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ABSTRACT

The great evolution of the data-processing tools during the last years allowed for the development of the
computer aided design in the field of mechanical structures. Controlling the clearance in joints between
parts, is one of the required objectives to provide accurate relative movements and to minimize geometrical
errors. For that purpose, a new method of static study allowing for the computation of the equilibrium
positions of various elements in spatial mechanisms constituted by parallel joints and subjected to
mechanical loadingsis proposed. The isostatic study takes into account the presence of the clearance in the
mechanism joints. The method is based to the minimization of the potential energy by means of some
algorithms of optimization. The results obtained show the effectiveness of the method.
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1. INTRODUCTION

Between bodies assembly constituting a machine, clearance in the joints are necessary to ensure
the relative movements of links. Unfortunately, it is that presence of clearance which causes
mechanical vibrations, noise and inaccuracy in the relative movement of multi-links mechanism.
Some numerica methods were developed in the C.A.D field in order to control the joints
clearance and to minimize geometrical errors of position in the mechanism.

Nevertheless, it appears that a rather small number of researches were carried out in this field.
The main part of the works concerning the computation of the relative positions of mechanism
elements linked by joints with clearance, are carried out from a strict geometrical point of view.

Potiron et a. [1] proposed a new method of static analysisin order to determine the arrangement
of the various components of planar mechanisms subjected to mechanical loadings. The study
takes into account the presence of linkage clearance and alows for the computation of the small
variations of the parts position compared to the large amplitude of the movements useful for the
power transmission.



It appears that a rather small number of research tasks were carried out in this particular field.
Funabashi et al. [2] tackled the problem by carrying out a dynamic, theoretical and experimental
study of some simple mechanisms. In order to specify the influence of the clearance in the links
on machine operations, they derived the equations of the movement of links including parts
stiffnesses, viscous friction and Coulomb's friction in joints. The results are interesting for the
specific models suggested but they don’t lead to a general usable method suited for the study of
complex mechanisms.

A model of mechanism with joint's clearance was defined by Giordano et a. [3] when researching
the dimensional and geometrical tolerances associated with machine elements. The method is
based on the definition of small rigid-body displacements and the use of closed loops equations
for the associated kinematic chains.

With Giordano and Duret [4], they developed a mathematical model and give a geometrica
interpretation of the gaps by defining a «hyperspace of gaps». By means of this «gap-space», it is
possible to define the compatibility of the tolerances assigned to the manufactured parts.
However, the study didn't take into account neither the geometrical defects of the parts nor the
deformations and feature variations resulting from the applied loads.

To improve the quality of manufactured products and reduce their total cost, Gao et a. [5] and
Chase et d. [6] have developed a method for the tolerance analysis of two and three-dimensiona
mechanical assemblies. This method is carried out by a direct linearization of a geometrical non-
linear problem. It was implemented in a commercial C.A.D. code, in order to extract from the
results, acceptabl e tolerances and the dimensions of the related parts.

In the same topic, Chase and Parkinson [ 7] presented an outline on recent research in the analysis
of mechanical tolerances, from which it is possible to have an idea of how to handle the study of
the joints' clearance in mechanisms.

Hores and Ambrosio [8] presented a computationa methodology for dynamic anaysis of
multibody mechanical systems with joint clearance. The model for planar revolute jointsis based
on a thorough geometric description of contact conditions and on a continuous contact force
model, which represents the impact forces. It is shown that the model proposed lead to realistic
contact forces. These forces correlate well with the joint reaction forces of an idea revolute joint,
which correspond to ajoint with zero clearance.

Turner et a. [9] proposed a methodology for constructing spherical four-bar mechanisms with an
emphasis on utilizing simpler machining processes and part geometries. By building each link out
of easily created pieces instead of a single complex shape, a mechanism can be quickly
prototyped and tested.

Liu et a. [10] presented a method concerned with the determination of the norma force-
displacement relation for the contact problem of cylindrical joints with clearance. A smple
formulation for this contact problem is developed by modeling the pin as a rigid wedge and the
elastic plate as a simple Winkler elastic foundation.

Thomas et a. [11] proposed a new notation for kinematic structures which alows a unified
description of serial, parallel, and hybrid robots or articulated machine tools. They tried to fill this
gap by presenting a new notation, which is based on the graph representation known from gear
trains.



