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Abstract

The present study experimentally investigates the hydrodynamic behaviour of 2-D NACA (15%, 25% and 35%)

symmetric hydrofoils at Reynolds number 0.5 � 106. Particular attention was paid to the hysteretic behaviour at the 
static stall angle, and a detailed cartography of the boundary layer structures (integral quantities and velocity profiles)

is given to support the detachment mechanism and the onset of von K�arm�an instability for thick hydrofoils.
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1. Introduction

Flow past bluff bodies at high incidence angles or past a cylinder has been the object of a considerable number of

studies, and they have shed light on the different flow regimes according to the Reynolds number, boundary layer

conditions, free-stream turbulence intensity, aspect ratio and thickness effects. The main feature of this class of flow is

the establishment of the von K�arm�an vortices persisting at high Reynolds numbers in the turbulent regime. Many

studies have been devoted to vortices resulting from a global instability, longitudinal vortices (secondary instability),

small-scaled Kelvin–Helmholtz vortices (convective instability in the shear layer) and the nonlinear interactions

between the organised and chaotic part of the flow motion for this class of flow [e.g., Williamson, 1992; Persillon and

Braza, 1998; Cantwell and Coles, 1983; Perrin et al., 2005; Braza et al., 2006; Perrin et al., 2008]. These previous studies

have provided databases for numerical turbulence modelling in which the nonlinear interactions between the organised

and chaotic characteristics of the flow must be taken into account. Nevertheless, vortex shedding was well established

for this class of flows, and few studies have been devoted to the hysteretic behaviour of the development of the K�arm�an
street. This behaviour is linked to the static stall of the lifting-body configuration at high incidence angles, where the

hysteretic loop is associated with two kinds of flows (partially attached and massively detached) in the context of non-

antisymmetric vortex shedding [the shed vortex close to the trailing edge is weakened by the opposite vortex close to the

leading edge which starts being shed (Hoarau et al., 2003)]. With regard to lifting bodies, numerous works have focused

on flat plate boundary layers with and without adverse pressure gradients (Na and Moin, 1998; Yang and Voke, 2001;
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Perry and Marušic, 1995; Marušic and Perry, 1995), but few recent papers deal with boundary layers on hydrofoils and

vortex shedding (Bourgoyne et al., 2003, 2005). An increasing interest in boundary layers at high incidence angles, can

be noticed to predict the types of hysteretic loops that may occur (Mittal and Saxena, 2000; Sicot et al., 2006) and to

quantify the unsteady oscillatory flow in the near-wake that produces pressure fluctuations, which are sources of

hydroacoustic noise (Bourgoyne et al., 2000). In addition, experiments have been performed to explore the unsteady

separating of boundary layers (Lurie et al., 1998), and the influence of laminar separation and transition on hysteresis

on particular lifting bodies (Mueller, 1985); however, in these few references, no systematic study of the effect of

hydrofoil thickness and vortex dynamics on the onset of the organised modes of the vortex shedding during a hysteretic

loop has been undertaken. One of the main interests of thick hydrofoils is the stall delay that such profiles can provide

when used at a high incidence angle. In spite of the increasing number of applications, thick foil behaviour is not clearly

understood. Very little data are available to describe the turbulent boundary layer structures, performance control,

unsteady separated flows, vibrations and hydrodynamic behaviour at low and high angles of incidence. The effect of the

hydrofoil thickness, which leads to an increase in the lift coefficient, has been studied by Thwaites (1960) and can be

observed on hydrofoils with relative thicknesses (t/c, where t is the maximum thickness of the foil and c its chord length)

greater than 10%. Although some studies have been devoted to thickness effects on global parameters, few of them

have investigated the details of the flow in the boundary layer with adverse pressure gradients (Bourgoyne et al., 2000).

The present work intends to clarify this point.

