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Abstract: When suspensions involving rigid rods become too concentrated, standard dilute
theories fail to describe their behavior. Rich microstructures involving complex clusters are
observed, and no model allows describing its kinematics and rheological effects. In previous
works the authors propose a first attempt to describe such clusters from a micromechanical
model, but neither its validity nor the rheological effects were addressed. Later, authors
applied this model for fitting the rheological measurements in concentrated suspensions
of carbon nanotubes (CNTs) by assuming a rheo-thinning behavior at the constitutive law
level. However, three major issues were never addressed until now: (i) the validation
of the micromechanical model by direct numerical simulation; (ii) the establishment of
a general enough multi-scale kinetic theory description, taking into account interaction,
diffusion and elastic effects; and (iii) proposing a numerical technique able to solve the
kinetic theory description. This paper focuses on these three major issues, proving the
validity of the micromechanical model, establishing a multi-scale kinetic theory description
and, then, solving it by using an advanced and efficient separated representation of the cluster
distribution function. These three aspects, never until now addressed in the past, constitute
the main originality and the major contribution of the present paper.
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1. Introduction

Short fibers, nanofibers or carbon nanotubes—CNT—suspensions present different morphologies,
depending on their concentrations. When the concentration is dilute enough, one can describe the
microstructure by tracking a population of rods that move with the suspending fluid and orient depending
on the velocity gradient according to the Jeffrey’s equation [1] that relates the orientation evolution with
the flow velocity field. In that case, the motion and orientation of each fiber is assumed decoupled from
the others. The representative population can involve too many fibers, and in that case, the computational
efforts to track the population is unaffordable. Thus, the simple and well-defined physics must be
sacrificed in order to derive coarser descriptions.

Kinetic theory approaches [2–4] describe such systems at the mesoscopic scale. Their main advantage
is their capability to address macroscopic systems, while keeping the fine physics through a number of
conformational coordinates introduced for describing the microstructure and its time evolution. At this
mesoscopic scale, the microstructure is defined from a distribution function that depends on the physical
space, the time and a number of conformational coordinates—the rods orientation in the case of slender
body suspensions. The moments of this distribution constitute a coarser description, in general, used in
macroscopic modeling [5].

At the macroscopic scale, the equations governing the time evolution of these moments usually
involve closure approximations, whose impact in the results is unpredictable [6–8]. Other times,
macroscopic equations are carefully postulated in order to guarantee the model objectivity and its
thermodynamical admissibility.

In the case of dilute suspensions of short fibers, the three scales have been extensively considered to
model the associated systems without major difficulties. However, as soon as the concentration increases,
the difficulties appear. In the semi-dilute and semi-concentrated regimes, fiber-fiber interactions occur,
but in general, they can be accurately modeled by introducing a sort of randomizing diffusion term [9].
There is a wide literature concerning dilute and semi-dilute suspensions, addressing modeling [10–14],
flows [15–18] and rheology [19,20]. These models describe quite well the experimental observations.
When the concentration increases, rods interactions cannot be neglected anymore and appropriate models
addressing these intense interactions must be considered, as, for example, the one proposed in [21].
Recent experiments suggest that short fibers in concentrated suspensions align more slowly as a function
of strain than models based on Jeffery’s equation predict [22]. For addressing this issue, Wang et al. [22]
proposed the use of a strain reduction factor; however, this solution violates objectivity. Later, the
same authors proposed an objective model by decoupling the time evolution of both the eigenvalues
and the eigenvectors of the second order orientation tensor [23]. In [24], an anisotropic rotary diffusion
is proposed for accounting for the fiber-fiber interactions, and the model parameters were selected by
matching the experimental steady-state orientation in simple shear flow and by requiring stable steady
states and physically realizable solutions.
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The worst scenario concerns concentrated suspensions involving entangled clusters exhibiting
aggregation/disaggregation mechanisms. A first approach in that sense was proposed in [25]. The
first natural question is how to describe such systems? At the macroscopic scale, one could try to fit
some power-law constitutive equation; however, this description does not allow one to describe the
microstructure. At the microscopic scale, direct numerical simulations describing complex fiber-fiber
interactions can be carried out in small enough representative volumes [26,27]. A natural candidate to
be a reasonable compromise between (fine) micro and (fast) macro descriptions consists of considering,
again, a kinetic theory description.

The main issue of such an approach lies in the fact that it must include two scales, the one involving
the aggregates and the one related to the rods composing the aggregates. What are the appropriate
conformational coordinates? How does one determine the time evolution of these conformational
coordinates? How does one represent, simultaneously, both scales, the one related to the aggregates
and the other related to the fibers? How does one derive the interaction mechanisms?... These questions
will be addressed in this work.

In [28], the authors propose a first attempt to describe such clusters from a micromechanical model,
but neither its validity nor the rheological effects were addressed. Later, in [29], the authors applied
this model for fitting the rheological measurements in concentrated suspensions of carbon nanotubes
(CNTs) by assuming a rheo-thinning behavior at the constitutive law level. However, three major issues
were never addressed until now: (i) the validation of the micromechanical model by direct numerical
simulation; (ii) the establishment of a general enough multi-scale kinetic theory description, taking into
account interaction, diffusion and elastic effects; and (iii) propose a numerical technique able to solve
the kinetic theory description. This paper focuses on these three major issues, proving the validity of
the micromechanical model, establishing a multi-scale kinetic theory description and, then, solving it by
using an advanced and efficient separated representation of the cluster distribution function. These three
aspects, never until now addressed in the past, constitute the main originality and the major contribution
of the present paper.

In this paper, we first propose two micro-mechanical models for describing the kinematics of rigid
and deformable aggregates in Section 2 and 3, respectively. The double scale kinetic theory model will
be, then, addressed in Section 4. Section 5 considers different interaction mechanics in order to derive
an extended kinetic theory model. The issues related to its numerical solution will be deeply analyzed
in Section 6. Section 7 presents some verification and validation tests of the proposed micro-mechanical
models, and finally, first numerical results are given in Section 8.

2. Micro-Mechanical Description of the Kinematics of Rigid Clusters

As just discussed, when the rod concentration is high enough, rod interactions cannot be neglected
anymore, and appropriate models addressing these intense interactions must be addressed. In the extreme
case, a sort of cluster composed of entangled rods is observed [25,30]. When the suspension flows, those
clusters seem animated by almost rigid motions.

Clusters can be viewed as entangled aggregates of rods, with these rods consisting of a rigid segment
joining the two beads located at the segment ends, where it is assumed that forces apply. Microscopic
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simulations become unaffordable, due to the computational resources needed to address scenarios of
real interest. On the other hand, macroscopic modeling is without any doubt too phenomenological for
describing the main flow and microstructure features. Kinetic theory approaches could be an appealing
compromise between accuracy and computational efficiency.