In the works of Fischer [12], the ball joint often referred to as a spherical or ‘S’ joint is modeled
using dual-number coordinate-transformation matrices. The joint consists of concave and convex
spherica surfaces engaged to prevent trandations but allowing three degrees of freedom, al of
which are rotations.

Hsieh [13] has proposed a method alowing for the kinematic description of mechanisms
containing prismatic, revolute, helical and cylindrical joints to be explicitly defined, it cannot be
directly applied to mechanica systems containing spherica pairs. Accordingly, he_proposed an
extended D-H notation which alows the independent parameters of any spatiad mechanism,
including one with spherical pairs, to be derived for analysis and synthesis purposes. The validity
of the proposed notation is demonstrated via its application to the anaysis of mechanisms
containing revolute, spherical, cylindrical and prismatic joints.

In the study of Erkaya and Uzmay [14] a dynamic response of mechanism having revolute joints
with clearance is investigated. A four-bar mechanism having two joints with clearance is
considered as amodel of mechanism. A neural network was used to model several characteristics
of joint clearance. Kinematic and dynamic analyses were achieved using continuous contact mode
between journal and bearing. A genetic algorithm was also used to determine the appropriate
values of design variables for reducing the additional vibration effect due primarily to the joint
clearance.

In this work, a general quasi-static method is proposed to determine the relative positions of
mechanisms links with joints clearance.

Being given a geometrical position resulting from the great amplitude of movements in the
parallel mechanism, it will be possible to compute the equilibrium positions of the various parts
by taking into account the clearance in the linkages. The main ideais to define and minimize an
objective function which, in the present case, is the potentia energy of the mechanism. This is
carried out by taking account of the geometrical constraints imposed by the clearance on
infinitely small displacementsin thejoints.

During these studies, several simplifying assumptionswill be formulated:

- the joints in the mechanism are carried out with clearances,

- the solids are not deformable,

- the solids are geometrically perfect, i.e. the shape defects due to machining tolerances are
ignored,

- the gravity forceis neglected compared to others applied forces.

2.MECHANISM MODELING ASSUMPTIONS

2.1. Examples of real mechanisms

In various mechanical devices such as pumps, hydraulic motors, hydraulic tubes, etc. each
component is linked to others by means of different joints (spherical, cylindrical, prismatic, etc.).
In each of them there exists some clearance which can perturb the movements or (and) reduces
the relative position accuracy between the links.

Some mechanisms are represented in the following figures which exhibit several components
linked together with some common joints.



) Hydraulic tube
Hydraulic

pump

Pump housing (0), plunger (1), shaft (2), cylinder barrel (3), hydraulic distributor (4)
Figure 1. Two mechanical deviceswith common joints

2.2. Clearance space modeling

In Figure 1 above, it is supposed that some clearance with values J; exists in the different joints.
In the study, the real parts are associated with ajoint space. Each part is replaced by lines without
transverse dimensions and the joint is replaced by a geometrical space with dimensions equa to
clearance. The distances between joints on the same part are conserved. An example is given in
Figure 2 below.
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Figure 2. Clearance modeling

The sketch in Figure 2 and the others presented in the following expand the joint clearance
compared to the other dimensions of the mechanism and they do not take into account the scale of
the figure.

3. BASIC THEORY FOR THE MECHANISM WITH PARALLEL
JOINTS

3.1. Rigid-body small displacements

The mechanism is composed of two parts S; and S, linked together by two joints |; and |,. The
points A; and A, appearing in equation (1), lie on the center line of the link. They coincide
respectively with the two points O, and O, "centers" of the joints I; and |, in the initial position.



OXYZ is the globa reference frame with its origin O. O;X,Y;Z; and O,X,Y,Z, are the loca
reference frames of the joints with origins O, and O,. O; is currently chosen to coincide with O.

