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ABSTRACT

The aim of this work is to propose vibration modeling of sandwich structures with soft
core using solid–shell finite elements. Several approaches have been adopted in the
literature to accurately model this type of structures; however, they show some
limitations in certain configurations of high contrast of material properties or geometric
aspect ratios between the different layers. In such situations, it is generally well-known
that the use of higher-order or three-dimensional finite elements is more appropriate, but
will generate a large number of degrees of freedom and, thereby, large CPU times. In
this work, an alternative method is proposed by considering a recently developed linear
hexahedral solid–shell element. This solid–shell element is implemented into Matlab in
order to use the so-called solver Diamant, which couples Asymptotic Numerical
Method (ANM) and Automatic Differentiation (AD). Numerical tests, including various
cantilever sandwich beams as well as a simplified pattern of rail on sleepers, are
performed to show the efficiency of the proposed approach.
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1.  Introduction

Problems involving vibration are encountered in many areas of mechanical, civil and
aerospace engineering. In many cases, the vibrations are undesirable because they lead
to noise and system dysfunction. To avoid these detrimental effects, an efficient passive
solution to reduce vibrations, well-established for more than 50 years, consists in the
use of sandwich structures with elastic faces and viscoelastic core [1,2,3], in which the
damping is principally induced by the shear deformation of the core.

* Corresponding author. Tel.: +(33) 3.87.37.54.79; fax: +(33) 3.87.37.54.70.
E-mail address: farid.abed-meraim@ensam.eu (F. Abed-Meraim).
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The main numerical difficulties in modeling these structures lie first in the
description of the kinematics to obtain reasonable computational costs, and secondly in
the proper account of the shear of the core. This latter transverse shear is due to the
difference in the in-plane displacements and to the contrast in stiffness between the
different layers. In earlier contributions, models using classical laminate theories (CLT)
have been developed based on the Kirchhoff–Love model. Then, various kinematic
models and numerical methods have been developed to accurately determine the
damping properties of viscoelastic sandwich structures under vibration. In this regard,
Reissner [4] and Mindlin [5] established first order shear theories (FSDT) that take into
account this shear deformation. However, the complete 3D formulation indicates that
the shear deformation varies at least in a quadratic form through the thickness and the
shear stress should be equal to zero on the outer surfaces of the skins. Subsequent
studies, Reddy [6] and Touratier [7] (to name only these), have made major
improvements by proposing higher-order shear theories (HSDT) of the displacement
field in the thickness (cubic and sinusoidal, respectively). The main advantage of these
approaches is to allow a parabolic description of the shear stress, while ensuring the
condition of zero shear stress on the free surface of the sandwich structures. It should
also be noted that, in the context of sandwich structures under vibration, a number of
specific finite elements have been developed (see, e.g., [8–11]) in order to discretize
various types of geometries (e.g., beams, shells, conical shells …).

However, in the former studies, the sandwich structure is modeled as a single layer to
facilitate analysis with reasonable computational cost. Unfortunately, the discontinuity
of physical/mechanical properties in the thickness direction makes inadequate those
theories, which were originally developed for one-layered structures. In addition, such a
framework does not allow correctly describing some phenomena in a structure
exhibiting high contrast of stiffness between different layers. To compensate these
shortcomings and restrictions, zigzag theories have been developed in the literature,
with interlaminar continuity (IC-ZZT) or without (ID-ZZT). These theories describe
layer-by-layer the displacement field ensuring continuity conditions of the displacement
field imposed at the interfaces between the core and the faces. Carrera [12,13] has
provided a very comprehensive and well-documented historical review on zigzag
theories for multilayered plates and shells as well as on modeling of multilayered and
composite structures. In recent years, the zigzag approach has been applied in the
context of vibration analysis (see, e.g., Boudaoud et al. [14], Bilasse et al. [15], Abdoun
et al. [16], as well as the more recent review and assessment of existing models by Hu et
al. [17]). Another noteworthy approach consists of Carrera’s unified formulation (CUF)
[18], in which several kinematic assumptions for the displacement fields can be
included hierarchically in one single compact formulation.

Considering some limitations of the zigzag models that have been shown in [17], an
alternative approach could be the use of three-dimensional finite element assemblies,
but this generally leads to a large number of degrees of freedom. Another approach
proposed in this work consists in the use of a solid–shell element based on a fully three-
dimensional formulation. This solid–shell element has been developed in order to
correctly take into account the through-thickness phenomena, while maintaining the
CPU time at reasonable levels [19,20,21]. It consists of a linear isoparametric
hexahedral element having only nodal displacements as degrees of freedom and
provided with a set of integration points distributed along the thickness direction. To
alleviate the thickness-related locking phenomena, the fully three-dimensional elastic
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constitutive matrix was also modified in order to approach shell-like behavior. To
control the zero-energy hourglass modes, due to the reduced integration, an effective
stabilization technique was used following the “Assumed Strain” method proposed by
Belytschko and Bindeman [22], which is also intended to eliminate the remaining
locking phenomena. A set of selective and representative benchmark tests was analyzed
to show the effectiveness of this solid–shell element in linear and nonlinear problems.
More recently, Salahouelhadj et al. [23] successfully simulated sheet metal forming
processes using the SHB8PS solid–shell element coupled with an anisotropic large
strain elastic–plastic model.