The present work proposes such a study and investigates flows on three NACA symmetric foils (15%, 25% and 35%

relative thickness) at a Reynolds number of 0.5� 106 based on chord length. One of the objectives is to provide a refined

database with respect to the near wall fields; allowing access to the key physical properties related to the detachment of the

turbulent boundary layer on thick bodies. A deliberate choice was made to perform field measurements in the near-wall and

near-wake region with spatial and temporal refinement, using non-intrusive laser doppler velocimetry (LDV) and particle

image velocimetry (PIV) techniques. This choice constitutes a first essential step to allow a thorough quantification of the

laminar to turbulent transition, the detachment of the turbulent boundary layer subjected to the adverse pressure gradient

and the establishment of the von K�arm�an instability. The objectives of the present study are summarised as follows:

(i) to provide a detailed evaluation of the mean and turbulent quantities of the boundary layer in the profiles near the

separation region with a strong adverse pressure gradient;

(ii) to quantify the scaling laws of the boundary layer and provide a detailed cartography of the mean velocity

components during static stall; and

(iii) to analyse the unsteady behaviour due to the coherent structures’ formation at high incidence by means of spectral

analysis and vortex core detection during the hysteretic stall process;

The paper is organised as follows. Section 2 presents the experimental set-up, flow configurations and measurements.

Section 3 is devoted to the results concerning the thickness effects and global parameters. Section 4 presents the topology of

the unsteady, separated flow during the hysteretic behaviour of the detachment and the formation of the vortex.

2. Experimental set-up and measurements

The experiments were conducted in the hydrodynamic tunnel of the French Naval Academy, Fig. 1(a). This facility

contains a test section that is 1m long and has a square cross section measuring 0.192� 0.192m2 in which a maximum
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Fig. 1. (a) Experimental set-up: (a) back wall of the vein, (b) force balance, (c) downstream pressure tap, (d) upstream pressure tap,

(e) acoustical pressure sensor, (f) profile, L1=L2=192mm, L3=625mm, L4=100mm, L5=225mm. (b) LDV measurement

locations. (c) Statistical convergence test for the PIV measurements: mean vertical component of velocity versus number of pairs of

images.



velocity of 15m/s can be achieved. The turbulence intensity upstream of the entrance of the test section is 2%. The three

designed hydrofoils are two-dimensional symmetric profiles with relative maximum thicknesses of 15%, 25% and 35%

located 25% from the leading edge. The experiments were performed with a cord length of 100mm and a span length of

192mm at a Reynolds number based on the chord length of 0.5� 106, which corresponds to an upstream velocity of 5m/s.

The blockage ratios defined as t/H (H being the height of the test-section) were 0.078 for the NACA0015 and 0.182 for the

NACA0035. The experimental facilities are detailed in Djeridi et al. (2007). The lift and drag measurements were performed

using a resistive gauge hydrodynamic balance calibrated in our laboratory. The mean and root mean square (rms) values

were calculated from 30-s test measurements carried out at 1830Hz. The determination of the hydrodynamic parameters was

performed for incidence angles a in the range [01, 401], and the maximum range of the balance was 0–180daN for the lift

force and 0–17daN for the drag force.

To characterise the structure of the boundary layer and the near wake that develop on the hydrofoil, detailed velocity

measurements were performed by LDV techniques, using a refined spatial grid. Two components, three beams LDV Dantec

DynamicsTM system was used to measure the normal and tangential velocities in water seeded with micron-size, silver-plated,

glass spheres. The system was operated in backward scattering mode and was coupled with two enhanced burst spectrum

analysers. Excellent visibility of the signal was achieved with a very low signal-to-noise ratio. The time histories were

recorded with 8000–20000 samples acquired in a range of 20–60 s. In the sublayer, the number of collected samples fell to

about 8000. These parameters correspond to mean data rates of 1000–130Hz and are sufficient to obtain the mean velocities

and rms values with an uncertainty estimated by statistical considerations to be less than 1% and 1.5%, respectively. These

