of the specimen, Figure 12 
(b). When the crack propagates, the fracture enery can be written, Eq. 4 : 

   G = P2/(2b).dC/da = P2.a2/(b EI)     (4) 

From (3) and (4),  the relationship between the force P and the displacement Δ but 
also the relationship between the displacement Δ and the length of crack a can be 
deduced during the crack propagation, Eq. 5 :  

  

Results 

Figures 13 (a) and 13 (b) respectively give the evolution of P=P(Δ) and a/L=a/L(Δ). 
Analytical and numerical (with present DEM) curves are plotted.   

 
  (a)       (b) 

Figure 13 : (a) P=P(Δ) evolution  (b)  a/L=a/L(Δ) evolution 

Even if improvable during the elastic stage, a good convergency to the analytical 
model can be observed during the damage of the interface. After the maximum 
value of P, the cohesive bonds behavior at the interface allow to correctly capture a 
progressive decrease of the force during the crack, Figure 13 (a). Moreover, the 
crack propagation follows quite well the theorical curve, Figure 13 (b). 
As regarding microscopic behavior at the interface, three zones between the crack 
tip and the location where the bonds start softening can be distinguished during the 
mode I delamination : a bond softening zone, a bond broken zone and a damage 
zone (process zone), Figure 14 (a). The bond softening zone is delimitated by the 
initial crack tip and the location where the bonds damage (ie for which un between 
un

e and un
p, Figure 10). Figure 14 (b) shows the evolution of the three zones in 

relation with the imposed displacement Δ.  

 

 

(5) 



  

(a)      (b)  
Figure 14: (a) Distinction of damage zones  (b) Damage zones lenght 

Finally, Figure 15 presents the configuration of the crack propagation and the zone 
at the crack tip with the singularity stress (process zone). 

 

Figure 15 : Propagation of crack and process zone 

 

Current and future works on this second challenge 
Experiments based on [31]  are in progress to properly identify the cohesive law in 
mode I. At the same time, a micro bond test is implemented with DEM, Figure 16, 
to investigate the fiber/matrix debonding. For now, investigations are mainly 
numerical based on [32] but experiments are also planned.  
Once the normal and cohesive laws properly identified and validated,  the end-load 
split (ELS) test is aimed to validate the model in mode II delaminations. Then, 
interlaminar (mode I and mode II delaminations) and intralaminar (debonding and 
matrix cracks in a VES) damages could be considered with DEM. 

 
Figure 16 : Micro bond test with present DEM. 

 



THIRD CHALLENGE :  MODEL IMPACT ON COMPOSITE USING DEM 
LOCALLY  

Simulations of impact on woven materials are already performed using the finite 
element method [3, 4] and especially shell elements. The shell elements usually 
model a yarn at the mesoscopic scale. The aim of the present work is to model a dry 
fabrics with discrete elements to assess the ultimate strenght before yarns rupture 
but also yarns rupture mechanisms till perforation.  
Modeling a dry fabrics 
The final interlock 3X to be considered is composed of an interlacing of yarns, 
Figure 17 (a). Each yarns are composed of approximately 12000 of high resistance 
carbon fibers. The weft yarns are all straight and the warp yarns are either straight 
nor deviated through the thickness. Figure 18 shows a simple layout of spherical 
discrete elements to represent a yarn. All elements have the same diameter and are 
all in contact but without interpenetration. 

  
  (a)      (b) 

Figure 17 : (a) CT-scan of interlock 3X  (b) interlock 3X with DE. 
 

 
Figure 18 : Model of yarn using DE. 

The final geometry is a combination of three different types of yarns : straight yarns 
in the weft and warp directions and through the thickness yarns. The through the 
thickness yarns are built using a periodic function ensuring no penetration occurs in 
the final geometric representation, Figure 17 (b). 

Mechanical behavior with discrete element 

 



As the mesoscopic scale, the yarn is supposed to be elastic fragile. This assumption 
is relevant regarding to experimental results of a static yarn tensile test [3, 4]. Then, 
the DE along the longitudinal direction of the yarn are bonded by simple linear 
breakable springs. The interaction force between two DE, 1 and 2, is expressed by 
Eq. 6 : 

    


F12 = Kµ (O1O2

 
− LO
n)  with n = O1O2

 

O1O2

     (6) 

where Kµ represents the microscopic stiffness in N/m of the spring between the two 
DE,  O1 and O2 their gravity centers, L0 the initial distance between O1 and O2. 
A mesoscopic stiffness KM can be define for a yarn as, Eq. 7 :   

     


Fr = δ ⋅Kµ ⋅

n
     

(7) 

where  Ly is the yarn length, S its cross section and E the equivalent young modulus 
of the yarn. As the yarn is modelized by a combination of identical springs arranged 
in series and parallel, the relation between the mesoscopic and microscopic stiffness 
depending on the number of spring in series, ns, and in parallel, np can be easily 
established, Eq.8 :  

     Kµ =
ns
np
KM

     
(8) 

One can notice that the calibration of the microscopic properties reduced to Kµ in 
this case is purely analytical. The failure criterion is based on a maximum 
elongation. The spring failure occurs when its elongation is greater than the one 
leading to the yarn failure. When it is broken, a spring is  disabled for the rest of the 
computation. 
 