From a numerical point of view, the frequency dependency of the viscoelastic layer
leads to nonlinear vibration problems. Among the various methods proposed to solve
such nonlinear vibration problems, some show a number of restrictions and limitations,
such as the complex eigenvalue method [24,25], the modal strain energy analysis
[26,27], the direct frequency response procedure [28], and the asymptotic approach
[29], while the order-reduction-iteration technique [30] and the homotopy-based
asymptotic numerical strategy [31,32] are of more general applicability. The latter
asymptotic numerical method makes use of homotopy [33] and of perturbation
technique [34] in its continuation procedure. Detailed discussions and reviews of the
above-mentioned methods as well as of their multiple variants can be found in the
literature (see, e.g., [31,32] and more recently [35]). The purpose of the current work is
to combine the above-discussed solid–shell concept with sandwich structure modeling
in order to evaluate the capabilities of the resulting formulation in analyzing vibration of
sandwich structures.

The paper is organized as follows. Section 2 presents the general formulation of the
problem using different finite element discretizations, while underlying their respective
limitations. The formulation of the solid–shell finite element is described in Section 3.
The solving method (the so-called solver Diamant), which couples Asymptotic
Numerical Method (ANM) and Automatic Differentiation (AD), is briefly outlined in
Section 4. The numerical tests are shown in Section 5, along with the associated
discussions, and the main conclusions are drawn in Section 6.

2.  Formulation of the problem, different discretizations and their limitations

In this work, we consider the free vibration problem of a sandwich beam
schematized in Fig. 1. Different finite element discretizations will be adopted in order to
compare their respective performance and to emphasize potential limitations. The basic
equilibrium equations are obtained by using the virtual work principle as follows:

2

2 0
v

dv
t

d r d
æ ö¶

: + × =ç ÷¶è ø
ò s e u u (1)

where s , e  and u are, respectively, the stress and strain tensors, and the generalized
displacement at a point within the body v  of the viscoelastic structure, while the density
of the material is denoted by r . The stress and strain tensors s  and e  as well as the
displacement u can be expressed as harmonic time functions.
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Fig. 1. Sandwich beam structure.

The viscoelastic damping behavior is accounted for through the stress–strain law,
which can be written in the form:

( ) :w=s eC      with ( ) ( ) ( )R Iiw w w= +C C C (2)

where ( )R wC  and ( )I wC  are, respectively, the tensors characterizing the energy
storage and dissipative behavior of the viscoelastic material.

Combining Eqs. (1) and (2), and using a finite element discretization, the natural
vibration problem of viscoelastic structures can be written in the following form:

( ) { }2w wé ù- =ë û 0K M U (3)

where M  and K  denote, respectively, the mass and stiffness matrix of the structure,
and the complex nodal vibration eigenmode is denoted by U .

In  Hu  et  al.  [17],  the  limitations  of  the  CLT,  FSDT  and  HSDT  models  have  been
presented in details, while emphasizing the advantage of ZZT. However, the ZZT also
has limitations related to high geometric ratios or contrast in material stiffness between
the layers. To demonstrate this, simulation results of eigenfrequencies are given in what
follows, which compare the IC-ZZT with quadratic 2D and 3D elements from Abaqus
(CPE8R: 2D plane-strain quadratic element with reduced integration, CPS8R: 2D plane-
stress quadratic element with reduced integration, and C3D20R: 3D hexahedral
quadratic element with reduced integration). The results obtained with the C3D20R
element are taken as reference. This analysis is conducted on a simple cantilever beam.

Table 1
Sandwich beam parameters.

fE fr cr h fn cn

6.9x1010 Pa 2766 kg.m-3 1600 kg.m-3 0.05 m 0.3 0.49

L

b

z
y

x

hc

hf

hf
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Table 2
Influence of Ec/Ef (hc/hf = 1, L/h = 20).

C3D20R CPE8R CPS8R FSDT IC-ZZT

100c

f

E
E

=
95.860 106.71 94.031 93.988
597.92 665.74 586.53 588.51
1664.5 1851.6 1630.7 1645.6

Table 3
Influence of L/h (hc/hf = 1, Ec/Ef = 10-5).

C3D20R CPE8R CPS8R FSDT IC-ZZT

4L
h
=

300.77 309.06 290.56 296.72
1750.3 1792.0 1995.4 1856.4
5559.1 5701.1 5394.2 5197.3

Table 4
Influence of hc/hf (L/h = 20, Ec/Ef = 10-5).