uncertainties were determined from statistical methods related to the normal law that were applied to a distribution of 20000

samples. A remote mechanical positioning system with a minimum translation step of 10mm allowed us to measure the

velocity field around the hydrofoil along a curvilinear map (x, y). The plan of measurements is located at a quarter of the

spanwise length L. The dimensions of the probe volume are 0.4mm in the spanwise direction and 0.05mm in both vertical

and longitudinal directions. Velocity measurements were performed in the boundary layer from the leading to the trailing

edge (0ox/co1) on 16 normal lines (�70 measurements per normal line). At each location, measurements were performed

normal to the wall from the outer region of the boundary layer to the wall, Fig. 1(b). The closest measurements resulted in a

mean distance to the wall of 50mm; corresponding to yþ=3–8 in the turbulent boundary layer. In the chordwise direction,

measurements were taken every x/c=0.1 for every y/c=5� 10�4. To determine the laminar to turbulent transition with an

accuracy of 0.02x/c, the grid was locally refined in the chordwise direction.

Concerning unsteady, separated states, a spectral analysis was conducted in the shear layer downstream and in the wake of

the foils using a maximum data rate of 2000Hz for 400 s samples; leading to a spectral resolution of 0.25Hz. Spectral analysis

of the vertical velocity components was obtained by applying the fast Fourier transform method to the re-sampled signals.

The PIV measurements were carried out with the same Reynolds number for the three hydrofoils at high incidence during

the static stall. A double pulse ND:YAGQuantel laser was used, and delivers 2� 20mJ/pulse that illuminates the polyamide

seed particles with a 1-mm thick light sheet. The size of the particles was about 10mm. A PCO-sensicam camera with a

resolution of 1280� 1024 pixels was used and recorded double, full-frame particle images. The camera was equipped with a

60-mm objective lens with a diaphragm aperture of 1.2. The camera and laser system was operated at a frequency of 4Hz.

The size of the measurement area was �0.468ox/co0.508 and �0.268oy/co0.533. The flow was analysed by cross-

correlating 50% overlapping windows of 32� 32 pixels. This yield of 79� 63 vectors and 3000 pairs of images was

analysed to generate the converged flow field statistics. The statistical convergence was tested using an increasing

number of pairs of images, and convergence was reached beyond 2000 pairs of images for the mean velocity and rms

values. This test is shown in Fig. 1(c) for the case of the vertical component of velocity, which is the slowest to converge.

All of the results presented were determined using 3000 pairs of images.

3. Thickness effects on global parameters

3.1. Lift and drag measurements

Classical behaviour of both the lift and drag coefficients is observed in Fig. 2 for low incidence angles. An abrupt loss of lift,

which is characteristic of stall, is observed on the NACA0015 and the NACA0025 for higher angles. The lift behaviour of the

two thinner profiles was linear for small incidence angles. For the thicker profile, a screen effect delays the establishment of the

lift; leading to nonlinear behaviour for small angles of attack. It can be noticed that the linear range of incidence angles

increases with the thickness of the profile. The angles limiting the linear behaviour are 71, 131 and 161 and stall appears for

angles of 211, 331 and 401 for the hydrofoils with 15%, 25% and 35% relative thickness, respectively.

The evolution of the drag coefficient follows classical trends for low incidence the effect of thickness is visible by an

augmentation of the drag coefficient as thickness increases. On these curves, the onset of stall is linked to a violent



increase in the drag coefficient; however, this is not observed for the NACA0035 because stall appears at incidences

beyond the range of the gauge balance. The thickness effect introduces a decrease in the slope of the lift coefficient as

thickness increases, which is characteristic of thick profiles. Hysteretic behaviour will be discussed in the large incidence

angle section.

