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Abstract

In this paper, an extended version of Biot’s differential equation is considered in order to discuss the quasi-static stability of
a

 

response

 

for

 

a

 

solid

 

in

 

the

 

framework

 

of

 

generalized

 

standard

 

materials.

 

The

 

same

 

equation

 

also

 

holds

 

for

 

gradient

 

theories

 

since

 

the

 

gradients

 

of

 

arbitrary

 

order

 

of

 

the

 

state

 

variables

 

and

 

of

 

their

 

rates

 

can

 

be

 

introduced

 

in

 

the

 

expression

 

of

 

the

 

energy

 

and

 

of

 

the

 

dissipation

 

potentials.

 

The

 

stability

 

of

 

a

 

quasi-static

 

response

 

of

 

a

 

system

 

governed

 

by

 

Biot’s

 

equations

 

is

 

discussed.

 

Two

 

approaches

 

are

 

considered,

 

by

 

direct

 

estimates

 

and

 

by

 

linearizations.

 

The approach by direct estimates can be applied in visco-
plasticity as well as in plasticity. A sufficient condition of stability is proposed and based upon the positivity of the second variation
of

 

energy

 

along

 

the

 

considered

 

response.

 

This

 

is

 

an

 

extension

 

of

 

the

 

criterion

 

of

 

second

 

variation,

 

well

 

known

 

in

 

elastic

 

buckling,
into

 

the

 

study

 

of

 

the

 

stability

 

of

 

a

 

response. The linearization approach is available only for smooth dissipation potentials, i.e. for
t on asymptotic stability. The paper is illustrated by a simple example.

Keywords: Biot’s equation; Local and non-local descriptions; Generalized standard models; Plasticity; Visco-plasticity; Stability of a quasi-static
response; Second variation criterion

1. Introduction

In stability analysis, in particular in the theory of elastic buckling and of plastic buckling of solids, the charac-
terization of the stability of an equilibrium is a well known and well developed subject, cf. for example the works
of Koiter (1945) and Hill (1958). The criterion of second variation of energy and its counterpart in plasticity have
been mathematically justified and applied with great success in various applications, cf. for example Nguyen (1994).
In particular, the linearization method gives a strong tool to discuss the stability as well as the loss of stability of an
equilibrium in elasticity and anelasticity.

The stability of the response of a solid submitted to a given loading path under initial perturbations represents the
uniform continuity of the solution with respect to the initial conditions. This notion is stronger than the stability of an
equilibrium position. It has been discussed by several authors in mathematics as well as in mechanics, cf. for example
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Roseau (1966) or Hahn (1967), Petryk (1982), Nguyen (2000). The need for such an extension comes principally
from the study of the stability of solids with time-dependent material behaviour such as visco-elastic or visco-plastic
deformation. For example, the interpretation of the instability by localization, which can be observed in an experiment
of uniaxial traction of a metallic specimen, requires a refined discussion on the growth of a perturbed solution from its
homogeneous response. In visco-elasticity and visco-plasticity, the linearization method is very popular and has been
considered by several authors for the stability analysis of evolving solutions, cf. for example Molinari and Clifton
(1987), Nestorovic et al. (2000), Benallal and Comi (2003). In particular, it has been shown that most predictions by
linearization are rather good compared to the observed experimental results.

It is well known that, from Lyapunov’s theorem, the linearization method is fully justified in the stability analysis
of an equilibrium position. However, it furnishes only some partial mathematical results on the stability analysis
of an evolving solution since the linearized perturbed motions are then governed by a non-autonomous differential
equation, cf. Roseau (1966), Hahn (1967) for example. Thus, for the stability analysis of a response of a solid, further
discussions are still necessary.