C3D20R CPE8R CPS8R FSDT IC-ZZT

210c

f

h
h

-=
31.212 32.173 31.088 27.103
148.05 153.10 147.38 136.66
377.50 391.52 375.50 365.87

The material and geometric properties of Table 1, combined with the material ratio
(Ec/Ef) and the geometric ratios (L/h)  and  (hc/hf),  are  used.  The  first  three
eigenfrequencies are reported in Tables 2–4 and correspond to the converged meshes.
These results show that the IC-ZZT is not suitable for the configurations associated with
Tables 3 and 4, which confirms its restrictions in terms of range of applicability beyond
certain limits. It is also clear from Tables 2–4 that the 2D formulation becomes less
accurate because it does not take into account either the through-width effects, in the
case of the plane-strain element CPE8R, or the through-thickness effects, in the case of
the plane-stress element CPS8R.

The above simulation results highlight the limitations of such models devoted to
viscoelastic sandwich structure modeling. To overcome these limitations, a new finite
element method is developed coupling the solid–shell concept and the so-called
Diamant approach. This alternative finite element strategy is presented in Section 3
below.

3.  New finite element discretization of free vibration problems

Unlike the traditional literature models for sandwich structures, we propose in this
work a new finite element method to discretize the problem in the form of Eq. (3), and
to solve the latter for any geometric and material configuration of sandwich structures.
To achieve this goal, the SHB8PS solid–shell element is considered. A short description
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of this solid–shell formulation is provided in this section, the detailed derivation can be
found in [19,20].

3.1. Kinematics and interpolation

The SHB8PS element is a hexahedron with eight nodes and isoparametric linear
interpolation. The only degrees of freedom are three displacements per node. The
associated integration points are arranged along a special direction z  (thickness) in the
local coordinate frame (see Fig. 2). In terms of nodal coordinates iIx  and trilinear shape
functions ( )1 2 8, ,...,T N N N=N , the coordinates ix , i = 1, 2, 3, of a point in the element
are given by:

( ) ( )
8

1
, , , ,i iI I iI I

I
x x N x Nx h z x h z

=

= =å (4)

Fig. 2. Reference element geometry and integration points.

Making use of the trilinear shape functions, one can rearrange the expression of the
displacement field interpolation, which has a form similar to that of Eq. (4), as follows:

( )0 1 1 2 2 3 3 1 1 2 2 3 3 4 4
T T T T T T T

i i iu a x x x h h h h= + + + + + + + ×γ γ γ γb b b d (5)

where

( )

( )

,
= = =0

1 2 3 4

3

1

       ,   1, 2,3

,  ,  ,
1

   ,  =1,..., 4
8

T
j

i i
i

j
j

i
x

h h h h

a

x h z

a a

hz zx xh xhz

a
=

¶
= = =

¶

= = = =

= - å

ì
ï
ïï
í
ï é ù×ï ê úë ûïî

0

γ

N
b N

h bh x

(6)

In Eqs. (5) and (6), vectors id  and ix , which indicate the nodal displacements and
coordinates, are defined as:

( )
( )

1 2 3 8

1 2 3 8

, , , .....,

, , , .....,

T
i i i i i
T
i i i i i

u u u u

x x x x

=

=

ìï
í
ïî

d

x
(7)

x

h

V

1

2 3

4

5

6 7

8

1
2

…

node x h z
1 -1 -1 -1
2 1 -1 -1
3 1 1 -1
4 -1 1 -1
5 -1 -1 1
6 1 -1 1
7 1 1 1
8 -1 1 1

intn
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Vectors ah  are given by:

( )
( )
( )
( )

1

2

3

4

1,1, 1, 1, 1, 1,1,1

1, 1, 1,1, 1,1,1, 1

1, 1,1, 1,1, 1,1, 1

1,1, 1,1,1, 1,1, 1

T

T

T

T

=

=

=

=

- - - -

- - - -

- - - -

- - - -

ì
ï
ï
í
ï
ï
î

h

h

h

h

(8)

As mentioned before, this is an eight-node hexahedral element formulated on the
basis  of  a  fully  three-dimensional  approach.  In  other  words,  it  has  only  displacement
degrees of freedom and the same kinematics and interpolation as a classical three-
dimensional linear solid element. However, specific changes have been made to avoid a
number of numerical problems, namely hourglass-type instabilities and locking
phenomena, and thereby to provide this solid–shell element with shell-like behavior.