In what follows, we consider the cluster idealization depicted in Figure 1 in the case of a hypothetical
2D aggregate that does not involve size effects, but at least involves the orientation distribution.
Obviously, this representation is a crude simplification, but it constitutes the simplest model and could
be later enriched, without major difficulties, to include more complex and richer configurations.

Figure 1. Star representation of a cluster composed of rigid rods.

First, we consider a 2D rigid cluster consisting of N rods of length, 2L, oriented in the directions, pi,
i = 1, · · · , N , as sketched in Figure 2. Brownian effects can be neglected, and then, only flow induced
hydrodynamic forces must be considered (the rod-rod hydrodynamic interactions are not considered in
this work). Forces, Fi, apply on each bead located at position, Lpi (Figure 2), and are proportional to
the difference of velocity between the one flow unperturbed by the presence of the cluster at the bead
location and the other one, the bead itself:

Fi = ξ (∇v · pi L− ṗi L) (1)

where ξ is the friction coefficient and v the flow velocity field unperturbed by the cluster presence. We
can notice that forces are, by construction, self-equilibrated.
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Figure 2. Hydrodynamic forces applied on a rigid cluster composed of rods.

Remark: In this paper, we consider the following tensor products:

• if a and b are first rank tensors, then the single contraction, “·”, reads (a · b) = aj bj (Einstein
summation convention);

• if a and b are first rank tensors, then the dyadic product,“⊗”, reads (a⊗ b)jk = aj bk;
• if a and b are first rank tensors, then the cross product, “×”, reads (a×b)j = ϵjmn am bn (Einstein

summation convention) with ϵjmn, the components of the Levi-Civita tensor, ϵ (also known as the
permutation tensor);

• if a and b are, respectively, second and first rank tensors, then the single contraction, “·” reads
(a · b)j = ajm bm (Einstein summation convention);

• if a and b are second rank tensors, then the single contraction, “·”, reads (a · b)jk = ajm bmk

(Einstein summation convention);
• if a and b are second rank tensors, then the double contraction, “:” reads (a : b) = ajk bkj (Einstein

summation convention).

The moment induced by forces applied on rod i is given by:

Mi = 2 L pi × Fi (2)

By neglecting inertia effects, the resulting moment for the whole cluster must vanish:

i=N∑
i=1

Mi = 0 (3)

then, taking into account Equations (1) and (2) results in:

i=N∑
i=1

pi × (∇v · pi) =
i=N∑
i=1

pi × ṗi (4)

If we define the cluster angular velocity, ω, such that:

ṗi = ω × pi (5)

in the 2D case, where ω and pi are orthogonal, pi × ṗi = ω, ∀i, and then, it results that:
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i=N∑
i=1

pi × (∇v · pi) =
i=N∑
i=1

pi × ṗi = N ω (6)

Thus, the kinematics of the rigid 2D cluster can be defined from:

ω =

∑i=N
i=1 pi × (∇v · pi)

N
(7)

the angular velocity of each rod being j:

ṗj = ω × pj =

(∑i=N
i=1 pi × (∇v · pi

)
× pj

N
(8)

when the cluster contains many rods, an alternative description consists of defining its orientation
distribution, ψ(p). In this case, all the sums in the previous expressions must be substituted by the
corresponding integrals weighted with the distribution function, ψ. Thus, in the 2D case, Equation (7)
leads to:

ω =

∫
S(0,1)

(p× (∇v · p)) ψ(p) dp (9)

where S(0, 1) denotes the unit sphere surface. The angular velocity of any rod, q, reads:

q̇ = ω × q =

∫
S(0,1)

((p× (∇v · p))× q) ψ(p) dp (10)

Cross products can be written in a more compact form by using the third order Levi-Civita
permutation tensor, ϵ, that allows writing using the notation previously introduced, (u×v)i = ϵijk uj vk

(Einstein summation convention) or (u× v) = ϵ : (v ⊗ u). Thus, Equation (9) writes:

ω = ϵ : (∇v · a) (11)

with a, the second moment of the orientation distribution, ψ(p):

a =

∫
S(0,1)

p⊗ p ψ(p) dp (12)

where, for the sake of notational simplicity, we do not explicate the time dependence of the distribution
function, ψ.

On the other hand, we can define the rotation tensor, W, such that:

ω × p = W · p (13)

that allows writing:

ṗ = W · p (14)

It is easy to prove from Equations (11)–(14) [28] that:

W = Ω+D · a− a ·D (15)
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where D and Ω are, respectively, the symmetric and skew-symmetric components of the velocity
gradient, ∇v.

Thus, a rigid cluster rotates with a velocity that only depends on the second moment of its orientation
distribution, a. Any rigid cluster having the same orientation tensor, a, will have the same angular
velocity. In this case, we should derive an expression given the time evolution of a, ȧ. For this purpose,
we start from the definition of a in Equation (12) and consider its time derivative:

ȧ =

∫
S(0,1)

(ṗ⊗ p+ p⊗ ṗ) ψ(p) dp (16)

where the fact that the time derivative of ψ vanishing is used. Now, taking into account Equation (14),
it results that:

ȧ =

∫
S(0,1)

((W · p)⊗ p+ p⊗ (W · p)) ψ(p) dp = W · a+ a ·WT (17)

It is easy to prove the objectivity of expression (17) that corresponds to the Jauma’s convective
derivative, as well as its null trace, i.e., tr(ȧ) = 0 [28].

3. Micro-Mechanical Description of the Kinematics of Deformable Clusters

In this section, we are considering a more realistic scenario consisting in deformable clusters. We
consider two types of forces applying on each bead, one due to the fluid-rod friction, once more
modeled from:

FH
i = ξ (∇v · pi L− ṗi L) (18)

where the superscript, “H”, refers to its hydrodynamic nature and the other FC
i , due to the rods

entanglements. This last force is assumed scaling with the difference between the rigid motion velocity
(the one that the bead would have if the cluster would be rigid) and the real one:

FC
i = µ (W · pi L− ṗi L) (19)

when µ is a large enough force, FC
i dominate the momentum balances, enforcing the cluster rotary

velocity, W, to each rod composing it (rigid behavior).
By adding both forces, it results that:

Fi = FH
i + FC

i = L ((µW + ξ ∇v) · pi − (ξ + µ) ṗi) (20)

which can be rewritten as:

Fi = L (ξ + µ)

(
µW + ξ ∇v

ξ + µ
· pi − ṗi

)
(21)

Now, if we define the equivalent traceless gradient, G:

G =
µW + ξ ∇v

ξ + µ
(22)



Entropy 2013, 15 2812

We can generalize all the results obtained for suspensions of dilute rods, by considering an equivalent
friction coefficient, ξ + µ, and an equivalent gradient of velocities, G. In particular, the rod rotary
velocity results in:

ṗi = G · pi − (G : (pi ⊗ pi)) pi (23)

The term G : (pi ⊗ pi) deserves some additional comment. Both W and Ω being skew-symmetric,
it results that: W : (pi ⊗ pi) = 0 and the same in the case of considering Ω, implying G : (pi ⊗ pi) =
ξ