The case of the generalized standard model (GSM) of solids is considered here in view of some complementary
discussions on the stability analysis of an evolving solution. The description of GSM-models is based upon the as-
sumptions of existence of an energy and a dissipation potential. The adopted model leads to Biot’s differential equation
and covers most usual laws of visco-plasticity and plasticity. From the assumption of existence of energy, this descrip-
tion includes the theory of elasticity as a particular case. It leads to the introduction of the criterion of second variation
of energy in the same spirit as in the theory of elastic buckling. This criterion is here established for a quasi-static
response of a visco-plastic or elasto-plastic solid by an approach based on some direct estimates of the perturbed prob-
lem. In visco-elasticity, the dissipation potential is smooth and the approach by linearization can be then considered.
This approach leads to some sufficient conditions on the asymptotic stability of a quasi-static response and leads again
to the criterion of second variation.

2. Biot’s equation

2.1. Biot’s equation and the GSM framework

In the rich and multifaceted works of M.A. Biot, the differential equation

J (q, q̇, q̈) + W,q(q) + D,q̇(q,q̇) = F(q, q̇, t) (1)

has been introduced and much discussed by Biot and co-workers, cf. Biot (1965), Biot (1977), in visco-elasticity.
For a discrete system, q ∈ Rn is a vector representing a set of n independent parameters, which usually represent the
displacement and the internal state parameters, W(q) is the energy potential and represents the recoverable energy
stored in the system and D(q, q̇) is the dissipation potential, in the spirit of Thomson in inviscid fluids. The generalized
forces J and F are respectively the inertia and the external forces. In a purely mechanical description, q is reduced to
the displacement, and Biot’s equation results simply from the virtual work equation under the assumptions of internal
forces admitting as reversible potential W and as dissipative potential D. If qi is a displacement parameter, Ji is
obtained from Lagrange formula and the associated equation is

Ji + W,qi
+ D,q̇i

= Fi, Ji = d

dt
K,q̇i

− K,qi
(2)

where K(q, q̇) = 1
2 q̇ · M(q) · q̇ denotes the kinetic energy of the system. If qi is an internal parameter, the associated

forces Ji and Fi are null and the following relation holds

W,qi
+ D,q̇i

= 0. (3)

In an equivalent way, for such a parameter, the driving force Ai defined by

Ai = −W,qi
(4)

satisfies also

Ai = D,q̇i
. (5)

In other words, Eq. (3) also means the equilibrium condition for the reversible and dissipative internal forces, defined
respectively from the energy potential and the dissipative potential. The fact that internal parameters may represent
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various physical phenomena and internal forces are often defined from reversible and dissipative potentials explains
the great interests of Biot’s equation in the study of physical systems. The last two equations are the governing
equations for the model of generalized standard materials (GSM). In this framework, the general case of nonlinear
potentials has been discussed in details for the constitutive modeling in visco-plasticity and in plasticity. In particular,
the case of a dissipation potential homogeneous of degree 1 which is a convex but non-differentiable function has been
the subject of several discussions, cf. Moreau (1970), Germain (1973), Halphen and Nguyen (1975), Lemaitre and
Chaboche (1985), Nguyen (2000) etc. It has been shown that convex analysis gives the mathematical framework to
extend Biot’s equation for convex but non-differentiable potentials. In Eq. (1), the derivative D,q̇ must be understood
in the sense of sub-gradient, cf. Moreau (1970), Rockafellar (1970), Frémond (2002). In particular, (5) is a differential
equation relating the driving force Ai to the rate q̇i , denoted in the literature as the complementary equation.

2.2. Including the gradients

For a continuous system of state variable q, which represents tensor fields defined in a volume Ω , of local value
q(x), x ∈ Ω , and of energy and dissipation potentials

W(q) =
∫
Ω

W dV, D(q̇) =
∫
Ω

D dV, (6)

the associated Biot’s equation is{
δW(q) + δD(q̇) = F · δq with

δW(q) = W,q · δq, δD(q̇) = D,q̇ · δq
(7)

where F · δq denotes an appropriate linear form of δq. It is of interests to give the local expressions of Biot’s equation
for a solid when the energy and dissipation potentials and the applied forces have the following form:⎧⎨

⎩
W(q) = ∫

Ω
W(q,∇q)dV,

D(q̇) = ∫
Ω

D(q̇,∇q̇)dV,

F · δq = ∫
Ω

F · δq dV + ∫
∂Ω

f · δq da.