3.2. Turbulent boundary layer states

For each measurement point, 20 000 samples were validated during a maximum interval of 60 s (corresponding to the

near wall locations). This was proven sufficient after performing tests to measure the mean and the rms values of the u and
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v velocity components to ensure convergence and repeatability. According to the previously refined grid, a survey of the

distribution of the mean tangential and normal velocity components is presented. First, our goal was to characterise the

boundary shape parameters on the NACA0015, NACA0025 and NACA0035 hydrofoils. The velocity profiles were

numerically integrated to compute the displacement, d1, momentum, d2, and the thicknesses from which the shape factor,

H12, is deduced. In our case, the external velocity was the maximum velocity measured on the normal line.

The shape factor is presented in Fig. 3(a) against the normalised chord length. It can be observed that the thickness

effect is associated with an increase in the length of the laminar region near the leading edge, which grows from less than

10% on the NACA0015 to 30% on the NACA0035. After the transition, the value of H12 remains equal to 1.6 (larger

than the value observed for the turbulent boundary layer, which was 1.4). It must be noted that this value rigorously

depends on the Reynolds number (Cousteix, 1989) and the pressure gradient. Near the trailing edge, the shape factor

was less than three on the two thinner profiles and greater than four on the third, on which separation was observed.

These values are consistent with the threshold values proposed by Bradshaw (1967).

To check self-similarity and to quantify the thickness effect of the foils on the boundary layer, the mean velocity

profiles with inner variables are presented. Inner variables are classically defined as yþ for the normal position and uþ

for the tangential component of the velocity. To determine the value of the shear stress velocity, u*, an efficient

estimation of the skin friction was required. The friction was determined using an experimental model based on the

value of the integral quantities proposed by Ludwieg and Tillman (1950) and compared with the direct evaluation of the

near wall velocity gradient, Fig. 3(b). A complete analysis of the method and the uncertainty of the near wall velocity

gradient measurement can be found in Sarraf (2007).

Fig. 4 shows the velocity profiles for the three foils at different locations on x/c using a scaling law. It can be seen that

the slopes of the profiles in the logarithmic region are quite far from the classical value of 5.75 obtained for turbulent

boundary layers on flat plates. This effect is due to the adverse pressure gradient and has been quantified by Mellor and

Gibson (1966) and Mellor (1966).

Moving downstream, the velocity profiles were characterised by the shape of the wake region. For the x/c locations near

the trailing edge, the wake area can be described by a second law proposed by Coles (1956) for yþ4100. The hypothesis of

a universal wake function is reported in Fig. 4 for the three profiles at the different x/c locations. The thickness effect is then

characterised by a deviation of the wake law, this deviation is steeper for the two thicker hydrofoils.
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3.3. Hysteretic behaviour and fluctuating efforts

For the NACA0015 and NACA0025 profiles, an abrupt loss of lift, characteristic of stall, is observed for an incidence

angle of 211 and 331, respectively. For flow reattachment, the incidence angle must be drastically reduced to 151 and 231,

respectively. This behaviour is illustrated in Fig. 5 in which the hysteresis loops have been highlighted by arrows

following the cycle of the lift coefficient. In fact, the cycle provides upper and lower branches characterised by two

different states of the flow. The starting point for the flow along the increasing angle branch (upper branch) is a partially

detached flow (called state I) in which the detachment point progressively moves from the trailing edge to the leading

edge. On the decreasing angle branch (lower branch), a massively separated flow is observed (called state II).

Fig. 4. Velocity profiles with inner coordinates (open symbols) and associated wake laws (solid grey symbols), a=101, Re=5� 105:

(a) NACA0015, (b) NACA0025 and (c) NACA0035.



The corresponding boundary layer pattern has been observed and described in detail in the section devoted to separated

flow. This phenomenon is not observed on the thickest profile in the range of our investigation; we had to increase the

incidence angle up to 401 to observe a similar phenomenon. The rms values of the lift and drag coefficients at the stall

angle show that the hysteretic behaviour is associated with an abrupt increase in the fluctuation of forces as shown in

Fig. 6. This increase in the fluctuating part is associated with the unsteady component of the hydrodynamic coefficients.

