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ON SIGNAL DENOISING BY EMD IN THE FREQUENCY DOMAIN

Hadj Ahmed Bay Ahmed, Ali Komaty, Delphine Dare and Abdel Boudraa

Ecole Navale -IRENav - EA 3634 - BCRM Brest, CC 600, 29240 Brest Cedex 9, France

ABSTRACT
In this work a new denoising scheme based on the em-
pirical mode decomposition associated with a frequency
analysis is introduced. Compared to classical approaches
where the extracted modes are thresholded in time do-
main, in the proposed strategy the thresholding is done
in the frequency domain. Each mode is divided into
blocks of equal length where the frequency content of
each one is analyzed. Relevant modes are identified us-
ing an energy and a frequency thresholds obtained by
training. The denoised signal is obtained by the super-
position of the thresholded modes. The effectiveness of
the proposed scheme is illustrated on synthetic and real
signals and the results compared to those of methods
reported recently.

Index Terms— Empirical Mode Decomposition,
Intrinsic Mode Function, Denoising,

1 Introduction
The Empirical Mode Decomposition (EMD) is a pow-
erful signal processing tool for extracting signals from a
noisy and non-stationary data. The EMD decomposes
any data into multi AM-FM components called Intrinsic
Mode Functions (IMFs) by the means of an empirical
process. When EMD is applied to a noisy data, a phys-
ical interpretation of the resulted modes is necessary
to determine which IMFs are pure noise, pure signal or
contains both [1]. Wu and Huang [2], [3] revealed a statis-
tical significance of the IMFs by studying the statistical
characteristics of the uniformly distributed white noise.
Peng et al. [4] and Ayenu-Prah and Attoh-Okine [5]
proposed a correlation-based threshold to discriminate
between relevant and irrelevant IMFs. For very noisy
signals, both of these methods have met with limited
success, due mainly to the strong correlation between
the signal and the first modes. However, a Consecutive
Mean-Squared-Error (CMSE) algorithm has been pro-
posed by Boudraa and Cexus [6], in which the signal
is reconstructed from the mode for which the CMSE
criterion is minimal.
Even if interesting results on synthetic and real data, are
obtained using the filtering method defined in the time

domain, it is still facing difficulty while dealing with the
mode mixing problem, which means that different AM-
FM oscillations coexist in a single IMF [7]. Regarding
this description, there is no efficient "filtering" method
that could overcome this problem due to the fact that
an IMF is considered as either signal or noise, thus, it
is retained (signal) or rejected (noise). However, to deal
with such problem, Wu and Huang proposed EEMD,
which proved to be efficient in removing mode-mixing,
though, its very motivation becomes under questioning
when dealing with non-white noise [?]. We show in the
following that the mode mixing can be reduced by com-
bining the standard EMD with a signal block strategy.

One of the first denoising methods introduced in
the literature is the EMD-based signal noise reduction
approach [8] where the authors dropped the assump-
tion that the noise is spread over only the first IMF.
Therefore, all IMFs are preserved and the signal is
fully reconstructed using all the "preprocessed" IMFs.
This denoising has further been improved recently by
Kopsinis and McLaughlin by introducing the Interval
Thresholding techniques termed as EMD-IT and EMD-
CIIT which stands for EMD-Clear Iterative Interval-
Thresholding [9]. The very basic idea is to treat every
zero-crossing interval and estimate if it is noise-dominant
or signal-dominant based on the single extrema on this
interval. If the extrema amplitude exceeds a fixed thresh-
old, the interval is considered as "useful", otherwise, it is
considered as noise.

All aforementioned methods use time-domain energy
criterion to discriminate between relevant and irrelevant
modes. However, sometimes a decision based on only
the time-domain energy is not always significant like
the case in Figure 1 where we can clearly see that the
time-domain information is not sufficient to distinguish
between a noise-only signal and a useful one, due mainly
to the high power of noise. Whereas by just looking at
the frequency domain, the decision can be made so obvi-
ously. Hence, we understand the need to treat the IMFs
using the frequency domain (Fourier spectrum) instead
of their time-domain information. Another limitation
concerning all previously cited methods is that they all
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use an energy-based threshold, either in the form of a
correlation function, amplitude,. . .. Although being a
sufficient criterion in a lot of applications, it ignores the
fact that in some particular cases, the energy is not the
only criterion distinguishing useful signals from noise-
only ones. It turned out that in the case of a Doppler
signal like in Figure 1, a very interesting part of the
signal (highlighted with a red rectangle) has very low
amplitude, which means very low energy. This part of
the signal can be clearly seen in the EMD decomposition
in Figure ??, particularly in the 2nd, 3rd and 4th modes.
The horizontal lines represent the thresholds used in
[9], one can notice that theses thresholds remove a very
important part of the signal, because it does not have
a sufficient energy to exceed the thresholds in any of
the three modes. Hence the need to add another crite-
rion that can eventually lead to a better thresholding
strategy. It turned out that adding a bandwidth-based
threshold can be useful in cases where signal energy
is small. It should be noted that neither the EMD or
the EEMD did not succeed in finding the regions of
interest in the signal (see Figures ?? and 2). None of
the aforementioned methods succeeds in dealing with
such cases. Hence the necessity to develop a denoising
algorithm that can extract useful information from low
energy signal intervals.