(8)

It is straightforward that{
δW(q) = ∫

Ω
(W,q − ∇ · W,∇q) · δq dV + ∫

∂Ω
n · W,∇q · δq da,

δD(q̇) = ∫
Ω

(D,q̇ − ∇ · D,∇q̇ ) · δq dV + ∫
∂Ω

n · D,∇q̇ · δq da.
(9)

It follows that the equivalent local equations consist of:

• the body equations

W,q + D,q̇ − ∇ · (W,∇q + D,∇q̇ ) = F − ρoü, ∀x ∈ Ω; (10)

• the boundary conditions

(W,∇q + D,∇q̇ ) · n = f, ∀x ∈ ∂Ω. (11)

The presence of higher gradients can be taken into account in the same spirit. For example, a second-gradient descrip-
tion is obtained if:⎧⎨

⎩
W(q) = ∫

Ω
W(q,∇q,∇∇q)dV,

D(q̇) = ∫
Ω

D(q̇,∇q̇,∇∇q̇)dV,

F · δq = ∫
Ω

F · δq dV + ∫
∂Ω

f · δq da + ∫
∂Ω

ψ · ∇δq da.

(12)

In this case, since⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δW(q) = ∫
Ω

(W,q − ∇ · W,∇q + ∇ · ∇ · W,∇∇q) · δq dV

+ ∫
∂Ω

n · (W,∇q − ∇ · W,∇∇q) · δq da + ∫
∂Ω

n · W,∇∇q · ∇δq da,

δD(q̇) = ∫
Ω

(D,q̇ − ∇ · D,∇q̇ + ∇ · ∇ · D,∇∇q̇ ) · δq dV

+ ∫
∂Ω

n · (D,∇q̇ − ∇ · D,∇∇q̇ ) · δq da + ∫
∂Ω

n · D,∇∇q̇ · ∇δq da,

(13)
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it follows that the associated local equations are:

• the body equations

W,q + D,q̇ − ∇ · (W,∇q + D,∇q̇ ) + ∇ · ∇ · (W,∇∇q + D,∇∇q̇ ) = F − ρoü, ∀x ∈ Ω, (14)

• the boundary conditions{
(W,∇∇q + D,∇∇q̇ ) · n = ψ,(
W,∇q + D,∇q̇ − ∇ · (W,∇∇q + D,∇∇q̇ )

) · n = f, ∀x ∈ ∂Ω.
(15)

2.3. Examples in the constitutive modeling of continua

2.3.1. Second gradient elasticity
In this case, Ω is a reference configuration of a solid undergoing a finite transformation. In the model of second

gradient elasticity, q(x) = u(x) is the displacement and the energy per unit volume is W(∇u,∇∇u) with

σ = W,∇u, m = W,∇∇u. (16)

The generalized force mijk associated with ui,jk is a tensor of order 3, symmetric with respect to the two last indices.
The dissipation potential is identically null since there is no dissipation. With the following expression of the external
force

F · δu =
∫
Ω

F · δu +
∫

∂Ω

(f · δu + ϕ · δu,n) (17)

the local equations (14) and (15) are reduced to:{∇ · (σ − ∇ · m) + F − ρoü = 0, ∀x ∈ Ω,

(σ − n · m,n) · n + · · · = f, n · m · n = ϕ, ∀x ∈ ∂Ω.
(18)

The introduction of the second order gradient of the displacement is very classical in 2D-elasticity for the theory of
plates and shells. In 3D-elasticity, it is also well known since the works of Toupin. In particular, it has been introduced
to prevent sharp localizations and to interpret the thickness of the localized-band in solids. For example, the following
expression of the energy has been suggested, cf. Landau and Lifshits (1966)

W = W1(∇u,T ) + W2(∇∇u), W2 = 1

2
κui,jkui,jk

where W1 is a non-convex function of ∇u.