In the absence of great amplitude movements, the relative motion of a body S; compared to a
body S in the center A; (i=1,2) of the joint |; is represented by the following kinematic vectorial -

set {Tj(s1/0)}:
{Ticu/sol=tai1/50).Va, 1750}, ()

Qi ($1/Sp) and Va, ($1/Sp) are respectively the rotation vector and the displacement vector

of S; a point A; of S, relative to the origin O, of the joint I;. In the case of three-dimensional
study, Q,(S,/S,) and V, (S,/S,) arewrittenin the form of:

il e
Qi(1/So) =Bt 28  ad  Va (S1/So)=0vi [ (2b)
Hyi Hvi

The unknowns parameters of the problem are the components u;, vi, w;, a;, B, €t v, of the two
vectors Q; ($1/Sp) and Va, (S1/Sp) -

Remark

In the following, for infinitely small rotation 6;, sinB; = tan6; = 8;. and cos8; = 1.
3.2. Potential energy

The theorem of potential energy, as stated by Germain and Muller in[15], reads:

For a given problem, among al cinematically admissible-fields (C’) the real displacement field is
the one that minimizes the potentia energy of the system.

The potential energy V(C’) of a body, resulting from a cinematically admissible displacement-
field is defined by:

V(C') =W(C') —m'fk.u}(dv—J’J'Tk Uyds A3)

W(C") isthe strain energy of the structure, fy is the component of the external volume force, Tyis

the component of the surface force being exerted on the system and U'k (M) is the component of
the admissible displacement of any point M of the system.

It is this property of the real displacement field which will be exploited in the proposed
optimization method.

3.3. Relationships between the design variables

The kinematic composition law for the relative motions allowed by each of the joints implies that:



{Tusi/so)t ={Ta(s1/50)} (4
In equality (4), each kinematic vectorial -set should be reduced to the same point.

The small displacements {7, (S, / SO)}AEl and {T,(S,/ SO)}A2 are respectively written as:

31 o B o
{Tsi/sola, =m0 @ ad {Tusi/Sola, =0v2 B20 ® O
B’Vl V1E B’Vz VZH
The development of (4) gives:
Q1($1/S0) =Q2(S1/Sp) (6)
and
VA, (S1/S0)=Va,; (S1/S0) +0201 A Q4(S;/S0) )

In theinitial position of mechanism, the points A; and A, coincide respectively with O, and O..
Thetwo equalities (6) and (7) give six linear equations linking the design variables.

4. OPTIMIZATIONMETHOD FOR THE RESEARCH OF RELATIVE
PARTS ARRANGEMENTS

The proposed method computes the values of the smal displacements, characterizing the
movements authorized by the presence of clearance in the joints, and determines their
components (displacements along the three axes and rotations with respect to these axes).

The optimization problem deals with the minimization of the potential energy of the system and
accounts for the geometrical, mechanical and technological constraints imposed by the design of
the machine. A mathematical optimization-algorithm is used in order to compute the values of the
small displacements in the joints which are the design variables of the problem. Mathematically,
the optimization problem can be formulated in the form of :

Minimize V(x) (8a)
Subj ected to the following optimization constraints:

gj(x)<0 j=1,..m (8b)
h(x)=0 k=1,..,n (8¢c)

x isthe vector of the design variables which are the components u;, v;, w;, a;, 3;, and y;, of the two
vectors Q;(S1/Sp) and Vp, (S1/Sp) withi=1,2.

gi(x) and hy(x) are respectively the inequality and equality constraints of the problem. In this
study, they arise from the geometry of the linkages, the displacement's limits of particular points
and from the closing loops equations (6) and (7).



5.OPTIMIZATION PROCESS

The optimization process can be sketched in the following diagram:

Initial values of design variables

l

Calculation of the Potential Energy
and the imposed constraints

l

Sensitivity Analysis of the Potential
Energy and the constraints

New values of
\L design variables

Optimization of design variables by
aMathematical Optimization Code

No
convergence

yes

Figure 3. Optimization Algorithm

The purpose of this study is the computation of the equilibrium positions of various elements in
spatial mechanisms with parale joints subjected to mechanical loadings. The values of the
design variables being initiaized, the initial values of the objective function and the constraints
are calculated.

Concerning the search for the optimal solution of the optimization problem, it will be noticed that
the majority of optimization methods involve mathematical calculation of the gradients of the
objective-function and constraints, by means of the design parameters. This can be achieved by a
sengitivity analysis of the objective function and the constraints when the design parameters vary,
leading to the convergence of the optimization process towards the optimal solution. The
optimization method implemented is the sequential quadratic programming method [16].

The agorithm is based upon an iterative process in which, at each stage, the design parameters
take new values, allowing for the convergence towards the optimal solution. In the case of non-
convergence, new values are assigned to the design variables and a new iteration is carried out.
This processisrepeated until convergence is reached.