A new EMD-based denoising strategy for detect-
ing the IMF’s signal-dominant intervals is presented.
In classic situations, when the EMD succeeds in sep-
arating noisy modes from signal ones, one can use a
hard-thresholding method [6], [10]. However, when sig-
nal modes are mixed with noise ones, while the signal
ones has significant energy level, any of theses meth-
ods [8], [9] will do. But in more complicated cases, when
the original signal has low energy level, we proved that
the new thresholding strategy outperforms the other
methods in terms of SNR especially for low energy parts
of the signal.

1.1 EMD-FT denoising
The EMD-based methods studied in [6], [10] are very
fast and robust when the modes are not mixed, other-
wise, we will certainly lose relevant information or add
unwanted noise because of the hard thresholding decision
applied (i.e., every mode is either selected or rejected).
To overcome the mode mixing problem, one should look
inside every IMF and make a decision on every interval.
In order to do that, we must understand how the noise
does effect the EMD. The white noise has a constant
power spectral density, i.e., it has equal power within a
fixed large enough bandwidth. On the other hand, for
many categories of signals (e.g., Doppler), one interval

(a)

(b) (c)

Fig. 1. (a) from top to bottom: original Doppler signal,
−2dB noise and noisy Doppler signal, the red square
represents a sliding window of 128 samples (b) from top
to bottom: the windowed Doppler, the windowed noise
and the windowed noisy Doppler (c) from top to bottom:
power spectral density of the original Doppler, PSD of
the noise and the PSD of the noisy Doppler

Fig. 2. EMD applied to a Doppler signal. The lines in
red represents the thresholds used for CIIT method.
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of a certain IMF of an almost noiseless signal is likely
to have narrow bandwidth. Thus, one way to discrim-
inate between very noisy intervals and almost noiseless
intervals, is to study the frequency domain of each in-
terval of each IMF and decide basing on two criteria:
bandwidth and energy. In order to do that, one can
start by decomposing each IMF into a number of 50%
overlapping blocks and then multiplying each block by a
certain analysis window (e.g., a sine window) and then
applying the Fourier Transform (FT) on each one of the
windowed blocks. Then, we choose two thresholds (one
for bandwidth and the other for energy) and we com-
pare the bandwidth and the energy of the block with the
chosen thresholds. Based on this comparison, we can es-
timate the nature of the block (useful signal or noise).
For example, we will compare the power spectral densi-
ties of two different IMF intervals |P j1

k (f)| and |P j2
k (f)|,

the one that has a narrow-band frequency domain will
be considered as signal, while the one with a wide-band
frequency domain will be considered as noise.
Let s(t) be a noise free signal contaminated by a white
Gaussian noise b(t): x(t) = s(t)+b(t). The algorithm de-
scribed above can be summarized in the following steps:
1. Decompose the noised signal x(t) using EMD.
2. Decompose each mode pi(t) into k blocks: pi(t) =
{p1
i (t), . . . , p

j
i (t), . . . , pki (t)}, i ∈ {1, 2, . . . , N}, where

N is the number of modes, with pji (t) = pi(t).wa
(
t−τ
λ

)
where wa

(
t−τ
λ

)
is a sliding window, λ is its width

and τ is its delay. Each block has 50% overlapping
with the previous one.

3. Compute the discrete FT on each one of the blocks:
F(pji (t)) = P ji (f).

4. Compute the energy Eji and the bandwidth σji of each
P ji (f) [11].

5. Find by learning (Figure 3) the frequency threshold
σ and the energy threshold E .

6. Select only the intervals having their energy above E
and their bandwidth below σ. The estimated blocks
are expressed as:

P̃ ji (f) = P ji (f)H(Eji − E)H(σ − σji ) (1)

where H denotes the function:

H(Eji − E) =
{

1 si Eji ≥ E
0 si Eji < E

and

H(σ − σji ) =
{

1 si σji ≤ σ
0 si σji > σ

7. Compute the inverse FT of each block, then multiply

it by the synthesis window ws:

p̃ji (t) = ws

(
t− τ
λ

)
<{F−1(P̃ ji (f))} (2)

where < is the real part. The global window w =
wa ∗ ws must satisfy the following condition: w(λ2 +
n)+w(n) = 1 ∀n 1 ≤ n ≤ λ

2 (because of the 50% over-
lapping). We may use a synthesis window (e.g., a sine
window) for reconstructing the overlapping blocks.
i.e., we apply the inverse FT after having chosen the
good blocks.