4. Unsteady separated flow

4.1. Strouhal number

The lift and drag fluctuations that have been described are related to the large scale structures of the flow, which will

be characterised in the two different states. The ejection of the vortices was quantified by the LDV measurements in the

wake of the three profiles for several angles of incidence. The related velocity spectra are shown in Fig. 7 against the

incidence angles and frequencies. In the three figures, no predominant frequency is observed for an incidence lower than

201. When incidence was raised over 201, an organised motion due to the regular vortex shedding appeared. This

shedding is characterised by a predominant frequency, f. The evolution of the von K�arm�an instability is shown in Fig. 7,

and the establishment of the instability is associated with an increase in the maximum spectral amplitude and a decrease
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in the frequency. For NACA0015, the predominant frequency evolves linearly, but for the two thicker profiles, two

different slopes can be observed if the behaviour remains linear. These different evolutions are characterised by two

values of the Strouhal number, which is based on the projected area of the foil and defined as

St¼ c sin a
f

U
: ð1Þ

This number reported versus the incidence angle for each profile is shown in Fig. 8. Two states of the flow are shown,

which are characterised by two values of St (0.3 in state I and 0.2 in state II). The transition between the two states is

characterised by a jump in the value of the Strouhal number.

A vortex shedding can be observed through the spectral analysis, and the shear layer at the separation point is

affected by the Kelvin–Helmholtz instability. This instability, forced by the periodic vortex shedding, leads to an

oscillation of the detachment point. The nonlinear interaction between these two instabilities appears to be responsible

for the coexistence of states I and II (Hoarau and Braza, 2004).

4.2. Boundary layer state during hysteresis

On the NACA0015 hydrofoil, the boundary layer measurements were performed in the range of angle where the

hysteretic behaviour was observed at the same incidence angle for both flow states. The incidence angles chosen were

161 and 201. The same measurements were performed on the NACA0025 hydrofoil for the two specific states at a=251.

When the incidence angle of the foil was increased, two phenomena simultaneously occurred on the foil. The transition

point and the detachment points moved towards the leading edge, and the distance between the two points decreased.

Also, the detachment point behaved more and more erratically.

These phenomena can be observed in Fig. 9, which shows the velocity profiles of the two hydrofoils for the two flow

states. For the thinner profile, the transition from states I to II is characterised by an abrupt modification in the location

of the detachment point from x/c=0.45 for state I to x/c=0.023 for state II. On the NACA0025, the magnitude of the

displacement of the detachment point is less pronounced (x/c=0.35 for state I and x/c=0.043 for state II). To

conclude, for a low incidence angle, the thickness of the turbulent boundary layer increases with the thickness of the

hydrofoil. At stall, the amplitude of the displacement of the detachment point decreases with an increase in the

thickness of the profile; leading to a smaller decrease in the lift. This effect corroborates the well-known stall mechanism

of the thick profile.

In Fig. 10, the local velocity on the suction side of the hydrofoil is presented against the x coordinate as a Cp value. It

can be seen that for the two conditions that prevail just before stall, the maxima of the velocity (corresponding to

minimum Cp) are equal for the two profiles. After stall (corresponding to state II), the thickness effect induces an

increase in the velocity on the thicker profile. Thus, it seems that for a fixed Reynolds number, a velocity threshold

(that cannot be overcome by the flow) exists.
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4.3. Vortex dynamics during hysteresis

At a high incidence angle, the near wake of the profile is characterised by the formation of organised motion.