2.3.2. Usual laws in visco-elasticity, visco-plasticity and plasticity
In visco-elasticity, the dissipation potential D(q̇) is a convex and smooth function of q̇ . In visco-plasticity and in

plasticity, this potential is convex but not differentiable at the origin of fluxes. It is well known in visco-plasticity that
the visco-plastic potential could be advantageously introduced by Legendre–Fenchel transform, cf. Fig. 1

D∗(A) = max
α̇

A · α̇ − D(α̇) (19)

to write the complementary law under the form

α̇ = D∗
,A(A) (20)

for an internal parameter. For example, the Perzyna’s model gives D∗(A) = 1
2η

〈‖A‖ − k〉2 and the Norton–Hoff’s

model leads to D∗(A) = 1
mη

〈f (A)〉m where f (A) < 0 denotes the elastic domain, f is a convex function such that
f (0) < 0. If η ⇒ 0, an elastic-plastic model of elastic domain f (A) � 0 is obtained, with normality law

α̇ = μ
∂f

∂A
, f � 0, μ � 0, f μ = 0. (21)
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Fig. 1. The dissipation and dual-dissipation potentials in visco-elasticity, visco-plasticity and in plasticity.

2.3.3. Including the first gradient of the internal parameters
For a solid admitting as state variable q = (u, α), the introduction of the gradient of the internal parameter α, ∇α

in the expression of the energy potential and ∇α̇ in the dissipation potential, leads from (10) and (11) to the local
equations

W,α + D,α̇ − ∇ · (W,∇α + D,∇α̇) = Fα, ∀x ∈ Ω, (22)

(W,∇α + D,∇α̇) · n = fα, ∀x ∈ ∂Ω. (23)

For an internal parameter without external action (F = 0, f = 0), the complementary relations are thus:

W,α + D,α̇ − ∇ · (W,∇α + D,∇α̇) = 0, ∀x ∈ Ω, (24)

(W,∇α + D,∇α̇) · n = 0, ∀x ∈ ∂Ω. (25)

The constitutive relation (24) and the boundary condition (25) as well as the thermodynamic background of gradi-
ent theories have been proposed by several authors, cf. for example Frémond (1985), Maugin (1990), Frémond and
Nedjar (1996), Svedberg and Runesson (1997), Lorentz and Andrieux (2003), Nguyen and Andrieux (2005) and the
references quoted in these papers. A common notation consists of writing by definition

δW

δα
= W,α − ∇ · W,∇α (26)

to write the constitutive relation (24) as

δW

δα
+ δD

δα̇
= 0 ∀x ∈ Ω. (27)

For example, the phase-field model has been much discussed recently in the study of different phenomena in damage
mechanics and in material sciences. In particular, it gives some interesting results on the modeling of phase change
as well as in the study of damage and crack propagation, cf. for example Henry and Levine (2004), Karma et al.
(2001). In this model, the internal parameter 0 � α � 1 is a parameter representing a undamaged proportion, such as
the proportion of intact interatomic links. For the description of cracks in an elastic solid in the framework of damage
mechanics, Lemaitre and Chaboche (1985) the energy is chosen from a standard two-minimum Ginsburg–Landau
description:⎧⎪⎨

⎪⎩
W(∇u,α) = V (α) + c

2‖∇α‖2 + g(α)(Wo(∇u) − Wc),

V (α) = α2(1 − α)2, Wo(∇u) is an elastic energy,

g(α) increasing function satisfying g(0) = g′(0) = g′(1) = 0, g(1) = 1,
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g(α) = (4 − 3α)α3 in Karma et al. (2001), Henry and Levine (2004). The dissipation potential is simply D(α̇) = η
2 α̇2

and the governing local equations are{
ρü − ∇ · g(α)Wo

,∇u = fu,

ηα̇ + V ′(α) − c�α + g′(α)(Wo(∇u) − Wc) = 0.