ξ+µ
D : (pi ⊗ pi), and then:

ṗi = G · pi −
ξ

ξ + µ
(D : (pi ⊗ pi)) pi (24)

which can be rewritten as:

ṗi =
µ

ξ + µ
W · pi +

ξ

ξ + µ
∇v · pi −

ξ

ξ + µ
(D : (pi ⊗ pi)) pi =

=
ξ

ξ + µ
ṗJ
i +

µ

ξ + µ
W · pi =

ξ

ξ + µ
ṗJ
i +

µ

ξ + µ
ṗR
i (25)

where ṗJ
i represents the hydrodynamic contribution in the absence of rod-rod interactions (dilute regime

described by the Jeffery’s equation) and ṗR
i , the one coming from the rods’ entanglements, which results

in a rigid-like cluster kinematics.
We can notice that when ξ ≫ µ, hydrodynamic effects are preponderant, and the rod kinematics is

governed by Jeffery’s equation, i.e., ṗi ≈ ṗJ
i . In the opposite case, µ ≫ ξ, the cluster is too rigid, and

the rods adopt the velocity dictated by the rigid cluster kinematics, ṗi ≈ ṗR
i .

If we assume the orientation of the rods of a deformable cluster given by the orientation distribution,
ψ(p), the time derivative of its second order moment, ȧ results in:

ȧ =

∫
S(0,1)

(ṗ⊗ p+ p⊗ ṗ) ψ(p) dp (26)

By considering the expression of the microscopic velocity, ṗ:

ṗ =
ξ

ξ + µ
ṗJ +

µ

ξ + µ
ṗR (27)

it results that:

ȧ =
ξ

ξ + µ
ȧJ +

µ

ξ + µ
ȧR (28)

with ȧJ and ȧR being the resulting expressions when Equation (27) is introduced into Equation (26) by
assuming µ = 0 and ξ = 0, respectively:{

ȧJ = Ω · a− a ·Ω+D · a+ a ·D− 2A : D

ȧR = W · a+ a ·WT
(29)

with A being the fourth order moment defined by:
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A =

∫
S(0,1)

p⊗ p⊗ p⊗ p ψ(p) dp (30)

The objectivity of the resulting evolution equation of ȧ was proven in [28]. Usually, the fourth order
moment, A, is expressed from the second order one by considering any of the numerous closure relations
proposed in the literature [31–34]. We do not address this issue here, and from now on, we consider that
A = L(a), with L, an appropriate algebraic operator.

Until now, the deformation mechanisms considered were purely viscous; however, it seems natural
that the cluster can experience a elastic deformation with a fading-memory, that is, the reference
configuration is a combination of the recent experienced deformations.

3.1. Fading Elasticity

Clusters immersed in a flowing suspension experience two types of transformations, a rigid-like one
associated with rigid translations and rotations and a second one implying the cluster stretching. When
the cluster conformation is described from the second order moment, a, of its orientation distribution, ψ,
the simplest way of quantifying stretching is by evaluating its eigenvalues change. In what follows,
we consider that clusters try to recover a configuration that combines the recent ones by a sort of
fading-memory, but only in what concerns the cluster stretching, that is, the memory does not concern
the rigid movements.

We assume the orientation tensor, aτ , known at times, τ ≤ t. Tensor aτ can be diagonalized
according to:

aτ = RT
τ ·Λτ ·Rτ (31)

The reference configuration, Λr
t , that the cluster tries to recover at time, t, reads:

Λr
t =

t∫
0

m(t− τ) Λτ dτ (32)

where the memory function, m(t − τ), decreases as t − τ increases, with m(t − τ) = 0 for t − τ ≥ θ

and:

t∫
0

m(t− τ) dτ = 1 (33)

As soon as the reference configuration at time t, Λr
t , is available, the reference second order moment

at time t, ar
t , can be obtained by applying:

ar
t = RT

t ·Λr
t ·Rt (34)

If the characteristic time of the elastic recover is T , then the equation governing the evolution of the
second order tensor reads:
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ȧ =
ξ

ξ + µ
ȧJ +

µ

ξ + µ
ȧR +

ar − a

T
(35)

Memory effects disappear when θ vanishes. In this case, the memory function approaches the Dirac’s
delta distribution, m(t − τ) = δ(t − τ). Thus, the reference configuration corresponds to the present
one, i.e., ar

t = at, implying the cancellation of the last term in Equation (28). Elasticity effects are also
associated to Brownian effects, as discussed in [28,35,36], as well as to the rods’ bending [37,38].

4. Kinetic Theory Description

If we consider a microstructure consisting of a population of clusters and the kinematics of these
clusters only depends on the second order moment of the orientation distribution of the rods that
constitute them, the microstructure could be fully described from the clusters’ conformation distribution
function, Ψ(x, t, a), given the fraction of clusters that at position x and time t have a configuration
described by a, the last related to the orientation of the rods composing it, which was noted by ψ(p).

This approach constitutes a two scale kinetic theory description, with the coarsest scale described by
Ψ, depending on tensor a and tensor a at the finest scale depending on the rods’ orientation distribution
ψ(p).

Function Ψ(a) is subjected locally (at each position, x, and time t) to the normality condition:∫
A
Ψ(a) da = 1 (36)

The balance related to Ψ leads to the Fokker-Planck equation:

∂Ψ

∂t
+∇x · (v Ψ) +∇a · (ȧ Ψ) = 0 (37)

where in the 2D case, ∇T
x =

(
∂

∂x1
, ∂
∂x2

)
and ∇T

a =
(

∂
∂a11

, ∂
∂a12

)
, and where ȧ is given by Equations (28)

and (29):

ȧ =
ξ

ξ + µ
(Ω · a− a ·Ω+D · a+ a ·D− 2 A : D) +

µ

ξ + µ
(W · a− a ·W) +

ar − a

T
(38)

with W given by Equation (15): W = Ω+D · a− a ·D; A = L(a) and ar, defined in Equation (34).

5. Introducing Interaction Mechanisms

In concentrated regimes, clusters interact, modifying their configuration. We can distinguish two
limit cases, the ones associated with soft and rigid clusters. Here, we do not consider the aggregation
and breaking mechanisms that were addressed in [25,28].

5.1. Soft Clusters

In the case of soft clusters, we can expect that the orientation configuration tends to reach an isotropic
distribution, i.e., ψ(p) = 1/2π in 2D. The second order moment related to such an isotropic distribution
results in aiso = 1

2
I, where I denotes the unit tensor, Iij = δij , with δ, the Kronecker’s delta. This
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fact implies that the clusters’ conformation distribution should evolve towards a Dirac distribution, i.e.,
Ψiso(a) = δ(a− aiso).