The value of the Strouhal number corresponds to the establishment of von K�arm�an alternating vortices depending on

the position of the detachment point of the boundary layer. To better understand the jump in the Strouhal number at

Fig. 7. Frequency spectra of the vertical velocity in the shear layer for the three profiles: (a) NACA0015 for a=17–301,

(b) NACA0025 for a=26–351 and (c) NACA0035 for a=22–311.
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Fig. 11. Streamlines and iso-contours of mean longitudinal velocity u, at State I (left), State II (right) for the three hydrofoils:

(a) NACA0015, (b) NACA0025 and (c) NACA0035.
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Fig. 12. Contours of iso-vorticity State I (left) and State II (right), for the three hydrofoils: (a) NACA0015, (b) NACA0025 and

(c) NACA0035.



the passage from states I to II, cartography of the Reynolds averaged quantities are provided. In this section,

emphasis is placed on the physical analysis of the mechanism governing the ejection of the leading and trailing edge

vortices.

4.3.1. Topology of the coherent motion

The topology of the mean and turbulent flows is studied for the three hydrofoils at incidences corresponding to States

I and II. The streamlines and iso-U contours, Fig. 11, and iso-vorticity contours, Fig. 12, are shown and compared

during the hysteretic loop. As expected, a pattern of two symmetric eddies appears, which is due to averaging the

passage of the alternating vortices from the leading and trailing edges (cyclonic and anticyclonic vortices, respectively).

For a slight increase in the incidence angle, the specific streamlines for states I and II are presented; corresponding to

the two-lobe structure. Saddle points can be observed in these figures, and the respective locations of the kernels of the

vortices are highlighted in Fig. 11. The locations of the vortex core centres of the trailing and leading edge vortices and

the saddle points in the wake are reported in Table 1 for the three hydrofoils and the two flow states.

The jump in the Strouhal number is associated with a relocation of the saddle point. The major change in the saddle

point location can be seen for the thinner profile where the vertical movement is preponderant. For the cyclonic vortices

(leading edge vortices), the movement of the vortex cores from State I to State II evidences a vertical transport of these

vortices and a relative stability in the longitudinal direction. For the anticyclonic vortices (corresponding to the trailing

edge vortices), the movement of the vortex cores from State I to State II shows a longitudinal transport of these

vortices. The asymmetric transport corresponds to an angle variation of 51% between the two cores and the vertical

direction. The establishment of vortex shedding at St=0.2 (corresponding to an increase in amplitude of the spectral

density and a decrease in the dimensional frequency value) is globally associated with the vertical and longitudinal

transport of the cyclonic and anticyclonic vortices, respectively. State II is characterised by an expansion of the wake in

the downstream direction, which is associated with a thickening effect in the vertical direction as observed in the iso-U

contours. The main difference between the two states is located near the separation, where the highest values of the

vorticity are typically found, as shown in Fig. 12. The iso-contours of the vorticity show the formation of two shear

layers: one from the leading edge and the other from the trailing edge. The classical formation length is greater from the

leading edge than from the trailing edge for each profile at State I. Compared with the partially stalled hydrofoils

(State I), the totally stalled case (State II) attenuates this previous difference. In summary, State I is characterised by an

asymmetric vortex (elliptical and distorted vortex), and the trailing edge vortex is less developed than the leading edge

vortex (anticyclonic vortices are strongly stretched). When entering State II, the anticyclonic vorticity region extends

into a larger area. Furthermore, the growth of the average shear layer combined with roll up is completely developed

downstream of the hydrofoils at State II in contrast with to State I. This behaviour is similar to that observed by Sicot

et al. (2006) concerning the unsteady characteristics of the static stall of an airfoil at the same Reynolds number range.

On the other hand, small-scale disturbances grow in the core of the anticyclonic vorticity. Small-scale turbulent

motions occur in the shear layer and the near wake just behind the profile for State II in contrast with State I, as shown

in Fig. 13. The u02 component has a two-lobe structure with a maximum value located near x/c=�0.61 and

y/c=70.25 for the NACA0035 hydrofoil, in which the highest values are found near the detachment point. This small-

scale agitation seems to enhance the horizontal diffusion of the trailing edge vortices and generates a stable vortex

shedding as a von K�arm�an street. The extension of the maximum perturbation is located downstream of the

recirculation area.