 Contact management between interlaced yarns 
With present DEM, the contact between DE is naturally taken into account. When 
an interpenetration is detected (ie when the distance between two DE becomes 
lower than the sum of the radii of the two DE in contact), the reaction force Fr 
between the two DE is computed as, Eq. 9 :   

     


Fr = δ ⋅Kµ ⋅

n
     

(9) 

where δ  represents the interpenetration between two DE. The contact stiffness is 
assumed to be the same that the microscopic one  by convenience. The density 𝜌ED 
verifies nEDρEDVED =myarn where myarn is the yarn mass, nED  and VED  denote 
respectively the number and volume of DE constituting the yarn. 

 
Impact simulation with the DEM : first results 

A ballistic impact is simulated with the model defined above refering to works in 
[3, 4]. The weaving is a 3D interlock with only 3 weft yarns in the thickness. Yarns 



are made of Kevlar fibers. The yarn density is 1310 kg/m3 and its young modulus is 
62 GPa. The impactor is a rigid sphere of diameter 5,43 mm made in a standard 
steel of density 7530 kg/m3. It is modeled by a unique DE. The contacts between 
the impactor and the woven but also the contacts between yarns are taken into 
account in the calculation. Initial velocity impactor is set to 90 m/s. The size of the 
weaving is 22 mm x50 mm. 

Figure 19 shows the strain evolution at different times during the impact, 
respectively t=0µs, t=25µs, t=50µs, t=75µs and t=100µs. The maximum 
deformation is reached at about t=50 µs and a first yarn brake occurs. Then, the first 
failures of yarns appear. 

   

 

Figure 19 : Impact simulation on textile with DEM. 

Impact force and impactor velocity are plotted in Figure 20 giving a very good 
tendancy. Simulations are still in progress to be compared to works in [3, 4]. 
Results will be presented for the conference. 

 
 (a)       (b)  

Figure 20 : Macroscopic responses during impact (a) Impact force (b) Impactor velocity 
 
Future works on this challenge 
Next impacts simulations will be performed on the interlock 3X varying the number 
of DE and impact conditions to analyse the mass and velocity impactor but also the 
prestressed effects on global responses and failure progression in the textile. Then, 
coupling this DE model to a continuous one [10] is intended to be able to modelize 
larger woven target.   



 
CONCLUSION 
Present results clearly show the capabilities of the DEM to deal with composite 
material and dry fabrics at microscopic and mesoscopic scales. Even if some 
quantitative considerations are already feasible, qualitative results are mainly 
demonstrated till now. Current developments focuse on improvements to make 
quantitative analysis possible.    