3. A discussion on quasi-static stability for standard dissipative systems

3.1. The governing equations

The case of a system governed by Biot’s equation submitted to external forces F(q, q̇, t) composed of a conservative
force and a dissipative force admitting respectively as energy potential Pc(q, t) and as dissipative potential Pd(q̇, t):{

F(q, q̇, t) = Fc(q, t) + Fd(q̇, t),
Fc(q, t) = −Pc

,q(q, t), Fd(q̇, t) = −Pd
,q̇(q̇, t)

(28)

is considered here for stability analysis. With the following notation

�W(q, t) = W(q, t) + Pc(q, t), �D(q̇, t) = D(q̇, t) + Pd(q̇, t) (29)

where �W(q, t) and �D(q̇, t) denote the total energy potential and the total dissipation potential of the system, Biot’s
equation can be written under the form

J + �W,q(q, t) + �D,q̇(q̇, t) = 0 (30)

which is by definition the governing equation of standard dissipative systems. For simplicity, the dependence on t

of the loading history is often described by a load parameter λ(t) which is a given function. In this case, the total
potentials are conveniently written as

�W = �W(q, λ), �D = �D(q̇, λ), λ = λ(t). (31)

Some general results concerning the quasi-static stability of the response of a standard dissipative system are discussed
in the context of visco-elasticity, visco-plasticity and plasticity. With or without the presence of gradients in the
modeling of the constitutive equations, the governing equations for a solid deal with the fields of displacement and
internal parameters q = (u, α). In terms of the displacement u and internal parameter α, the governing equations are⎧⎨

⎩
J + �W,u(u, α,λ) + �D,u̇(u̇, α̇, λ) = 0,

�W,α(u, α,λ) + �D,α̇(u̇, α̇, λ) = 0,

λ = λ(t), 0 � t < +∞.

(32)

When u is not a dissipative mechanism as in classical plasticity and visco-plasticity, the governing equations are⎧⎨
⎩

J + �W,u(u, α,λ) = 0,

�W,α(u, α,λ) + �D,α̇(α̇, λ) = 0,

λ = λ(t), 0 � t < +∞.

(33)

Starting at time 0 from a given initial state of displacement and internal parameter q(0) = (u(0), α(0)) and u̇(0), the
response of the solid is q(t), t ∈ [0,+∞[. It is assumed that a bounded solution qo(t) exists.

3.2. An approach by direct estimates

3.2.1. Assumptions
To avoid some mathematical difficulties on the choice of functional spaces for continua, only the discrete case

obtained after a space discretization by f.e.m. of the previous governing equations for a solid Ω is considered although
the proposed analysis could be extended in the same spirit. The following conditions are assumed:

(i) a state-independent and convex potential D. Thus, in visco-plasticity and in plasticity, the elastic domain C is a
state-independent convex domain containing the origin strictly in its interior,
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(ii) the energy potential �W(q, λ) is a smooth C3-function, thus:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|�W,λ(q, λ)| � K01,

|�W,qq(q, λ)[q̃,q∗]| � K20‖q̃‖‖q∗‖,
|�W,qλ(q, λ)[q∗]| � K11‖q∗‖,
|�W,qqq(q, λ)[q̃, q̂,q∗]| � K30‖q̃‖‖q̂‖‖q∗‖,
|�W,qqλ(q, λ)[q̃, q̂]| � K21‖q̃‖‖q̂‖

(34)

for ‖q − qo(t)‖ � M , 0 � λ � λM .
(iii) the energy potential �W(q, λ) is strongly convex in the sense that

�W,qq(q, λ)[q∗,q∗] � k20‖q∗‖2, (35)

where the coefficients kij are strictly positive constants, for ‖q − qo(t)‖ � M , 0 � λ � λM .
(iv) It is also assumed that the loading path, defined by the function λ(t) on the interval [0,∞[, satisfies

+∞∫
0

∣∣λ̇(t)
∣∣dt < +∞ i.e. λ̇ ∈ L1(0,∞). (36)

For example, this assumption is satisfied for a monotone loading history in [0, λM ].

3.2.2. Continuity of a response with respect to an initial disturbance
A quasi-static transformation is described by the governing equations⎧⎨

⎩
�W,u(u, α,λ) = 0,

�W,α(u, α,λ) + �D,α̇(α̇, λ) = 0,

α(0) = αo, λ = λ(t), 0 � t < +∞.