Table 1

Locations of the vortex cores and saddle points for the three profiles at States I and II.

NACA0015 NACA0025 NACA0035

State I State II State I State II State I State II

Vortex core centre (leading edge) x/c �0.884 �0.938 �1.125 �1.056 �1.139 �0.883

y/c �0.077 �0.002 �0.052 �0.005 �0.068 �0.009

Vortex core centre (leading edge) x/c �0.980 �0.129 �1.250 �1.297 �1.200 �1.115

y/c �0.275 �0.260 �0.404 �0.340 �0.431 �0.358

Saddle point x/c �1.193 �1.417 �1.662 �1.684 �1.660 �1.485

y/c �0.129 �0.089 �0.159 �0.162 �0.200 �0.171
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Fig. 13. Contours of iso-u02. State I (left) and State II (right), for the three hydrofoils: (a) NACA0015, (b) NACA0025 and

(c) NACA0035.



4.3.2. Discussion of the physical aspect of vortex shedding

The streamlines and iso-U contours allow the determination of the recirculation length (lc, given for the saddle

point) and formation length (lU, based on the location of the minimum axial velocity). To quantify the thickness

effect on the vortex shedding process, a comparison with the classical case of the circular cylinder was proposed for an

equivalent Reynolds number (Djeridi et al., 2003). To conserve the ‘‘wake similitude’’, characteristic lengths

were normalised using the projected chord of the profile (c sin a). Additionally, the aspect ratio e/lc, where e is the wake

thickness based on the two-lobe structure, was determined. These values are reported in Table 2 for the three

profiles.

It can be observed for State II that the three quantities approach the values for the cylinder, although this behaviour is

more pronounced for the formation length and the aspect ratio for the two thicker profiles. The aspect ratios increased

with the thickness of the hydrofoil and for the totally stalled case, except for the NACA0015. For this profile, the

evolution of the characteristic length and the Strouhal number evolution versus incidence angle were different.

The establishment of the von K�arm�an instability, associated with the modification of the wake pattern, was affected

by the thickness effects and the amplitude of the vortex motions at State II. This behaviour must be linked with the lift

fluctuations, and the maximum perturbation amplitude was observed for the NACA0015. For this profile, the

separation point oscillation in the partially detached case is more pronounced; allowing the development of the Kelvin–

Helmholtz instabilities at the leading edge, which govern the vortex shedding process and the roll up downstream of the

hydrofoil.

Taking the previous results into account, it is necessary to propose a local definition of the vortices based on a non-

intuitive concept. The vortex centres can be identified with the Q criterion as shown below:

Q¼ 1
2
ð:O:

2
�:S:

2
Þ; ð2Þ

where S is the rate-of-strain tensor and O the vorticity tensor (Jeong and Hussain, 1995). The calculated

values correspond to the S12 and O12 values. According to this criterion, a vortex is a region in which the

relative pressure is negative and Q40. The Q values are presented in Fig. 14 and compared for the two states of the flow

for the three profiles. Additionally, a vortex can be defined as the location of the highest noise source and can be

delimited by the two extrema of the spatial derivative of the divergence of the Lamb vector (Howe, 2002, 2004).