3.2. Hourglass mode control and locking treatment

Using the Hu–Washizu variational principle in combination with the Assumed Strain
Method (ASM) proposed by Belytschko and Bindeman [22], and considering the
nonlinear frequency dependent material stiffness, the elementary stiffness matrix can be
expressed as:

( ) ( )ˆ ˆ
e

T
e V

dVw w= × ×òK B C B (9)

where B̂  denotes the projected discrete gradient operator, as modified by the Assumed
Strain Method (see, e.g., [22]), which is defined by:

1 14

2 14

3 13

2 12 1 12

1 123 12

3 12 2 12

, , ,

ˆ ˆ
ˆ ˆ

ˆ ˆˆ ;ˆ ˆˆ ˆ

ˆ ˆˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ;  ;

T T

T T

T T

T T T T

T TT T

T T T T

x y zh h h
g g g

bg a a bg a a bg a a
a b a b a b= = =

é ù+ê ú
+ê ú

ê ú
+ê ú= ê ú+ +

ê ú
ê ú++
ê ú

+ +ê úë û

= = =å å å

0 0
00

0 0

0
0

0

γ γ γ

b X
b Y

b ZB
b Y b X

b Xb Z
b Z b Y

X Y Z

(10)

In Eq. (10), the ib  vectors, originally defined by Hallquist (see Eq. (6)), are replaced
by the mean form proposed in Flanagan and Belytschko [36]:

( ),
1ˆ , , ; 1...3

e
i iV

e

dV i
V

x h z= =òb N (11)

One of the main features of the SHB8PS element concerns its integration points,
which are all located on a fiber corresponding to ( )0, 0x h= = . This particularity,
along with the associated special direction designated as the ‘thickness’, is specifically
intended to provide the element with shell-like behavior. However, this in-plane
reduced quadrature induces hourglass modes that require stabilization. Recall that the
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hourglass modes are associated with displacement patterns that induce zero strains at the
points where the strains are calculated. These spurious zero-energy modes are due to a
difference of rank between the kernel of the continuous stiffness matrix and that of the
discretized one. The analysis of kernel of the stiffness matrix [19,20] obtained by
numerical integration reveals the presence of the following six hourglass modes:

3 4

3 4

3 4

, , , , ,
æ ö æ ö æ ö æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç ÷
è ø è ø è ø è ø è ø è ø

0 0 0 0
0 0 0 0
0 0 0 0

h h
h h

h h

(12)

The control of these hourglass modes is achieved by adding a stabilization stiffness
matrix. This procedure will be summarized in the next section. In addition to the ASM
aimed at removing shear and membrane locking, the elasticity constitutive matrix is also
modified to enhance the element immunity with regard to thickness locking, and in
order to approach shell-like behavior. This specific elasticity law adopted here is given
by the following constitutive matrix:

( )

2 0 0 0 0

2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

E

l m l

l l m

w
m

m
m

é ù+
ê ú

+ê ú
ê ú
ê ú=
ê ú
ê ú
ê ú
ê úë û

C

with
( )*

21
E w n

l
n

=
-

  and ( )
( )

*

2 1
E w

m
n

=
+

(13)

where *E  and n  are Young’s modulus and Poisson’s ratio.

This choice allows us to avoid the locking phenomena encountered with the fully
three-dimensional constitutive matrix and, in contrast to a plane-stress constitutive law,
to take into account the strain energy associated with the strains normal to the shell mid
surface.

3.3. Stabilization matrix and co-rotational frame

As discussed above, six hourglass modes appear and need to be stabilized. To
achieve this goal, the procedure proposed in [22] is used. This approach combines an
efficient stabilization technique with an assumed strain method. To begin with, the B̂

operator is decomposed into the sum of two operators 12B̂  and 34B̂ :

1 12 34

2 12 34

33 12
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The stiffness matrix becomes then:

( ) 12 12 12 34

34 12 34 34

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
e e

e e

T T
e V V

T T

V V

dV dV

dV dV

w = × × + × ×

+ × × + × ×

ò ò

ò ò

K B C B B C B

B C B B C B
(15)

One can show that 34B̂  vanishes  at  all  of  the  integration  points  of  the  SHB8PS

element. Therefore, if the B̂  operator is evaluated at this set of integration points, it
reduces to 12B̂ . In order to recover the correct stiffness matrix using only the set of
integration points given above, we can write:

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

12

12 12 12

12 34

34 12 34 34

ˆ ˆwhere

ˆ ˆand

ˆ ˆ ˆ ˆ

e

e

e e

e Stab

T

V

T
Stab V

T T

V V

dV

dV

dV dV

w w w

w w

w w

w w

= +

= × ×

= × ×

+ × × + × ×

ò

ò

ò ò

K K K

K B C B

K B C B

B C B B C B

(16)

The stabilization stiffness is evaluated in a co-rotational coordinate frame. The
adopted orthogonal co-rotational system is defined by the rotation matrix R  that maps
a vector in the global coordinate system to the co-rotational one. The components of the
first two column vectors of matrix R , denoted respectively 1ia and 2ia , are given by:

1 1 2 2, , 1, 2, 3T T
i i i ia a i= × = × =x xL L (17)

where

( )
( )