This mechanism could be modeled by introducing a kind of collision term, Ψ̇C , in the right-hand
member of the Fokker-Planck equation (37):

Ψ̇C =
ξ

ξ + µ

Ψiso −Ψ

Θ(γ̇, ϕ)
(39)

with Θ, a characteristic time depending on the flow intensity, γ̇, the last described by the second invariant
of the strain rate tensor, D, and, also, on the clusters’ concentration, ϕ. In the previous expression, the
pre-factor, ξ/(ξ + µ), quantifies the cluster softness.

5.2. Rigid Clusters

In the case of rigid clusters, interactions can modify the cluster orientation, but not its intrinsic
orientation distribution. Thus, the second order orientation tensor can rotate, but its stretching is
prevented by the cluster rigidity.

Thus, the orientation tensor can change, but their eigenvalues must remain unchanged. It is easy to
verify that the eigenproblem involves the characteristic equation:

λ2 − λ tr(a) + det(a) = 0 (40)

where taking into account the unit trace of tensor a, tr(a) = a11+ a22 = 1, proves that all the orientation
tensors having the same determinant have the same eigenvalues.

The 2D conformational domain is defined by (a11, a12) ∈ Ωc = B(C, R), which represents the
ball centered at point C = (0.5, 0), having a radius, R = 0.5. By developing the determinant, det(a) =
a11 ·a22−a212 = a11−a211−a212, it can be noticed that the determinant is constant along the circumferences
centered at point C. Thus, diffusion takes place along the circumferential direction defined by t, t being
the unit vector defining the tangent direction to the circles centered at C:

tT =
(−a12, a11 − 0.5)√
a212 + (a11 − 0.5)2

(41)

The diffusive flux, qa, reads:

qa = −Da (∇aΨ · t) t = −Da · ∇aΨ (42)

with the diffusivity tensor, Da, given by:

Da = Da (t⊗ t) (43)

If we assume that the diffusion coefficient, Da, scales with the cluster aspect ratio, according to
Da = Da (a212 + (a11 − 0.5)2), the diffusivity tensor reads:

Da = Da

(
a212 −a12 (a11 − 0.5)

−a12 (a11 − 0.5) (a11 − 0.5)2

)
(44)
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where Da will depend on the flow intensity, γ̇, and the clusters’ concentration, ϕ.
The diffusive flux given by qa = −Da · ∇aΨ writes:

qa = −Da

(
a212 −a12 (a11 − 0.5)

−a12 (a11 − 0.5) (a11 − 0.5)2

)
·

(
∂Ψ
∂a11
∂Ψ
∂a12

)
(45)

This diffusion mechanism is introduced into the right-hand member of the Fokker-Planck
Equation (37) from the contribution, Ψ̇Da :

Ψ̇Da = − µ

ξ + µ
∇a · qa (46)

where the pre-factor quantifies the cluster rigidity.
In the case of rigid clusters, it is easy to prove that both, advection and diffusion, operate in the

circumferential direction, that is, along the circles centered at point C, having a radius, r ≤ R = 0.5.
Thus, one could think that a better representation could consist of considering a more appropriate choice
for the conformational coordinates, allowing a simple expression of diffusion effects. One possibility lies
in the choice (in the 2D case) of λ and θ, the first being the highest eigenvalue of tensor a, which takes
values in λ = [0.5, 1], and the second one, the orientation of the principal direction related to the highest
eigenvalue, θ ∈ [0, 2π]. Even if such a representation seems better for representing the diffusion terms, it
is not the case for describing the conformational velocities in the general case (deformable aggregates).

5.3. Diffusion in the Physical Space

Because of the clusters’ interactions, we can also expect the diffusion of the cluster distribution, Ψ,
in the physical space. This flux will be noted by qx and will be modeled by an isotropic diffusion
coefficient, Dx, that could depend on the flow intensity, γ̇, as well as on the clusters’ concentration, ϕ:

qx = −Dx ∇xΨ (47)

In the non-isotropic case, it suffices to replace Dx by the diffusion tensor, Dx, operating in the physical
space. In what follows, we are considering an isotropic diffusion in the physical space.

The diffusion mechanism is introduced into the right-hand member of the Fokker-Planck equa-
tion (37) from the contribution, Ψ̇Dx :

Ψ̇Dx = −∇x · qx (48)

5.4. Extended Fokker-Planck Equation

When all these mechanisms apply, the Fokker-Planck equation (37) becomes:

∂Ψ

∂t
+∇x · (v Ψ) +∇a · (ȧ Ψ) =

= ∇x · (Dx ∇xΨ) +
µ

ξ + µ
∇a · (Da · ∇aΨ) +

ξ

ξ + µ

Ψiso −Ψ

Θ
(49)
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6. Numerical Methods

The main issue related to kinetic theory descriptions lies in its multidimensionality, because
generalized Fokker-Planck equations involve the physical coordinates (space and time) and a number
of conformational coordinates describing the microstructure at the desired level of detail. Classically,
the curse of dimensionality was circumvented by different ways, the most usual being:

• the solution of the stochastic counterpart. However, it is well known that the control of the
statistical noise and variance reduction are the main tricky issues, making possible the calculation
of the distribution moments, but making difficult the reconstruction of the distribution itself [4];

• the derivation of macroscopic approaches, sometimes purely phenomenological, other times
inspired or derived from finer descriptions, but even in the last case, the use of closure
approximations is generally compulsory;

• introducing a first discretization by substituting conformational coordinates by a series of
populations. Thus, for example, starting from:

∂Ψ

∂t
+∇x · (v Ψ) +∇a · (ȧ Ψ) = 0 (50)

we could introduce different populations related to particular values of ai: a11i and a12i ,
i = 1, · · · ,N and describe the microstructure of each one from its distribution function,
Ψi(x, t) = Ψ(x, t; ai), whose evolution, after discretizing with respect to the coordinate that was
substituted by the populations, a, in the present case, is given by the coupled lower dimensional
Fokker-Planck equations:

∂Ψi

∂t
+∇x · (v Ψi) +

N∑
j=1

cij Ψj = 0; i = 1, · · · ,N (51)

This approach was considered in the kinetic description of systems of active particles in order to
circumvent the curse of dimensionality [39]; however, as soon as the dimensionality increases, the
number of populations explodes.

• the use of separated representations in order to ensure that the complexity scales linearly with the
model dimensionality. This technique, introduced some years ago in [40] for steady simulations
and in [41] for transient solutions, consists of expressing the unknown field as a finite sum of
functional products, i.e., expressing a generic multidimensional function, u(x1, · · · , xd), as:

u(x1, · · · , xd) ≈
i=N∑
i=1

F 1
i (x1) · · ·F d

i (xd) (52)

The interested reader can refer to [42–50] and the references therein for a deep analysis of this
technique and its applications in computational rheology.

When the partial differential equation is purely advective, the method of particles constitutes
an appealing technique for solving it. As soon as diffusion terms become dominant, separated
representations can be efficiently applied. At present, the main issue related to the use of separated
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representations techniques for solving purely advective equations is the necessity of considering accurate
stabilizations [51].