6. MECHANISMS WITH CLEARANCES IN THE PARALLEL
JOINTS

6.1. Mechanism with a spherical joint and a cylindrical joint

The mechanism is composed of two parts, a shaft S; and a reference body S, linked together by
two joints I; and I,. 11 is a spherica joint and |, is a cylindrical joint. L, is the length of the
cylindrical joint. J; and J, are respectively the joint clearances of I, and |,. A real arrangement of
such mechanism can be viewed in Figure 2.

The points A; and A; lie on the center line of the shaft. They coincide respectively with O and O,
in the initial position. OXYZ is the global reference frame with its origin O and O,X,Y »Z, the
local reference frame of the cylindrical joint of center O,. The scheme of this mechanism is given
by figure 4:

Y Y2

Figure 4. Clearance model of spherical and cylindrica joints
The design variables of the problem are;
- thedisplacements uy, vi and w; of points A; along X, Y and Z axis
- therotations ay, B; and y; of the shaft at points A; around the X, Y and Z axis
- thedisplacements u,, v, and w; of points A, along X,, Y, and Z, axis
the rotations a,, 3, and vy, of the shaft at points A, around the X, Y, and Z, axis.
6.1.1. Objective-function

A torque C and aforce F applied at point B on the shaft are the components of the mechanical
loading. The potential energy is expressed as:

V(C) = - (F.Ug + C.0g) )

Ug and @, respectively the displacement vector and the rotation vector of point B, are calculate
by means of {Ti (SCI./SO)}Ai in asame manner as equation (7).

6.1.2. Limits of design variables

The vaues of the design variables are limited by the geometry of the joints. They are
characterized by the following inequalities:



a. Spherical joint

J1 J1 . J1 . J1
-=<u <= i——=<svis—= (b);-——=<swis—= (C 10
SsusT @ -TsvsT (O 1= @ (10)
—w<op<so (@); —os<Py<swo (b)) ~os<y;<o  (C) (11)

b. Cylindrical joint

. J2 J2 .2 J2
—o<Uy < i ——<<vp<s—= (b)), -—%4< <= (c 12
w<up<o  (d) , SV2=) (b) , SW2s—) (c) (12)
Cwmsapse (@) -2y 2 () -2cy,<2 (0 (13)

Lo L2 L2 Lo

6.1.3. Linear geometric constraints

That kind of constraints appears when the contacts between the shaft and the joints are
accounted for and when closing the kinematic vectors chain.

a Cylindrical joint

For that joint, in the Oxxoy, plane, the displacements along the axis y, are limited by
upper and lower contacts shaft/cylinder of the points with abscises L,/2 and —L,/2. They
are respectively written in explicit form by:

L

v2+v2 = (143
L

v2-v2 2 (14b)

I:I

L
These displacements should not exceed the boundaries [-'r?z 72[ involving the two
E

1]

following linear inequalities:

J J

_72<V2+y 22 22 (15a)
Jo Lo J2

-—£<vy 15b
, SV2 Y2 s (15b)

For the Samejoi nt but in the O,x,z, plane, we obtain:

J2 Ly J2
292 o g2 22 16b
> swp -B2 > < > (16b)

b. Kinematic equation

Now, for each kind of joint, the explicit form of the kinematic closing loop (6) and (7)
leads to the six linear independent equations:



L0 o0

%1 E— %2 %= {6} (17a)
il B2t

Quo O Qup O o O

Eivz i EIVl E—0201/\H31 E={6} (17b)

ot el it

6.1.4. Non-Linear geometric constraints

These constraints are due to the limited movement of the shaft in the cylindrical or spherical
clearance space. It leadsto the following quadratic inequalities:

Osu2+v2+W2<BU—1B2 (18)

05@!2+V2L—ZBZ+BN2—B2L2§25 zg (19)

>0 0O 20 02
1F 8, 51200 21
Oslivp —yp—=0 +0wp +Bp—=0 < (20)
0 20 0O 20 020

6.1.5. Shaft loading

The shaft can be loaded in several ways, including forces and torques applied a various points.
Three cases of shaft mounting will be studied, each one being subjected two various loading
conditions. The numerical applicationswill alow to validate the formulation.