(37)

Let qo(t) be a bounded solution of this equation and q(t) be a perturbed solution associated with a different initial
condition. The discussion consists of estimating the distance ‖q(t) − qo(t)‖ for all t in terms of the initial distance in
order to show that this distance is small if the initial distance is sufficiently small for stability analysis.

As in the classical proof of Lyapunov’s theorem, the method consists of assuming first that ‖q − qo(t)‖ � M for
all t in order to take the advantage of the introduced assumptions. A better estimate of this distance is then derived
and justifies this working assumption.

A bounded solution q(t) satisfies some a priori estimates. After a multiplication by q̇, the governing equation leads
to the energy balance

d

dt
�W + A · α̇ = �W,λλ̇.

From the assumption on the elastic domain, it follows that

r

t∫
0

∥∥α̇(s)
∥∥ds �

t∫
0

A · α̇ ds = �W0 − �Wt + K01

t∫
0

|λ̇|ds.

The energy �Wt remains bounded for all t since q is bounded by assumption, thus

+∞∫
0

‖α̇‖dt < +∞.

The same conclusion concerning u̇ is also available. Indeed, the equilibrium equation �W,u · δu = 0 gives after time
differentiation

�W,uu[u̇, δu] + δu · �W,uα · α̇ + λ̇�W,uλ · δu = 0
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and leads to k20‖u̇‖ � K20‖α̇‖ + K11|λ̇|. The rates q̇o and q̇ thus belong to L1(0,+∞,Rn).
On the other hand, the governing equation, written for solutions qo and q, gives after a combination of the obtained

results(�W,q − �Wo
,q

) · (q̇ − q̇o) � 0 ∀t.

Since (�W,q − �Wo
,q

) · �q̇ = �Wo
,qq[�q,�q̇] + r1,

|r1| � K30‖�q‖2‖�q̇‖,
�Wo

,qq[�q,�q̇] = d

dt

(
1

2
�Wo

,qq[�q,�q]
)

− r2,

|r2| � 1

2
‖�q‖2(K30‖q̇o‖ + K21|λ̇|).

It follows finally that the quantity h = 1
2
�Wo

,qq[�q,�q] satisfies

ḣ � m(t)h(t), m(t) = L

k20

(
3‖q̇o‖ + 2‖q̇‖ + ∣∣λ̇(t)

∣∣)
with L = max(K30,K21). Thus, from Gronwall’s lemma, the inequality

h(t) � h(0) expZ(t), Z(t) =
t∫

0

m(s)ds � G

holds, where the constant G exists since q̇ ∈ L1(0,+∞,Rn), q̇o ∈ L1(0,+∞,Rn) and λ̇ ∈ L1(0,+∞) and leads to∥∥�q(t)
∥∥2 � K20 expG

k20

∥∥�q(0)
∥∥2

.

The stability of a bounded quasi-static solution qo(t) is thus ensured under the considered assumptions.

3.3. The stability criterion of second variation of energy

In this proof, the local convexity of the energy potential �W is essential and leads to the criterion of second variation
of energy

δ2 �W = �Wo
,qq[δq, δq] > 0 ∀δq = 0 and ∀t > 0 (38)

which ensures the stability of a response qo(t) under the assumptions of convexity of the dissipation potential and the
smoothness of energy. In fact, since A−Ao remains small in the previous proof, the same conclusion also holds under
the positivity of the second variation of energy for all

δq = (δu, δα) admissible at time t (i.e. δα = 0 ∀x ∈ Ωel
o (t)) (39)

where Ωel
o (t) denotes the elastic zone at time t of qo(t).

The criterion (38) also holds for the stability analysis of an equilibrium position which is simply a particular
response to a constant load. In this case, it may be interesting to compare this criterion with Hill’s stability criterion of
an elastic-plastic equilibrium for the same solid. The criterion of second variation of energy is more conservative than
Hill’s criterion which requires the positivity of the same matrix on a smaller set δq = (δu, δα) with δα = μf,A when
the plastic criterion is given by the inequality f (A) � 0. The two criteria are however identical if the admissible sets
for δα are identical, for example in the example of Shanley’s column of the last section.