6.1. Method of Particles for Solving Advection-Dominanted Problems

This technique, deeply described in [52,53], consists in approximating the initial distribution, Ψ(x,

t = 0, a) from M, Dirac’s masses, a0
i , at each one of the Q positions, x0

j :

Ψ(x, t = 0, a) =
Q∑
j=1

M∑
i=1

αj
i δ(a− a0

i ) δ(x− x0
j) (53)

which represents a sort of approximation based on Q ×M pseudo-particles, Pij , with initial positions
and conformations given by:{

x0
ij = x0

j , i = 1, · · · ,M; j = 1, · · · ,Q
a0
ij = a0

i , i = 1, · · · ,M; j = 1, · · · ,Q
(54)

and whose position and conformation will be evaluated all along the flow simulation, from which the
distribution will be reconstructed.

6.1.1. Advection Equation

When considering the purely advective balance equation:

∂Ψ

∂t
+∇x · (v Ψ) +∇a · (ȧ Ψ) = 0 (55)

the time evolution of position and conformation of each particle, Pij , is calculated by integrating:{
xij(t) = x0

ij +
∫ τ=t

τ=0
v(xij(τ)) dτ

aij(t) = a0
ij +

∫ τ=t

τ=0
ȧij(aij(τ),xij(τ)) dτ

(56)

As the position update only depends on the velocity field, which itself only depends on the position,
it can be stressed that particles, Pij , i = 1, · · · ,M, are following the same trajectory in the physical
space, having as a departure point, x0

j .
Now, the orientation distribution at time t can be reconstructed from:

Ψ(x, t, a) =
Q∑
j=1

M∑
i=1

αj
i δ(a− aij(t)) δ(x− xij(t)) (57)

Obviously, smoother representations can be obtained by considering appropriate regularizations of
the Dirac’s distribution, as the one usually performed within the SPH (Smooth Particles Hydrodynamics)
framework [52,54].

When balance equations involve diffusion terms, there are two main routes based on the use of
particles methods, one of a stochastic nature, the other fully deterministic.
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6.1.2. Advection-Diffusion Equation

For illustrating the procedure when models involve diffusion terms, we consider the Fokker-Planck
equation:

∂Ψ

∂t
+∇x · (v Ψ) +∇a · (ȧ Ψ) = −∇x · qx −∇a · qa (58)

where qx and qa are two diffusive fluxes operating in the physical and conformational spaces,
respectively, both modeled from a Fick’s type law:{

qx = −Dx ∇xΨ

qa = −Da · ∇aΨ
(59)

• Within the stochastic framework diffusion, terms can be modeled from appropriate random
variables within a Lagrangian or a Eulerian description, the last one known as Brownian
Configurations Fields (BCF). Both approaches were considered in our former works on the
solution of Fokker-Planck equations [53,55]. Within the Lagrangian stochastic framework and
starting from the initial cloud of pseudo-particles, Pij , representing the initial cluster distribution,
Ψ(x, t = 0, a), the simplest particles updating writes:{

xij(tn+1) = xij(tn) + v(xij(tn)) ∆t+Rx(∆t)

aij(tn+1) = aij(tn) + ȧij(aij(tn),xij(tn)) ∆t+Ra(∆t)
(60)

where ∆t is the time step and both random updates, Rx and Ra, depend on the chosen time step
(see [56] for more details and for advanced stochastic integrations).
Obviously, because the random effects operate in the physical space, the M particles initially
located at each position, x0

j , j = 1, · · · ,Q, will follow different trajectories in the physical space
along the simulation time. In order to obtain accurate enough results, we must consider a rich
enough representation, that is, a large population of particles. For this purpose, we must consider
large enough M and Q. The large number of particles to be tracked seems a disadvantage
of the approach at first view, but it must be noticed that the integration of each particle is
completely independent of all the others, making possible the use of HPCon massive parallel
computing platforms.

• The technique introduced for treating purely advective equations can be extended for considering
diffusion contributions, as was described in [54], and which we revisit in what follows, within a
fully deterministic approach.
Equation (58) can be rewritten as:

∂Ψ

∂t
+∇x ·

((
v +

qx

Ψ

)
Ψ
)
+∇a ·

((
(ȧ+

qa

Ψ

)
Ψ
)
= 0 (61)

or
∂Ψ

∂t
+∇x · (ṽ Ψ) +∇a ·

(
˙̃a Ψ
)
= 0 (62)

where the effective velocities, ṽ and ˙̃a, are given by:
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{
ṽ = v − Dx

Ψ
∇xΨ

˙̃a = ȧ− 1
Ψ
Da · ∇aΨ

(63)

Now, the integration schema (56) can be applied by replacing material and conformation velocities,
v and ȧ, by their effective counterparts, ṽ and ˙̃a:{

xij(t) = x0
ij +

∫ τ=t

τ=0
ṽ(xij(τ)) dτ

aij(t) = a0
ij +

∫ τ=t

τ=0
˙̃aij(aij(τ),xij(τ)) dτ

(64)

This fully deterministic particle description requires much less particles than its stochastic
counterpart, but as noticed in Equation (63), the calculation of the effective material and
conformational velocities require the derivative of the cluster distribution, Ψ, with respect to both
the physical and the conformational coordinates, and for that purpose, this distribution must be
reconstructed all along the simulation (at each time step), a fact that constitutes a serious drawback
for its implementation in massive parallel computing platforms. Moreover, to make possible the
calculation of the distribution derivatives, the Dirac’s distribution must be regularized in order to
ensure its derivability.

6.1.3. Discussion

It is important to note:

• Many times, the initial configuration reduces to a very small subdomain within Ωc. For example,
when the initial configuration (associated with the suspension at rest) corresponds to isotropic
clusters, the cluster distribution reads, Ψ(x, t = 0, a) = δ(a − 0.5I). In other cases, the
initial configuration can be expressed from some configurations without needing an exhaustive
approximation in the whole domain, Ωc;

• In the case of homogeneous flows, the solution is the same everywhere in the physical domain,
and the distribution becomes independent of x, that is, equivalent to considering Q = 1 in the
previous analysis;

• In the case of homogeneous flows, in absence of diffusion effects and when the initial
configuration reduced to a single point, a0, in the conformational domain, Ωc (e.g., isotropic initial
configuration), a single particle suffices for tracking the microstructure evolution, i.e., Q = 1 and
M = 1;

• In the case of homogeneous flows, but in the presence of diffusion effects, when the initial
condition can be expressed from a single point, a0, in the conformational domain, Ωc, stochastic
simulations need considering, Q = 1, but M ≫ 1. Random contributions will produce different
trajectories, ai(t), all of them starting at the same initial configuration, a0;

• In the situation described in the previous item, but when considering a deterministic particles
strategy, the initial location of the M particles must be perturbed slightly for locating all of them
in a close neighborhood of a0, because when all of them are located exactly at configuration a0,
the gradient of the smoothed distribution vanishes, and then, all the trajectories will coincide;

• If the initial configuration explores the whole domain, Ωc (that in the 3D case involves a 5D
configurational domain), we are faced with the redoubtable curse of dimensionality;



Entropy 2013, 15 2821

• The number of particles to be considered depends on the richness of the distribution to be
represented in the physical and conformational spaces throughout the simulation.