6.1.6 Spherical and cylindrical joints arrangement

The spherical joint is placed at the origin O and the clearance value J; is 0.2mm. The cylindrical
joint a the other end has a length L,=40mm and a clearance value J, = 0.2mm. The distance
AA, =200mm on X axis. In unloaded position, A; coincides with O.

6.1.6.1 First loading case
D.NE

The shaft isloaded at right and out of the cylindrical joint by aforceF = ELN 0. The distance A,B
HNE

will have no influence on the optimal relative position.

The method allows finding the optimal solution of the displacements and rotations of the shaft at
points A; and A,. The numerica results obtained at the end of the optimization process, are
reported in the following vectors sets (the first column refers to the displacements (mm) and the
second to the rotations of the shaft (rad)):



Oup =8.892973 1002 mm  a1=-1.562943 107306 rad%
{Ty(s1/s0)} A, = V1 =-3233808 10°mm By =-4.684034 10 %rad O
@vl =-3.233806 10 2mm  y; =4.684034 10"*rad %

,=8892973102 mm o, =-1.524142 10306 g0
{Ta(sisolla, =2 =6134259 0°mm By =-4.684034 10" *rad ]

@vz =6.134262 102mm = 4.684034 10 *rad E

From these values, it follows that the displacements of the center A; of the spherical joint satisfy

the relation,/ul2 + V12 + W12 —? =0.1mm. Thus, the fina position of point A; is located on the
sphere with aradius equal to the clearance value.

Concerning the point A,, it moves aong the three axes x,, y» and z, with rotations 3, and y-
between the boundaries - J/L, and J/L,. The rotation a, is negligible. In addition, the linear
congtraints given in the relations (15) and (16) respect their boundaries - J,/2 and J,/2:

L - L -
Vo +y272:7.07106610 2 mm, vo —y272:5_19745310 2 mm

Wo +Bo % =5.19745610 "2 mm, wo - B> % =7.07106910"2 mm.

Furthermore, since the value of nonlinear constraint (19) is equa to the upper boundary:
B/z +yo L—ZBZ +HN2 -Bo— L2 Bz BJ—BZ 0.01mm?, then the contact between the shaft and
0 20 O 20

the right side of the cylindrical joint is assured. But the nonlinear constraint (20) does not achieve

their upper boundart: B/z -y2 L—ZBZ + BNZ + 32 BZ 5.402706 10”2 mm? < BJ—BZ so0 the
0 20 0O 020
left side of the cylindrical joint has no contact with the shaft asindicated in figure 5.

N
NO

e

Figure 5. Displacement of the shaft after loading

Now if the force values are different from 1N, it will not be obviousto give an accurate prediction
of the exact position of the parts. A purely geometrical calculation is no more possible for the



computation of the reative displacements vaues because the components of the force will
influence the result.

In the case where spherical joint has a clearance very large compared to that of cylindrical joint
(lh=3mm, % = 0.1 mm and L, = 40 mm), the optimization algorithm converges to optimal
values of displacements and rotations of shaft in the points A; and A, given respectively in

{Tusi/solta, ad {Tai/s0)k,

0141421356 mm  -5.25281282 1016 radl
{Ti(syso)} a, =[10.35355338mm  -176776695 1073rad
% 0.35355339mm  1.7677669410 3rad %

0 1.41421356 mm -5.2528128210 16 radt
{Ta(s1/s0)} A, =0 320683982 10%mm  -1.7677669510"3rad {3
%3.2070689110'10 mm 17677669410 >rad %

The nonlinear constraints have the following values.

uZ +v2 + w2 =2.250000 mm? = B]—BZ
020
H L2 '—2B2_ -3 2 =2
2+ty2—- + 2 —-Bp—=0 =25000010 ~ mm* =
O 20 2 0 02

N

]
]

H LZBZ E{N ZBZ -3 2
2-y2—=0 +0no +B> =25000010 ° mm*“ =
O 20 0O 20

O
N

Since the nonlinear constraints reach their upper boundaries, the point A; islocated on the sphere
of the spherical joint and there are two contacts between the shaft and the cylindrical joint.