1

2

1,1,1, 1, 1,1,1, 1

1, 1,1,1, 1, 1,1,1

T

T

ì = - - - -ï
í

= - - - -ïî

L

L
(18)

Then, the second column vector 2a is modified in order to make it orthogonal to 1a .
A correction vector ca  is added to 2a  such that:

( ) 1 2
1 2 1

1 1

0
T

T
c c T

×
× + = Þ = -

×

a a
a a a a a

a a (19)

The third base vector 3a is finally obtained by the cross-product ( )3 1 2 c= Ù +a a a a ,
which gives the components of the rotation matrix after normalization by:

1 2 3
1 2 3

1 2 3

, , , 1, 2,3i i ci i
i i i

c

a a a aR R R i+
= = = =

+a a a a (20)

At this stage, the natural vibration problem of viscoelastic structures, established in
Eq. (3), will be discretized using the solid–shell finite element developed above in order
to be solved by the so-called Diamant method presented in Section 4.
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4.  Numerical resolution

In this section, the finite element technology proposed above is first applied to
discretize  the  problem  in  the  form  of  Eq.  (3).  Then,  to  solve  the  resulting  complex
nonlinear eigenvalue problem associated with Eq. (3), the so-called Diamant approach
[37] is adopted. This method couples the Asymptotic Numerical Method (ANM) and
the automatic differentiation (AD) technique, which allows automatically computing
higher order derivatives. The main advantage of this kind of approach lies in the fact
that the Diamant method can be used for any nonlinear viscoelastic model. More details
regarding this approach can be found in [38–40]. A short outline of this method is
described in the following lines.

 First, one can write the stiffness matrix ( )wé ùë ûK  as follows:

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

*

* *

0

0 0

0

E

E

E E E

w w

w w

= +ì
ï

=í
ï

= -î

K K K

K K (21)

The modulus of delayed elasticity ( )* 0E  is always real and, therefore, the elasticity

matrix ( )0K  is real symmetric and positive definite. The matrix K  is constant.
Accordingly, the natural vibration problem can be rewritten as:

( ) ( ) { }20 E w wé ù+ - =ë û 0K K M U (22)

Assuming that 2l w= , the unknowns U  and l are sought in the form:

0

0

; 0 1

N
j

j
j

N
j

j
j

p
p

pl l

=

=

ì
=ï

ï £ £í
ï =
ïî

å

å

U U

(23)

in which p  denotes the path parameter and N  the truncation order.

Using Eq. (21), solving the free vibration problem (22) consists in a set of residual
equations:

( ) ( ) ( ) { } ( ) ( )
( ) ( ) { }
( ) ( )[ ]{ }

, 0 , ,

, 0

,

E

E

l w l l l

l l

l w

= + - = + =é ùë û
= -é ùë û
=

0R U K K M U S U T U

S U K M U

T U K U

(24)

At this stage, the homotopy technique is introduced to drive the solution from the
real eigenvalue problem ( ),l =0S U  obtained from:

( ) ( ) ( ), , , ,p pl l l= + = 0R U S U T U (25)

when 0p =  (and whose known solution corresponds to ( ) ( )0 0, ,l l=U U ), to the
complex eigenvalue solution of the residual problem (24), which is associated with
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1p = . Through this process, the part of solution ( ) ( )( ),p plU  is computed by using

Taylor series ( ),j jS T  of functions ( ),S T  and by solving:

( ) ( )

1 1 1 1

| | 10 0

0

0 0 0

0 | , 0 | , 0 1

0 1| , 1 1| , 1

{ } { } { }
0 0

where       0

{ } { } { }

{ } { }

j j

j j j j

j j jj
T

T
j j j

j T

p

pE

p

p
l l

l l

k

l l

l

= = -

= = = = -

= = = =

- - -ì üé ù ì ü ï ï=í ý í ýê ú
ï ïî þë û î þ

= - +

é ù× + +ë û= -
é ù× +ë û

0 0

0 0

0 0

U U

U U

U U

S T TA U U
U

A K M K

U S T T

U S T

(26)

where k  is the Lagrange multiplier.

The complete solution ( ),lU  is obtained with the continuation procedure proposed
in [39]. This procedure allows computing the exact complex eigenmode U  and
eigenfrequency w , which is the square root of l. The associated linear frequency nW
and loss factor nh  at the nth rank can be obtained by:

( )2 2 1n n nw h= W + (27)

Finally, this method is used to implement a solver called Diamant in Matlab. Once
this numerical tool implemented, to generate the solution of Eq. (3), the user only has to
define the finite element matrices ( )0K , K , M , the starting guess ( )0 0,lU , the
truncation order N  and the desired precision.

In order to emphasize the benefits of the proposed modeling approach, some
numerical applications are presented in Section 5 for validation purposes.