8. Perform the partial reconstruction using only the se-
lected intervals.

s̃(t) =
N∑
i=1

k∑
j=1

p̃ji (t) + r(t) (3)

It turns out that the optimal thresholds depend on the
signal. More precisely, they depend on the nature of the
signal. But this is not really a problem, since in almost
all practical cases, we already know what is the nature
of the signal. For example, we can predetermine opti-
mal thresholds for a Doppler signal, and these thresh-
olds would also be good for any other signal having the
same nature as the Doppler signal, such as FM signals or
any modulated signals having a continuous phase (e.g.,
CPFSK or MSK).

σ

E

1.17

0.38

Fig. 3. Learning process: each of the seven grey rectan-
gles corresponds to the maximum SNR region. The red
area corresponds to the intersection between the grey
regions. The thresholds in this region are considered as
optimal thresholds.
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1.2 Results and discussions
The denoising method is tested using a synthetic Doppler
signal and a real-world signal (ECG). The obtained re-
sults are compared with wavelet approach [12], [13], [?]
and EMD-based denoising methods [9]. First we proceed
by estimating the threshold values σ and E by learning.
Figures ?? and 4 show the variations of SNRout of the
reconstructed Doppler signal versus a range of possi-
ble thresholds values. The frequency threshold range is
chosen so as σ ∈ [0, fm(N−1) ] with fm(N−1) denotes the
mean frequency of the (N − 1)th IMF, which is consid-
ered as narrow-band. The energy threshold E ∈ [0, S],
where S is the maximum energy threshold defined as
S = C

√
E1wa

2 lnλ, where E1wa
denotes the energy of

a window from the first mode of length ′λ′ (it’s worth
recalling that the first mode is considered as noise)and
C is a constant. Thus, the value of SNRout is calculated
for all couples (σ,E). It should be noted that for some
particular combinations, the energy and bandwidth cri-
terion are not suitable, which leads to a low SNRout. In
contrast, there are other combinations (σ,E) resulting
in an optimal SNRout, which results in a region of opti-
mal combinations. The retained couple is chosen as the
barycenter of this region (σ = 1.8,E = 0.35).

As for the mode reconstruction, p̃ji (t), (Eq. 2), we chose
wa = ws = sin

(
π tλ −

j−1
2
)
which is a smooth window.

The resulting block is thus guaranteed to be circular
smooth. Hence, no irregularities will affect the FT. All
simulations are performed using sinusoidal window.
The robustness of the method is proved by calculating
the SNRout for the Doppler signal (Figure 5), for a range
of SNRin values, using 1024 and 4096 samples. EMD-FT
and EMD-CIIT [9] have almost similar performance for
small SNRin with a small advantage for the EMD-FT.
These two methods offer better performance than the
Bayesien and the wavelet methods [13], [12]. However,
for higher values of SNRin, the EMD-FT gives the best
performances in terms of SNRout. It is worth noting that
for all aforementioned EMD-based methods, the more
data points we have (number of samples), the better
performance we get.

We have estimated the processing time of these five
methods (Table 1). Simulations are conducted on a Intel
Core i3 (3rd generation) 3120M/2.1 GHz, with 6 GB of
RAM. The results show that our denoising method is
faster than the others, which make it more useful for
real-time applications.

The proposed method is also tested for a real-world
ECG signal. Three signals are presented in Figure 6, the
original ECG signal s(t), its noised version x(t) and its
denoised version s̃(t). The results show that the main
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Fig. 4. SNRout of the Doppler signal reconstructed in
function of (a) both the frequency threshold σ and the
energy threshold E. (b) in function of the energy thresh-
old E (c) in function of frequency threshold σ

Fig. 5. SNRout versus SNRin for the reconstructed
Doppler signal (a) 1024 samples (b) 4096 samples.

Table 1. Processing time for the denoising methods.
Processing time [s]

Number of samples
Methods 1024 4096

Hard-TI [13] 0.0324 0.0672
Soft-TI [14] 0.0291 0.0689
Bayesien [12] 0.0092 0.0248
EMD-CIIT [9] 1.5817 3.5335

EMD-FT 0.0067 0.0228
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characteristics of the signal are well preserved, while re-
ducing enormously the noise.
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Fig. 6. ECG signal (original, noisy and denoised).

1.3 Conclusion
This paper presented a new EMD-based method associ-
ated with a frequency analysis for denoising. The first
results are very promising and show the importance of
frequency thresholding. Indeed, the method leads to a
SNRout of the order of 20 dB for very low SNRin. The
reduced processing time should be emphasized, which
permits the use of this method for real-time applications.
This method should be validated using a larger class of
real-world signals contaminated with different types of
noise, while varying the window length, so we can asso-
ciate an optimal window length to each case of study.
Also, a special attention should be paid to mathemat-
ical formulation of this method, especially the learning
process.
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