Figure 6. Contact of the shaft with the joints



6.1.6.2 Second loading case

The dimensions and clearances of the first case are unchanged (J; = 0.2 mm, J, = 0.2 mm, L, = 40

[ON[]
mm and A;A, =200mm) but the shaft isloaded at its middle point B by aforceF = ELN E
HNE
After computations and convergence of the algorithm, the optimum values are reported below:
309985988 102 mm  -1.59740463 107274 radg
{Ty(s1/s0)} a, =0 7.07106780 10 mm 1.65058153 10 Prad [
% 7.07106781 10"2mm 1.65050781 10" 13rad %
%09985988 102 mm  -1.59740463 102’4 radC

To(si/ = F 7.07106781 10° mm 1.65058234 10" 13rad H
2 A,
1707106781 102 mm 1.65051596 10" 13rad U
S| =i

Results show that the shaft moves only in the plane OYZ without any rotation. The schematic
view of the mechanism is presented in figure 7.

Figure 7. Shaft position after loading

The optimal values of design variables show that the shaft moves in a paralel direction to the x
axis without moving along this axis. Since the clearance values of joints are equal, then there is
no rotation of shaft. The final position of point A; is located on the sphere considering that

V7.0712 +7.0712 =10 = %1 . The final position of point A, lies on the circle with aradius 3_22

because,/u% +v§ +w§ =J72. Since the clearances in two joints are equal and the load is
parallel to the plane OYZ, {T4(S1/Sp)} A, A {Ta(s1/0)} A, areidentical.

If the clearances in two joints are different, the two following cases are presented:
J > % and J; < &. The other dimensions and the load case are unchanged.

a Casel:J;>J,




The clearance in spherical joint is modified from 0.2mm to 0.3mm. The agorithm converges to
the following optimum values:

054004442610 9mm  -1.25554283 10" 1°rad
{Ty(s1/s0)} a, =0 0.10606604 mm 1.9641818010 4rad
% 0.10606598 mm -1.9641891910 *rad %

0540044426 109°mm  -1.25554283 10 12 radd
{Ta(s1/0)} A, =[16.67822643 10°mm  1.9641818010 *rad
% 6.6782349810°2mm  -1.9641891910 4rad %

Since J; > J,, the optima vaues of displacements of A; are greater than those of A, and there is
only arotation of the shaft relative to the two axesy, and z.

. . . . J
The point A; is located on the sphere of the spherical joint because ”12 +vf +wf =1

addition, B12+y2L—ZBZ+BN —BZ—BZ 7901235103 mm? <BJ—B2 0.01mm? and

H/z yz—Bz H/vz +Bo LTZBZ BJ?BZ 0.00mm?2. This shows that there is only one
O 0
contact between the shaft and the left side of the second joint.

b-Case2: J; < J,

In this case, the clearance of the spherical joint is equal to 0.1mm. After computations and
convergence of the agorithm, the numerica values which have been obtained, are reported in the
kinematic vectorial-sets:

356393699101 mm  -1.67486499 10717 radg
{'[1(51/80)}Al = [13.5355339010"2mm -1.6070608610 *rad

%3.53553390 10"2mm 1.6070608610 % rad %

%3.56393699 10 mm  -1.67486499 101 radt
{Ta(s1/0)} A, =D 6.74965563 10%mm  -1.60706086 10™*rad [

% 6.7496556310"2 mm 16070608610 % rad %
The optimal values of displacements of A; are smaller than those of A, and there are only
rotations of the shaft relative to the two axis y, and z.

Since u12 +v12 +w12 = BJiBZ = 25000010 "3 mm?2,
02 0O

L L _
H/z +V2—ZBZ+BN2—[32—ZBZ =BJ—ZBZ=1.00010 2 mm?2 and
0 20 0O 20 020



B/z -y2 L—ZBZ + B/vz +Bo L—ZBZ =8.264463103 mm? < EU—ZBZ the conclusions obtained,
0 20 0O 20 020
for this caseg, are:

- Thepoint A; islocated on the sphere of the spherical joint.

- Thereisonly one contact between the shaft and the right side of cylindrical joint.
The effectiveness of the method is thus verified.

6.2. M echanism with two spherical joints

The mechanism has two parts, a shaft S; and areference body S, linked together by two spherica
joints. A real arrangement of such mechanism can be viewed in Figure 8:

CENTER LINK PITMAN AR
@~ WPS BaoE: WPS BE604
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Figure 8. Rod with two spherical joints

In the model, the points A; and A, at the ends of the shaft are the centers of the spheres on the
shaft. They coincide respectively with O and O, in the initia position. OXYZ is the globd
reference frame with its origin O and O.X,Y »Z, (the local reference frame of the second spherical
joint of center O,). The scheme of this mechanism is given by Figure 9:

Figure 9. Clearance model of mechanism with two spherical joints

The components of the displacements of points A; and A, and the rotation of the shaft in the S,
frame are the design variables. Asin the preceding example, the optimization problem is carried
out in severa cases of shaft loading.