5.  Numerical tests and discussions

To assess the ability of the present SHB8PS solid–shell element to model vibrations
of multi-layer structures, various beam structures in different material and geometric
configurations of sandwich contrast are first investigated. The results are compared to
those given by some state-of-the-art finite elements available in the commercial
software package Abaqus/Standard. The three-dimensional elements selected from
Abaqus for comparison consist of the linear solid element C3D8 (eight nodes, full
integration) and the quadratic solid element C3D20R (twenty nodes, reduced
integration).  The  latter  is  supposed  to  be  a  reference  in  this  study,  which  will  also  be
confirmed later, because of its well-recognized performance in this type of problems.

Nevertheless, first of all and before we proceed further, the SHB8PS solid–shell
finite element will be first validated on a simple cantilever beam and on the sandwich
beam problem studied in [15,16].
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5.1. Validation tests

5.1.1 Simple cantilever beam

In this preliminary study, the natural frequencies are computed using the geometric
and material properties reported in Table 5.

Table 5
Geometric and material properties of the simple cantilever beam.

E n ρ L h b
2.11x1011 Pa 0.3 7800 kg.m-3 1 m 0.01 m 0.1 m

The first four eigenfrequencies obtained with the proposed SHB8PS solid–shell and
the classical solid linear element C3D8R (reduced integration), available in Abaqus, are
compared with the analytical reference results and reported in Table 6. The calculations
are performed for different mesh sizes, in which the number of elements is given in the
following order: length x width x thickness. Note that only two integration points are
used in the case of the SHB8PS solid–shell element.

It is clear from Table 6 that the SHB8PS solid–shell element outperforms the C3D8R
in vibration modeling of a single layer beam. In the next section, a more selective and
representative problem for the vibration modeling of viscoelastic sandwich structures
will be investigated.

Table 6
Eigenfrequencies of the cantilever beam.

Element type Mesh layout
f1 ref = 8.4 f2 ref = 52.5 f3 ref = 83.8 f4 ref = 147.1

f1/f1ref f2/f2ref f3/f3ref f4/f4ref

C3D8R

(30x3x1)=90 0.10 0.10 0.18 0.20
(40x4x1)=160 0.10 0.10 0.18 0.20
(80x8x1)=640 0.10 0.10 0.18 0.19
(30x3x4)=360 0.94 0.97 0.94 0.97
(40x4x4)= 640 0.98 0.98 0.96 0.98
(80x8x4)=2560 0.98 0.98 0.99 0.99
(30x3x5)=450 0.98 0.99 0.94 0.99
(40x4x5)=800 0.99 0.99 0.96 1.00
(80x8x5)=3200 1.00 1.00 0.99 1.00

SHB8PS (30x3x1)=90 1.00 1.01 1.00 1.01
(40x4x1)=160 1.00 1.01 1.00 1.01

5.1.2 Viscoelastic sandwich beam

In this section, we analyze the vibrations of a three-layer cantilever sandwich beam
(see Fig. 1). The results yielded by the SHB8PS will be compared to those given by the
FSDT IC-ZZT in [15,16] The solid linear and quadratic elements taken from Abaqus
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(respectively, C3D8 and C3D20R) are also used for comparison purposes. The
geometric and material properties used in this study are reported in Table 7. The
viscoelastic properties of the core are assumed to be constant and can be written as:

( )0 1c cE E ih= + (28)

where 0E  is the Young modulus of the delayed elasticity and ch  the core loss factor.

The  results  corresponding  to  the  first  five  modes  are  given  in  Table  8.  Only  the
converged mesh for each finite element discretization is presented. These results not
only validate the proposed solid–shell modeling approach, but also emphasize the
advantage of the SHB8PS finite element, in particular in terms of coarse-mesh accuracy
(compare the number of degrees of freedom (NDOF) as well as the number of
integration points (NIP) required for each formulation, as reported in Table 8).

Table 7
Geometric and material properties of the viscoelastic sandwich beam.

Elastic faces

Young’s modulus 106.9 10 PafE = ´

Poisson’s ratio 0.3fn =

Density 32766 Kg mfr -= ×

Thickness 1.524 mmfh =

Viscoelastic core

Young’s modulus 61.794 10 PacE = ´
Poisson’s ratio 0.3cn =

Density 3968.1 Kg mcr
-= ×

Thickness 0.127 mmch =

Geometry of the beam
Length 177.8 mmL =

Width 12.7 mmb =

Table 8
Frequencies and loss factors associated with the first five modes for the viscoelastic
cantilever sandwich beam.