The presence of the vorticity is responsible for the sound generation in a flow field, and this can be expressed

using a combination of the Crocco equation of vorticity and the Lighthill aero-acoustic theory (Alim, 2007). To

detect the location of the cyclonic and anticyclonic vortices in States I and II in the present study, we compared the

divergence of the Lamb vector to define the vortex structure (as noisy structure) and the Q criterion. In Fig. 14, the

major difference between States I and II is the location of the deformation area near the detachment point of

the boundary layer and the larger diffusion of the positive value of Q downstream. The predominance of the strain

rate in the wake is due to the turbulent agitation associated with the longitudinal transport of the trailing edge vortices

and the vertical transport of the leading edge vortices. This turbulent agitation is accompanied by a diffusion of the

divergence of the Lamb vector corresponding to the noisy structures in State II. Small-scale perturbations grew in the

near core of the anticyclonic vortices as observed in Fig. 15, which shows the diagonal term of the tensor of

the turbulence production, P12, plotted with Q=0.5. The maximum production was observed for the totally stalled case

(State II) and was located downstream of the position of maximum vorticity. The predominant strain rate

and the increase in turbulent production were located near the anticyclonic vortices corresponding to the realignment of

the trailing edge vortices. Moreover, it can be seen that the turbulent production area is larger in State II than in State I

for the leading edge vortices. This effect is due to the Kelvin–Helmholtz instabilities and the oscillations of the

separation point.

Table 2

Characteristic length and aspect ratio of the wake behind the three profiles at State I and State II.

NACA0015 NACA0025 NACA0035 Cylinder

State I State II State I State II State I State II

lc 3.86 s 4.35 3.43 r 3.37 3.05 r 2.59 1.37

lu 2.80 r 2.65 1.20 s 1.55 1.28 s 1.35 0.81

e/lc 0.340 r 0.335 0.382 s 0.420 0.414 s 0.542 0.828
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Fig. 14. Q and Lamb criteria for evaluation of the vortex centre position at State I (left) and State II (right), for the three hydrofoils:

(a) NACA0015, (b) NACA0025 and (c) NACA0035.
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Fig. 15. Iso-contours of the turbulent production term, P12, for the three profiles at State I (left) and State II (right), for the three

hydrofoils: (a) NACA0015, (b) NACA0025 and (c) NACA0035.



5. Conclusions

This experimental work conducted on three symmetrical NACA profiles with relative thicknesses of 15%, 25% and

35% leads to the following conclusions.

Above roughly 10% thickness, the lift coefficient of the profile decreases when the thickness is increased. The

hysteretic behaviour of the profile at stall is delayed when the thickness is increased, and this phenomenon is correlated

with a modification of the flow state linked with the position of the detachment point, which is forced by the

establishment of the von K�arm�an instabilities. For unsteady, separated flow at high incidence angle, the thickness effect

is associated with a modification of the establishment of the von K�arm�an street. As observed through the spectral

analysis for the thinner profile, the frequency evolved linearly, and the profiles of the two thicker hydrofoils exhibited

different slopes if their behaviour remained linear.

The thickness of the profile tended to increase the thickness of the boundary layer at low incidence angle instead of at

the stall condition, and the magnitude of the detachment point displacement was attenuated leading to a smaller

decrease in the lift. The effect of the adverse pressure gradient required the use of two velocity laws to describe the entire

velocity profile (near wall logarithmic law in the inner region and wake law in the outer region of the boundary layer).

To account for the adverse pressure gradient, another law proposed by Coles was used to corroborate the hypothesis of

a universal wake function. The thickness effect was then characterised by a deviation of the wake law accentuated for

the two thicker profiles. For the hysteretic loop at static stall, the lower and upper branches corresponded to different

flow states characterised by a severe modification of the vortex dynamics. The lower branch (State II) was characterised

by a predominance of the strain rate in the wake due to the turbulent agitation associated with the longitudinal

transport of the trailing edge vortices and the vertical transport of the leading edge vortices. This turbulent agitation

was accompanied by a diffusion of the divergence of the Lamb vector corresponding to the noisy structures in State II

and an increase in turbulent production.

To conclude, the thickness effects on the vortex shedding process induce:

(i) an increase of the oscillation amplitudes of the separation point;

(ii) a modification of the vortex roll up (mean diffusion and realignment);

(iii) the existence of ‘‘noisy’’ structures for the thicker profiles at totally stalled case (State II).
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