As in the preceding example, an optimization problem is raised alowing the evaluation of the
design variables. Several cases of loading will be now considered.

6.2.1. First case of two spherical joints

For the numerical study, the clearance values are chosen to be 0,3 mm in the first joint and
0,6 mm in the second joint.

200
The center O, of the second sphere has as Cartesian coordinates 00, — [400}1'!“’”.
600
N[O
The shaft isloaded at its middle point B by aforceF = HN %
HNE
At the end of the optimization process, the optimum values of displacements and rotations are
reported below:

84574801 107 2mm  -1.24552440 10" 4radC
{Ti(s1/s0)} A, = [B54799757 102mm  2.49104927 10 *rad [

% 0.102502425 mm -1.24552477 10'4rad§
0 0.267741427 mm -1.24552440 10'4rad5

{Ta(si/so)} A, =[0 0.135300944 mm 249104927 10™*rad
%.86046329 103mm  -1.24552477 10 rad%

From these values, it follows that the displacements of each center of the spherical joints satisfy

the relation “i2 +Vi2 +Wi2 =J?i (i=1,2). Thus, the final positions of the points A; and A, are

located on the two spheres of clearance as shown in Figure 10:

Figure 10. Displacements of the shaft after loading

6.2.2. Second case of two spherical joints

We suppose in this section that the two joints have the same clearance value equa to 0.3 mm. The
other dimensions and the load case are unchanged.



@66025403 102mm  1.06758281 10 P radU
{Ta(s1/sp)} A, = [B:66025403 10%2mm  2.13479904 10" PO radf
%.66025403 102mm  3.20236638 10°1° rad%

%66025403 102mm  1.06757756 10'1° radé
{Ta(su/S0)}a, = (B66025403 10"2mm  2.13481067 10" rad ]

58.66025403 102mm  3.20236229 10°1° rad%

The results show that {T(S; /So)}Al has the same value of {T5(S; /SO)}A2 . In addition, there
are no rotation (numerical values are negligible) of the shaft which islogical.

After computations and convergence of the algorithm, the schematic view of the mechanism is
presented in figure 11.

Figure 11. Shaft position after loading

. Ji . . .
Since ui2 + Vi2 + Wi2 :?', the final positions of the points A; and A, are located on the spheres

defined by the clearance values J; and J,.

The effectiveness of the method is thus established knowing that the computation of the
optimization a gorithms must be reliable.
6.3. M echanism with two cylindrical joints

The mechanism has two parts, a shaft S; and a reference body S, linked together by two
cylindrica jointsl; and |,.

A real arrangement of such mechanism can be viewed in Figure 12.
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Figure 12. Hydraulic tube with two cylindrical joint

J and L; are respectively the joint clearance and the length of joint |; (i = 1, 2). The points A; and
A, are the centers of the joints. They coincide respectively with O and O, in the initia position.
OXYZ isthe globa reference frame with its origin O and O,X,Y »Z, (the local reference frame of
the cylindrical joint of center O,). The scheme of this mechanism is given by figure 13:

Figure 13. Clearance model of two cylindrical joints
6.3.1. First case of two cylindrical joints

We take a two identical joints with a clearance value J;=%= 02mm and a length
EDNE

L; =L,=40mm. The force is applied in the middle of OO2 with F = ElN 0. The distance
HNE

between the originsis OO, = 100 mm.