SHB8PS C3D8 C3D20R FSDT IC-ZZT [15]
NDOF/layer 2160 384000 48000 3000
NIP/element 2 8 8 -

(Hz)f ch h (Hz)f ch h (Hz)f ch h (Hz)f ch h

0.1ch =

64.3 0.281 63.5 0.281 64.3 0.275 64.1 0.281
297.6 0.241 291.3 0.249 297.9 0.237 296.7 0.242
748.3 0.152 727.8 0.160 747.4 0.149 744.5 0.154

1405.3 0.087 1360.9 0.092 1400.7 0.086 1395.7 0.089
2278.1 0.056 2205.8 0.058 2272.5 0.055 2264.5 0.057

5.2 Contribution to modeling viscoelastic sandwich beams

The following analysis is specifically intended to show the effectiveness of this
solid–shell element in modeling sandwich beams, especially beyond the restrictions
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pointed out by Hu et al. [17]. In this investigation, the results obtained with the SHB8PS
element are compared to those yielded by Abaqus formulations, which consist
respectively of the C3D8 (3D hexahedral linear element with full integration) and the
C3D20R (3D hexahedral quadratic element with reduced integration). The material and
geometric properties for this viscoelastic sandwich beam problem are given in Table 9.

Table 9
Sandwich beam parameters.

fE fr cr h fn cn

6.9x1010 Pa 2766 kg.m-3 1600 kg.m-3 0.05 m 0.3 0.49

The viscoelastic behavior of the core material is described, based on generalized
Maxwell’s model, by:

( )
3

0
1

1 j
c

j j

G G
i
w

w
w=

æ öD
= +ç ÷ç ÷- Wè ø

å (29)

where 0G  is the shear modulus of the delayed elasticity, while the remaining parameters

( ),j jD W  are reported in Table 10.

Table 10
Maxwell’s series terms for the viscoelastic model.

j jD 1(rad.s )j
-W

1 0.746 468.7
2 3.265 4742.4
3 43.284 71532.5

Three dimensionless beam parameters are used in this comparative study, namely the
ratio of core to face Young modulus (Ec/Ef), the ratio of beam length to beam total
thickness (L/h), and the ratio of core to skin thickness (hc/hf). Let us remark that under
these considerations and by using the material parameters as listed in Table 9, all
sandwich beam possible configurations can be represented. For these purposes,
frequencies and loss factors are evaluated in three configurations:

Case 1. Thin/thick core: 0.1 100hc hf£ £/           ( 520 ; 2 10L h Ec Ef -= = ´/ / )

Case 2. Short/long beam: 4 100L h£ £/               ( 51 ; 2 10hc hf Ec Ef -= = ´/ / )

Case 3. Soft/rigid core: 0.0001 100Ec Ef£ £/      ( 1 ; 20hc hf L h= =/ / )

In order to assess the performance of the proposed finite element modeling,
eigenfrequencies of sandwich beams in the above configurations have been investigated
in the first  part.  Aside from the 2D finite element formulations CPE8R and CPS8R as
well as the FSDT IC-ZZT formulation, whose limitations have been clearly shown
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previously (see Tables 2–4 in Section 2), all of the models discussed in the above
section are investigated to evaluate their respective limits. For all of the configurations,
a convergence study was first carried out and only the degrees of freedom (DOF) giving
converged results are presented. The results corresponding to the first three
eigenfrequencies are reported in Tables 11–13. The numbers indicated in bold reveal
limitations associated with some models for certain values of the investigated
dimensionless beam parameters. For such parameter ranges, these models do not
provide accurate eigenfrequencies or require much finer meshes thus significantly
increasing the number of DOF, which makes the analysis inefficient. One can observe
that  the  results  given  by  the  SHB8PS  are  most  often  close  to  those  yielded  by  the
C3D20R, which can be considered as reference. However, the C3D20R requires a much
larger number of DOF, which corresponds to a significantly higher computational
effort. One can also notice that despite the large number of DOF required for the C3D8,
its results are relatively poor and start deviating from the reference results as soon as the
ratio c fh h/  becomes greater than 1 (see Table 11). These limitations are mostly
attributable to the high sensitivity of the C3D8 to locking phenomena, which overly
stiffens the element and thus tends to overestimate the simulated eigenfrequencies.

A noteworthy observation from all of these sensitivity analyses (see Tables 11–13) is
that the proposed solid–shell element formulation is able to provide accurate results for
the different configurations investigated, while maintaining reasonable CPU times.

To further validate the proposed approach, an additional investigation is carried out
concerning the analysis of damping parameters, which represent the damped
frequencies and associated loss factor properties. The SHB8PS solid–shell  results  are
validated through comparisons with the C3D20R quadratic element, the latter having
been  previously  shown  to  be  able  to  provide  reliable  reference  results.  In  this  last
investigation, the same configurations as above, with the same ranges of variation for
the various dimensionless	beam parameters, are considered again. The results for these
three configurations and the associated validations are shown in Figs. 3–5.

Table 11
Influence of hc/hf (L/h = 20, Ec/Ef = 2x10-5).