REFERENCES  
[1]  M. Jebahi, D. Andre, F. Dau, J.L. Charles, I. Iordanoff, ‘Simulation of Vickers indentation of 
silica glass’, J Non Cryst Sol 378 (2013) 15-24.  
[2]  D. Andre, J.L. Charles, I. Iordanoff, I. Terreros, GranOO, a discrete workbench (2013) 
http://www.granoo.org. 
[3] C. Ha-Minh, F. Boussu, T. Kanit, D. Crépin, A. Imad, ‘Analysis on failure mechanisms of an 
interlock woven fabric under ballistic impact’, engineering Failure Analysis, (2013), pp 2179-2187.  
[4] C. Ha-Minh, A. Imad, T. Kanit, F. Boussu, ‘Numerical analysis of a ballistic impact on textile 
fabric’, Int. J. of Mechanical Sciences, 69 (2013), pp 32-39. 
[5]  F.S. Kelley, Mesh requirements for the analysis of a stress concentration by the specified 
boundary displacement method, ASME, Proceedings of the Second Computers In Engineering 
International Conference (1982). 
[6]  J.B. Ransom, S.L. McCleary, M.A. Aminpour, N.F. Jr. Knight, Computational methods for 
global/local analysis, Technical Memorandum 107591, (1992) NASA.  
[7]  K.M. Mao, C.T. Sun, A refined global-local finite element analysis method, Int. Jo. Numer 
Methods Eng 32 (1991) 29-43.  
[8]  J.D. Whitcomb, Iterative global/local finite element analysis, Comp. Struct 40(4) (1991) 1027-
1031.  
[9]  K. Terada, N. Kikuchi, A class of general algorithms for multiscale analyses of heteroge- neous 
media, Comput Methods Appl Mech Eng 190 (2001) 5427-5464.  
[10]  M. Jebahi, J.L. Charles, F. Dau, L. Illoul, I. Iordanoff, ‘3D coupling approach between discrete 
and continuum models for dynamic simulations (DEM-CNEM)’, Comput. Methods in Appl. Mech. 
Eng. 255 (2012) 169-209.  
[11]  H.B. Dhia, G. Rateau, ‘The Arlequin method as a flexible engineering design tool’, Int. J. 
Numer. Methods Eng. 62(11) (2005) 1442–1462.  
[12]  M. Jebahi, F. Dau, J.L. Charles, I. Iordanoff, ‘Simulation of laser-induced damage in fused 
silica using the DEM-CNEM coupling method’, under work, (2014).  
[13]  I. Iordanoff and co., ‘Solid third body analysis using a discrete approach : influence of 
adhesion and particle size on macroscopic properties’, J. of tribology, 124(3), 530-538, 2002. 
[14] D. André, I. Iordanoff, JL. Charles, J. Néauport, ‘Discrete element method to simulate 
continuous material by using the cohesive beam model’, 213-216 (2012), pp 113–125. 
[15]  G. Voronoi, ‘Nouvelles applications des paramètres continus à la théorie des formes 
quadratiques’, Fur die Reine und Angewandte Mathematik 133 (1907) 97-178.  
[16]  J. Yvonnet, D. Ryckelynk, P. Lorong, P. Chinesta, ‘Interpolation naturelle sur les domaines 
non convexes par l’utilisation du diagramme de Voronoi contraint-Méthode des éléments C-
Naturels’, Revue Europ éenne des éléments finis, 12(4) (2003) 487-509.  
[17] E. Rougier, A. Munjiza, and N. W. M. John., ‘Numerical comparison of some explicit time 
integration schemes used in DEM, FEM/DEM and molecular dynamics.’, International journal for 
numerical methods in engineering, 62 (2004.), pp 856-879.  
[18]  D. Andre, I. Iordanoff, J.-L. Charles, J. Neauport, ‘Discrete element method to simulate 
continuous material by using the cohesive beam model’, Comput Methods Appl Mech Eng 213-216 
(2012) 113–125. 
[19] C.T. Sun, R.S. Vaidya, ‘Prediction of composite properties from a representative volume 
element’, Compos. Sciences Technol, 56 (1996) 171-179.  



[20]  R. Chermaneanu, ‘Représentation de la variabilité des propriétés mécaniques d’un CMO à 
l’échelle microscopique : Méthodes de construction des distributions statistiques, PhD Thesis (2012) 
Université de Bordeaux I, France.  
[21]  J.-M. Berthelot, ‘Matériaux Composites - Comportement mécanique des structures’, Masson, 
Second edition (1996) Paris.  
[22]  Z. Hashin, ‘On elastic behaviour of fibre reinforced materials of arbitrary transverse phase 
geometry,’ J Mech Phys Solids, 13 (1965) 119-134.  
[23]  R. Hill, ‘Theory of mechanical properties of fibre-strengthened materials: I. Elastic Behavior’, 
J Mech Phys Solids 12 (1964) 199 - 212.  
[24] Z. Zou, S.R., Reid, S., Li, P.D., Soden, Application of a delamination model to laminated 
composite structures, Composite Structures 56 (4) 375–389, 2002. 
[25] N. Hu, Y. Zemba, T. Okabe, C. Yan, H. Fukunaga, A.M. Elmarakbi, A new cohesive model for 
simulating delamination propagation in composite laminates under transverse loads, Mechanics of 
Materials 40 (11) 920–935, 2008. 
[26] F. Aymerich, F. Dore, P. Priolo, Prediction of impact-induced delamination in cross-ply 
composite laminates using cohesive interface elements, Composites Science and Technology 68 (12) 
2383–2390, 2008. 
[27] M. Meo, E. Thieulot, ‘Delamination modelling in a double cantilever beam’, Composite 
Structures 71 (3–4)429–434, 2005. 
[28] D. Xie, A.M. Waas, Discrete cohesive zone model for mixed-mode fracture using finite element 
analysis Engineering Fracture Mechanics 73 (13) 1783–1796, 2006. 
[29] M. Nishikawa, T. Okabe, N. Takeda, Numerical simulation of interlaminar damage propagation 
in CFRP cross-ply laminates under transverse loading, International Journal of Solids and Structures 
44 (10) 3101–3113, 2007. 
[30] D. Yang, J. Ye, Y. Tan, Y. Sheng., Modeling progressive delamination of laminated composite 
by discrete element method, Computational Materials Science 50 (2011) 858-864. 
[31] N. Ben Salem, M.K. Budzik, J. Jumel, M.E.R. Shanahan, F. Lavelle, ‘Investigation of the crack 
front process zone in the Double Cantilever Beam test with backface strain monitoring technique’, 
engineering Fracture Mechanics, 98 (2013) 272–283.  
[32] Dongmin Yang, Yong Sheng, Jianqiao Ye, Yuanqiang Tan, ‘Discrete element modeling of the 
microbond test of fiber reinforced composite’, Comp. Mat. Sc., 49 (2010) 253–259 