6.2. Separated Representations for Solving Diffusion-Dominated Problems

When the diffusion effects are dominant, techniques presented in the previous section become
inefficient, because they require an excessive number of particles to produce accurate enough results,
in particular, for reconstructing the distribution. In this case, standard mesh-based discretizations
seem a better choice. However, as discussed before, mesh-based discretizations fail when addressing
highly dimensional models, as is the case when addressing the solution of the previous introduced
Fokker-Planck equations. In that case, separated representations seem the most appealing choice.

If we consider again the Fokker-Planck equation:

∂Ψ

∂t
+∇x · (v Ψ) +∇a · (ȧ Ψ) = ∇x (Dx ∇xΨ) +∇a (Da · ∇aΨ) (65)

There are many separated representation choices. The most natural consists of separating time, physical
and conformational spaces, i.e.:

Ψ(x, t, a) ≈
N∑
i=1

Xi(x) · Ti(t) · Ai(a) (66)

Thus, when proceeding with the Proper Generalized Decomposition—PGD—constructor [28], we
must solve on the order of N 2D or 3D (depending on the dimension of the physical space)
boundary value problems—BVP—for calculating functions, Xi(x), the same number of 1D initial value
problems—IVP—for calculating functions, Ti(t), and, finally, the same number of 2D or 5D (the number
of components of tensor a in the 2D or 3D case, where the symmetry and its unit trace have been taken
into account) BVP for calculating functions, Ai(a).

This choice has a major difficulty: the problems related to the computation of Ai(a) are defined in 5D
in the general three-dimensional case. To circumvent this difficulty, one could imagine a fully separated
representation of the configuration space according to:{

Ai(a) = A11
i (a11) · A12

i (a12) in 2D
Ai(a) = A11

i (a11) · A22
i (a22) · A12

i (a12) · A13
i (a13) · A23

i (a23) in 3D
(67)

In what follows, for the sake of simplicity, we focus on the 2D case in which Ai(a) = A11
i (a11) ·

A12
i (a12). If we consider such a separated representation, the conformational domain results in

(a11, a12) ∈ Ω̃c = [0, 1]×[−0.5, 0.5], even if, as reported before, the real conformation domain is the ball,
Ωc = B(C, R), with center, C = (0.5, 0), and radius, R = 0.5. When proceeding in the extended
domain, Ω̃c, due to the consistent physics considered, the solution vanishes in Ω̃c − Ωc.

6.3. Hybrid Strategy

A hybrid schema can be defined by using grouped conformational coordinates, that is, Ai(a) in
Equation (66) defined in Ωc = B(C, R). In 2D, problems associated with functions, Ai(a), are 2D,
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and then, they can be solved by using any standard discretization technique, like finite elements with
suitable convective stabilization when required. In the 3D case, the problems related to the calculation
of functions, Ai(a), are defined in 5D, and then, mesh-based discretizations fail. Full separated
representations, such as the ones given in Equation (67), are the most appealing choice when diffusion
dominates. However, when advection dominates, a valuable alternative consists of using a method of
particles, such as the ones previously described. However, it is important noticing that methods of
particles are not suitable for directly computing steady state solutions (they result from the long-time
solutions). Thus, an alternative separated representation reads:

Ψ(x, t, a) ≈
N∑
i=1

Xi(x) · At
i(a, t) (68)

where the time is grouped with the conformational coordinates, and then, particle-based techniques can
be used for computing the transient solutions, At

i, in the conformational domain.
When performing the separated representation indicated in Equation (68), the problems to be solved

for calculating functions, At
i, do not depend on x, which is equivalent to the solution of a problem in a

homogenous flow. All the remarks addressed in that sense when considering the methods of particles
(summarized in Section 6.1.3.) apply in the present case.

7. Validating the Micro-Mechanical Models

After having proposed the micro-mechanical model, as well as the kinetic theory description, and
widely discussing its numerical treatment, it is time to validate the proposed micro-mechanical model,
before employing it to describe complex microstructures involved in concentrated flowing suspensions.

First of all, we are verifying the pertinence of the micro-mechanical model from a theoretical point
of view. For this purpose, we first consider two particular configurations of rigid clusters for which the
exact solution is known:

• Rigid cluster composed of a single rod. In this case, the exact solution corresponds to the
particularization of the Jeffery’s solution [1] for an ellipsoidal particle of infinite aspect ratio,
which writes:

ṗ = ∇v · p− (∇v : (p⊗ p)) p (69)

In the case of a single rod, N = 1, whose orientation is defined by p, Equation (8) reduces to:

ṗ = ω × p = (p× (∇v · p))× p (70)

and using the vector triple product formula, a× (b× c) = b (a · c)− c (a · b), it results that:

ṗ = ∇v · p− (∇v : (p⊗ p)) p (71)

which corresponds with the Jeffery’s equation for rods.
• We are now proving that the kinematics of a rigid ellipsoidal cluster composed of rods can be

described by the Jeffery solution associated with an ellipsoid.
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In [28], we proved that for describing non-infinite aspect ratio 2D particles, it suffices to consider
a rigid system composed of two rods, aligning perpendicularly one with respect to the other, and
having lengths, 2L1 and 2L2, L1 ≥ L2, such that the parameter, r, in the general Jeffery’s equation:

ṗ = Ω · p+ r D · p− r (D : (p⊗ p)) p (72)

which depends on the ellipsoid aspect ratio, ν (length-diameter ratio):

r =
ν2 − 1

ν2 + 1
(73)

resulting from ν = L1

L2
.

We proved that the kinematics of a rigid cluster only depends on the second order orientation
tensor, (a), associated with the orientation distribution of its rods, ψ(p). Moreover, because of the
symmetry of a, it can be diagonalized, its eigenvalues in the 2D case being λ1 and λ2 (λ1 ≥ λ2).
We can evaluate the angular velocity of the rigid cluster characterized by the distribution moment,
a, according to Equation (14). It is easy to prove that this velocity is exactly the one related to the
Jeffery’s one for an ellipsoid of aspect ratio, ν = λ21/λ

2
2.

• In the case of a rigid cluster with an isotropic configuration, which if a = 0.5I (in 2D), it can
be deduced from Equations (12) and (15) that as expected, the cluster rotates with the velocity
dictated by the flow vorticity, Ω.

The previous verifications prove the consistency of the micromechanical model previously elaborated
and whose objectivity was also proven in [28]; however its validity for describing real physical situations
needs further analyses.