Elements SHB8PS C3D8 C3D20R
NDOF/layer 2160 384000 48000
NIP/element 2 8 8

0.1c

f

h
h

=
21.591 21.638 21.605
122.45 122.43 122.19
337.43 335.46 334.83

1c

f

h
h

=
13.097 13.266 13.102
75.838 77.080 75.970
209.82 212.77 209.63

40c

f

h
h

=
4.2207 4.4651 4.2203
12.285 14.142 12.281
22.082 25.968 22.002

100c

f

h
h

=
4.0513 4.2184 4.0507
12.255 13.086 12.255
21.146 23.361 21.144
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Table 12
Influence of L/h (hc/hf = 1, Ec/Ef = 2x10-5).

SHB8PS C3D8 C3D20R
NDOF/layer 2160 384000 48000
NIP/element 2 8 8

4L
h
=

301.43 302.94 301.93
1822.5 1847.2 1822.6
5827.4 5629.1 5834.8

10L
h
=

49.087 49.433 49.132
300.42 301.42 300.46
814.33 810.75 815.68

40L
h
=

3.9490 4.5161 3.9491
19.987 24.125 19.940
53.314 65.450 53.299

100L
h
=

0.9718 1.3365 0.9714
3.9592 6.7934 3.9597
9.4097 18.068 9.4105

Table 13

Influence of Ec/Ef (hc/hf = 1, L/h = 20).

SHB8PS C3D8 C3D20R
NDOF/layer 2160 384000 48000
NIP/element 2 8 8

410c

f

E
E

-=
16.511 16.767 16.550
80.943 82.799 81.068
214.56 219.49 214.44

0.1c

f

E
E

=
42.520 42.640 42.536
252.56 253.18 252.57
657.94 658.87 657.30

100c

f

E
E

=
95.304 97.430 95.860
595.94 607.62 597.92
1666.78 1690.5 1664.5
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Fig. 3. Frequencies and loss factors for the first three modes with variation of the
thickness ratio hc/hf.
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Fig. 4. Frequencies and loss factors for the first three modes with variation of the length
to thickness ratio L/h.
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Fig. 5. Frequencies and loss factors for the first three modes with variation of the layer
stiffness ratio Ec/Ef.
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5.3 Application of the proposed model: railway modeling

We consider here a more complex application, which consists of a simplified pattern
of rail  on sleepers.  This analysis is  proposed in order to show interest  of the proposed
model in modeling real structures. As shown in Fig. 6, the structure consists of a section
of  a  rail  on  two  sleepers,  which  may  be  modeled  by  short  beams  with  viscoelastic
sandwich core, fixed on an assumed rigid ground. We are interested here in buckling
modes  that  can  cause  the  derailment  of  a  train.  This  system  may  also  help  to  damp
vibrations caused by trains. The rail and the elastic faces of the short beams are made of
steel, whose material properties are given in Table 14. The viscoelastic core is made of
ISD112, whose parameters were previously reported in Tables 9 and 10. The geometric
parameters of the studied structure are listed in Fig. 6.

Fig. 6. Rail on sleepers modeled by short sandwich beams with viscoelastic core.

Table 14
Steel properties.

steelE steeln steelr
2.1x1011 Pa 0.3 7800 kg.m-3

The  analysis  of  the  structure  consisted  in  an  evaluation  of  the  damping  properties,
which are the frequencies and loss factors. The first three modes of this model of rail on
sleepers are shown in Fig. 7. The simulation results given by the proposed solid–shell
modeling approach are compared to the results yielded by the C3D20R element, which
served as reference (see Table 15). The obtained results are rather satisfactory since they
are in agreement with those given by the C3D20R Abaqus element. It is noteworthy,
however, that the proposed solid–shell modeling approach requires much fewer degrees
of freedom to achieve convergence with sufficient accuracy, which confirms its
efficiency and its interest in terms of computational effort reduction.

100
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Fig. 7. First three modes for the model of rail on sleepers.

Table 15
Frequencies and loss factors associated with the first three modes of the rail on sleepers.

SHB8PS C3D20R

NDOF 1926 9168
NIP/element 2 8

Eigen
frequency

Damped
frequency Loss factor Eigen

frequency
Damped

frequency Loss factor

1 163.17 165.23 6.22e-2 163.07 165.31 5.51e-2
2 361.62 370.80 1.08e-1 357.28 366.83 1.03e-1
3 620.16 637.13 9.62e-2 604.54 617.78 9.83e-2

6. Conclusions

In this contribution, a new modeling approach of frequency dependent viscoelastic
sandwich structures has been proposed for vibration analysis. To this end, the free
vibration problem was solved by coupling a solid–shell finite element and the Diamant
approach. Different material and geometric configurations were investigated, which
include parameter values ranging beyond the classical model limitations pointed out in
[17]. The obtained results emphasize the advantages of adopting the proposed solid–
shell concept in this type of applications and the associated benefits, especially in terms
of coarse-mesh accuracy and efficient kinematic description. This study will be
extended to nonlinear vibrations of sandwich structures including plates. Another
possible extension would be the modeling of multilayer structures using a single layer
of elements with the possibility of assigning various material responses at different
integration points.
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