After computations and convergence of the agorithm, the numerical values are reported in the
following kinematic vectoria -sets:

(b 50527452 103% mm  -1.99239567 107306 ragC

{T1(51/S°)}A1 = [ 7.07106765 10"2mm -1.20633278 10 0rad %
% 7.07106797 102 mm -1.20620232 10710 rad %

51218348 103 mm  -1.99554887 1039 ragl
{To(s/So)la, =11 7.07106644 10°2mm  -1.20633282 10™Oredt £
% 7.07106917 10°mm  -1.20620231 109 rad %



According to the optimal values, the nonlinear constraints of problem are limited as follows:

L L — _
0< H/1+y1—182 +sz1—31—152 =1.000000 10~ 2 mm? SBEBZ =1.000000 10~ 2 mm?
0 20 O 2 0 020

L L — _
0< B/l—yl—laz+B/V1+Bl—lBZ=1.00000010 2 mmszJ—lazzl.oooooom 2 mm?
0 20 O 2 0 02 O

L L
0<B/2+y2—2g+HN2 BZ—ZBZ 1.000000 102 mm? <BJ—B2 =1.00000010"2 mm?
0 20 O 20 02 0

L - -
<Bis-y —ZBZ +Ony By =2 2 EF =1.00000010 2 mm? < BJ—ZEr =1.000000 102 mm?
0 20 O 2 0 020

Since vi2 +Wi2 =?', the fina positions of the points A; and A, are located on the circles

defined by the clearance values J; and J,. The results show that the shaft moves only along the Y
and Z axis. In addition, there is no rotation of the shaft.

Figure 14. Displacement of the shaft after loading
6.3.2. Second case of two cylindrical joints

A transverse torque C, = 1 Nm is applied in B to the right of the joint I,, along the X axis. In this
section, the value of the first joint clearance is four times that of the second connection
(J.=0,4mm and J, =0,1 mm) but the length of the second joint is greater than that of the first
(L; =40 mm and L, = 60 mm). The other dimensions and load cases are similar to the previous
case.

After computations and convergence of the agorithm, the numerical values are reported in the
Kinematic vectorial -sets:

EL3.20084144 10°%mm  1.82228772 107398 rg

{Tl(sllso)} - 0.166666666 mm 553813565 10 8rad %

@ 596041716 10> mm 1.66666666 10™3rad %



[ 335496565 103%mm  3.13762951 107398 rad
{Ta(su/so)}a, =10-8.13538007 10%mm 553813565 10®rad O
% 5.40660360 10™°mm 1.66666666 10 3rad %

From the numerical values, the equilibrium position of shaft is given on the following figure 16:

Y2
! Cz

‘ - X

Figure 15. Displacements of the shaft after loading

. A .. . J J, +J .
This equilibrium position of the shaft is normal because 2 =——1_"2 ____ This causes
L, L;+L,+200,

. . . J +J -
rotations with respect to the Z axisequal to: y; =yp =—2 = _ hth 666107 3rad .
L, L,+L,+200,

Only in this case, there are three contacts between the shaft and the two mechanism joints.

In the following, consider the case where S < B T . The clearance J; isincreased to
L, L;+L,+20,0,

the value 0.5 mm. Results show that the displacement v, and the rotations y; et y, are similar to

the previous case. Other unknowns are a'so negligible.

The values of nonlinear constraints are similar to those of the previous result. The differenceisin
the upper boundaries of the constraints concerning the left joint. They are varied from 4 10% mm?
t0 6.25 102 mm?. In this case, these constraints are lower than the upper boundaries.

It isfound that the shaft isin contact with the two circles of the second joint boundary while there
isno contact with the first joint as presented in the following figure:

Figure 16. Displacements of the shaft after loading



7. CONCLUSION

The search of maximum accuracy for optimum machine performances reguires the control of the
clearance in the mechanical joints between the different components. This could be obtained by
determining the small variations of the parts position subjected to mechanica loadings.
Optimization technique allows the development of new tools for engineers and designers in order
to predict and quantify the effects of the joints clearance on the geometrical performances of
mechanisms. It has been shown that without a general method, it's difficult, even impossible, to
manually compute the small relative-displacements values induced by the joints clearance.

This paper has presented a comprehensive method for modeling and analyzing the position of
bodies in three-dimensional mechanical assemblies in the case of mechanism with clearance in
the paralé joints.

Therefore, we propose to study and calculate the relative positions of mechanical elements using
the minimization of thetotal potential energy in parallel mechanism.

The deformations of the bodies are not considered in the actual formulation, but it can be easily
accounted for, by calculating the strain energy of each structural element.

The solution of this problem must use a mathematical optimization-algorithm computing the
values of the small displacements in the joints, which are the design variables. Severa examples
have been presented to evaluate the effectiveness of the formulation. The results obtained from
several simulations show the effectiveness of the method.
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