For validating the micromechanical model proposed in Section 3, we are considering a direct
numerical simulation consisting of a population of 500 rigid rods with a given initial orientation
distribution, which evolves because of the enforced flow, as well as the interaction between the rods
constituting the cluster. A dense enough cluster is needed in order to ensure rigid behaviors that need a
sufficient number of contact points. Using less than 500 rods does not allow for describing rigid enough
clusters. The behavior does not depend on the rod length, because the velocity gradient is assumed
constant at the cluster level. The contact law is assumed viscous, and its intensity is modified for ranging
from deformable to rigid clusters. For additional details on the direct simulation at the microscopic scale
(at the scale of the rods), the interested readers can refer to [8,26,27] and the references therein.

Figure 3 depicts the initial isotropic configuration, where the yellow points represent the contact
points at which different rods interact. Then, we enforce the simple shear flow defined by the velocity
field, v = (x2, 0), and adjust the intensity of the contact viscous forces applied in the microscopic direct
calculation at the contact points, which allow simulating aggregates of different softness, ranging from
rigid to deformable. In all cases, during the cluster configuration evolution, the second order orientation
tensor is calculated by considering the star configuration depicted in Figure 1, which results in joining
the cluster center of gravity to each one of the beads that it involves.

We compare the cluster configuration from its second order orientation tensor obtained from the direct
simulation and the one resulting from the model described in Section 3.
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Figure 3. Direct microscopic simulation: isotropic rods population and contact points at the
initial time. A dense enough cluster ensuring many contacts between the different rods is
needed in order to represent rigid enough clusters.
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Figures 4 to 8 compare model predictions versus direct simulation calculations when starting from an
isotropic initial configuration for different cluster softness (ranging from very rigid to very soft). As we
consider model (28), there is a single tunable parameter: µ/ξ, ξ ̸= 0. Thus, we could consider ξ = 1 and
look for the value of µ that allows for fitting the evolution calculated from the direct simulation.

With a single tunable parameter, the comparisons allow one to conclude the excellent accuracy
(qualitative and quantitative) of the proposed micromechanical model, concerning both the orientation
intensity and the evolution period.

Figure 4. Model versus direct simulation: identified µ = 60.
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Figure 5. Model versus direct simulation: identified µ = 13.
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Figure 6. Model versus direct simulation: identified µ = 2.45.
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Figure 7. Model versus direct simulation: identified µ = 1.1.
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Figure 8. Model versus direct simulation: identified µ = 0.6.
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8. Numerical Results

In this section, we are addressing preliminary results concerning the transient solution of the 2D
Fokker-Planck equation (74) in a simple shear and homogeneous flow:

∂Ψ

∂t
+∇a · (ȧ Ψ) =

µ

ξ + µ
∇a · (Da · ∇aΨ) +

ξ

ξ + µ

Ψiso −Ψ

Θ
(74)

with Θ = 1, ȧ given by Equation (28) and:

Da = Da

(
a212 −a12 (a11 − 0.5)

−a12 (a11 − 0.5) (a11 − 0.5)2

)
(75)

for different values of Da and µ/ξ. The initial condition consists of an isotropic and normalized Gaussian
distribution around the isotropic state.

Figures 9–11 show the long-time cluster distributions for an effective diffusion coefficient, Da = 1,
and different values of the cluster softness, µ/ξ = 100, µ/ξ = 1 and µ/ξ = 0.1, respectively. The first
corresponds almost to rigid clusters, whereas the last one corresponds to the softest ones. In the last case,
we can notice that, as soon as clusters deform, they tend to align in the shear direction, θ = π/4, and
when the deformation progresses (larger radius), clusters tend to align in the flow direction, θ = 0. This
mechanism is tempered by the diffusion that applies along the circumferential direction.

The previous solutions were calculated by applying a standard finite element discretization with a fine
enough mesh of Ωc. When the problem is solved by considering a fully separated representation (67)
in the extended conformational domain, Ω̃c, the solution related to rigid clusters, µ/ξ = 100, involved
less than 10 modes, the number of terms involved in the solution associated with the softest aggregates,
µ/ξ = 0.1, being around 40.
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Figure 9. Long-time cluster distribution (left) and contour levels (right), Ψ(t → ∞, a), for
µ/ξ = 100.
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Figure 10. Long-time cluster distribution (left) and contour levels (right) Ψ(t → ∞, a) for
µ/ξ = 1.
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Figure 11. Long-time cluster distribution (left) and contour levels (right), Ψ(t→ ∞, a), for
µ/ξ = 0.1.
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In order to point out the diffusion effects, we consider clusters with equal softness, µ/ξ = 0.1, but
subjected to different values of the effective diffusion. Figures 12 and 13 show the long-time cluster
distributions for effective diffusion coefficients, Da = 0.1 and Da = 100, respectively. When the
diffusion increases, we can notice that the flow deforms the clusters at the same time that diffusion
homogenizes their orientations. For the largest diffusion, the distribution is almost uniform on the circles
centered at C and, consequently, the deformation mechanism seems less effective.

Figure 12. Long-time cluster distribution (left) and contour levels (right), Ψ(t→ ∞, a), for
D = 0.1.
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Figure 13. Long-time cluster distribution (left) and contour levels (right), Ψ(t→ ∞, a), for
D = 100.
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9. Conclusions

We proposed in this paper a two scale kinetic theory model of concentrated suspensions. Its main
ingredients are:

• A micromechanical model describing the configuration evolution of deformable aggregates, whose
kinematics only depends on the second order moment of the orientation distribution of their rods;
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• The introduction of a cluster distribution that depends on the conformation of the aggregates
involved in the suspension;

• The consideration of many mechanisms at both scales, the finest related to the aggregates (fading-
memory elasticity) and the coarsest associated with the suspension itself, taking into account the
clusters interactions.

Because the resulting kinetic theory model is defined in a highly dimensional space, the numerical
strategies available for solving it were discussed deeply.

The consistency and pertinence of the micromechanical model was verified and validated by
reproducing some well established results and by comparing its predictions with direct numerical
simulations considering a population of rods and taking into account, explicitly, all the interactions
between them.

First simulations of the kinetic theory model were finally addressed, proving the interest of the
proposed approach for addressing a complex and recurrent modeling issue, the one concerning the
description of rich, evolving microstructures encountered in flowing concentrated suspensions of rods.

Deeper analyses from both the modeling and the simulation point of views are in progress.
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27. Le Corre, S.; Dumont, P.; Orgéas, L.; Favier, D. Rheology of highly concentrated planar fiber

suspensions. J. Rheol. 2005, 49, 1029–1058.
28. Chinesta, F. From single-scale to two-scales kinetic theory descriptions of rods suspensions. Arch.

Comput. Methods Eng. 2013, 20, 1–29.



Entropy 2013, 15 2831

29. Abisset, E.; Mezher, R.; Chinesta, F. Two-scales kinetic theory model of short fibers aggregates.
Key Eng. Mater. 2013, 554–557, 391–401.

30. Ma, A.; Chinesta, F.; Mackley, M.; Ammar, A. The rheological modelling of Carbon Nanotube
(CNT) suspensions in steady shear flows. Int. J. Mater. Form. 2008, 2, 83–88.

31. Advani, S.; Tucker, Ch. Closure approximations for three-dimensional structure tensors. J. Rheol.
1990, 34, 367–386.

32. Dupret, F.; Verleye, V. Modelling the Flow of Fibre Suspensions in Narrow Gaps. In Advances
in the Flow and Rheology of Non-Newton. Fluids, Rheology Series; Siginer, D.A., De Kee, D.,
Chabra, R.P., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 1347–1398.

33. Kroger, M.; Ammar, A.; Chinesta, F. Consistent closure schemes for statistical models of
anisotropic fluids. J. Non-Newton. Fluid Mech. 2008, 149, 40–55.

34. Pruliere, E.; Ammar, A.; El Kissi, N.; Chinesta, F. Recirculating flows involving short fiber
suspensions: Numerical difficulties and efficient advanced micro-macro solvers. Arch. Comput.
Methods Eng. State Art Rev. 2009, 16, 1–30.

35. Grassia, P.; Hinch, J.; Nitsche, L.C. Computer simulations of brownian motion of complex systems.
J Fluid Mech. 1995, 282, 373–403.

36. Grassia, P.; Hinch, J. Computer simulations of polymer chain relaxation via brownian motion.
J Fluid Mech. 1996, 308, 255–288.

37. Cruz, C.; Illoul, L.; Chinesta, F.; Regnier, G. Effects of a bent structure on the linear viscoelastic
response of Carbon Nanotube diluted suspensions. Rheol. Acta 2010, 49, 1141–1155.

38. Cruz, C.; Chinesta, F.; Regnier, G. Review on the Brownian dynamics simulation of
bead-rod-spring models encountered in computational rheology. Arch. Comput. Methods Eng.
2012, 19, 227–259.

39. Bellomo, N. Modeling Complex Living Systems; Birkhauser: Boston, MA, USA, 2008.
40. Ammar, A.; Mokdad, B.; Chinesta, F.; Keunings, R. A new family of solvers for some classes of

multidimensional partial differential equations encountered in kinetic theory modeling of complex
fluids. J. Non-Newton. Fluid Mech. 2006, 139, 153–176.

41. Ammar, A.; Mokdad, B.; Chinesta, F.; Keunings, R. A new family of solvers for some classes of
multidimensional partial differential equations encountered in kinetic theory modeling of complex
fluids. Part II: Transient simulation using space-time separated representations. J. Non-Newton.
Fluid Mech. 2007, 144, 98–121.

42. Mokdad, B.; Pruliere, E.; Ammar, A.; Chinesta, F. On the simulation of kinetic theory models of
complex fluids using the Fokker-Planck approach. Appl. Rheol. 2007, 17, 26494, 1–14.

43. Leonenko, G.M.; Phillips, T.N. On the solution of the Fokker-Planck equation using a high-order
reduced basis approximation. Comput. Methods Appl. Mech. Eng. 2009, 199, 158–168.

44. Ammar, A.; Normandin, M.; Daim, F.; Gonzalez, D.; Cueto, E.; Chinesta, F. Non-incremental
strategies based on separated representations: Applications in computational rheology. Commun.
Math. Sci. 2010, 8, 671–695.

45. Ammar, A.; Normandin, M.; Chinesta, F. Solving parametric complex fluids models in rheometric
flows. J. Non-Newton. Fluid Mech. 2010, 165, 1588–1601.



Entropy 2013, 15 2832

46. Mokdad, B.; Ammar, A.; Normandin, M.; Chinesta, F.; Clermont, J.R. A fully deterministic
micro-macro simulation of complex flows involving reversible network fluid models. Math.
Comput. Simul. 2010, 80, 1936–1961.

47. Chinesta, F.; Ammar, A.; Cueto, E. Recent advances and new challenges in the use of the Proper
Generalized Decomposition for solving multidimensional models. Arch. Comput. Methods Eng.
2010, 17, 327–350.

48. Chinesta, F.; Ammar, A.; Leygue, A.; Keunings, R. An overview of the Proper Generalized
Decomposition with applications in computational rheology. J. Non-Newton. Fluid Mech. 2011,
166, 578–592.

49. Chinesta, F.; Ladeveze, P.; Cueto, E. A short review in model order reduction based on Proper
Generalized Decomposition. Arch. Comput. Methods Eng. 2011, 18, 395–404.

50. Chinesta, F.; Leygue, A.; Bordeu, F.; Aguado, J.V.; Cueto, E.; Gonzalez, D.; Alfaro, I.; Ammar, A.;
Huerta, A. Parametric PGD based computational vademecum for efficient design, optimization and
control. Arch. Comput. Methods Eng. 2013, 20/1, 31–59.

51. Gonzalez, D.; Cueto, E.; Chinesta, F.; Diez, P.; Huerta, A. SUPG-based stabilization of Proper
Generalized Decompositions for high-dimensional advection-diffusion equations. Int. J. Numer.
Methods Eng. in press.

52. Chaubal, C.; Srinivasan, A.; Egecioglu, O.; Leal, G. Smoothed particle hydrodynamics techniques
for the solution of kinetic theory problems. J. Non-Newton. Fluid Mech. 1997, 70, 125–154.

53. Chinesta, F.; Chaidron, G.; Poitou, A. On the solution of the Fokker-Planck equation in steady
recirculating flows involving short fibre suspensions. J. Non-Newton. Fluid Mech. 2003, 113,
97–125.

54. Ammar, A.; Chinesta, F. A Particle Strategy for Solving the Fokker-Planck Equation Governing the
Fibre Orientation Distribution in Steady Recirculating Flows Involving Short Fibre Suspensions. In
Lectures Notes on Computational Science and Engineering; Springer: Berlin/Heidelberg, Germany,
2005; Volume 43, pp. 1–16.

55. Chinesta, F.; Ammar, A.; Falco, A.; Laso, M. On the reduction of stochastic kinetic theory models
of complex fluids. Model. Simul. Mater. Sci. Eng. 2007, 15, 639–652.

56. Ottinger, H.C. Stochastic Processes in Polymeric Fluids; Springer: Berlin/Heidelberg,
Germany, 1996.

c⃝ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

CCabanetos
Rectangle 


	Introduction
	Micro-Mechanical Description of the Kinematics of Rigid Clusters
	Micro-Mechanical Description of the Kinematics of Deformable Clusters
	Fading Elasticity

	Kinetic Theory Description
	Introducing Interaction Mechanisms
	Soft Clusters
	Rigid Clusters
	Diffusion in the Physical Space
	Extended Fokker-Planck Equation

	Numerical Methods
	Method of Particles for Solving Advection-Dominanted Problems
	Advection Equation
	Advection-Diffusion Equation
	Discussion

	Separated Representations for Solving Diffusion-Dominated Problems
	Hybrid Strategy

	Validating the Micro-Mechanical Models
	Numerical Results
	Conclusions
	Conflict of Interest