3.4. The linearization approach: a result of asymptotic stability

When the dissipation potential �D is a smooth function, i.e. essentially in visco-elasticity, the method of linearization
can be introduced.
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For a quasi-static evolution, the linearized equations near a regular solution qo(t) are

�Wo
,qq · q∗ + �Do

,q̇q̇ · q̇∗ = 0, ∀t > 0. (40)

When the dissipation potential is strictly convex, the operator �Do
,q̇q̇ is invertible and the linearized equations can also

be written under the form

dq∗

dt
= Ψ (t) · q∗ with Ψ (t) = −�Do −1

,q̇q̇
�Wo

,qq, (41)

which is a non-autonomous differential equation, cf. Abed Meraim (1999a), Abed Meraim (1999b), Hahn (1967) or
Roseau (1966). The following statement holds:⎧⎨

⎩
If the bilinear forms �Do

,q̇q̇ and �Wo
,qq − 1

2
d
dt

(�Do
,q̇q̇)

are uniformly positive-definite ∀t > 0,

then the solution qo(t) is asymptoticaly stable.

(42)

The proof of this statement is straightforward for the linearized equation by taking as Lyapunov’s functional Λ(t) =
�Do

,q̇q̇(t)[q∗(t),q∗(t)]. This property still holds for the nonlinear equation.
In the particular case of an equilibrium qo(t) = qeq ∀t , it is well known that the classical Lyapunov’s theorem

gives a stronger statement concerning the occurrence of instability. This theorem is not recovered in the given propo-
sition which is thus not optimal. However, without additional assumptions, no stronger statement can be derived. In
particular, if the real parts of some eigenvalues of Ψ (t) are positive, no general conclusion is available.

If the dissipation potential depends only on α̇, the operator �Do
,q̇q̇ is not invertible. However, the linearized equations

(40) can be then explicitly written as{ �Wo
,uu · u∗ + �Wo

,uα · α∗ = 0,

�Wo
,αu · u∗ + �Wo

,αα · α∗ + �Do
,α̇α̇ · α̇∗ = 0

(43)

which gives when the operator �Wo
,uu is invertible:{

u∗ = −�Wo −1
,uu

�Wo
,uα · α∗,

(�Wo
,αα − �Wo

,αu
�Wo −1

,uu
�Wo

,uα) · α∗ + �Do
,α̇α̇ · α̇∗ = 0.

(44)

The result (42) must be replaced by{
If the bilinear forms �Do

,α̇α̇ and �Wo
,uu and (�Wo

,αα − �Wo
,αu

�Wo −1
,uu

�Wo
,uα) − 1

2
d
dt

(�Do
,α̇α̇)

are uniformly positive-definite ∀t > 0, then the solution qo(t) is asymptoticaly stable.
(45)

In particular, if the dissipation potential is a quadratic function, the results (42) and (45) are reduced to the criterion
of second variation of energy (38).

For a dynamic response, the linearized equations are{
Mo · ü∗ + �Wo

,uu · u∗ + �Wo
,uα · α∗ = 0,

�Wo
,αu · u∗ + �Wo

,αα · α∗ + �Do
,α̇α̇ · α̇∗ = 0.

(46)

The stability analysis for a dynamic response qo(t) is not straightforward when �Wo
,qq and �Do

,α̇α̇ are time-dependent.

4. A simple example: the Shanley’s column

The discrete Shanley’s column is considered here as an illustrating example in visco-elasticity, visco-plasticity or
plasticity. For example, in visco-elasticity, the bars AE and BF are assumed to be visco-elastic following the Maxwell
rheological model, cf. Fig. 2. Let u = (z, θ) be displacement parameters, α = (α1, α2) the internal parameters. Submit-
ted to a vertical force of amplitude λ, the column under load is a standard dissipative system of energy and dissipation
potentials{

W = 1
2E(z + � sin θ − α1)

2 + 1
2E(z − � sin θ − α2)

2 + 1
2h(α1)

2 + 1
2h(α2)

2 + λ(z + L cos θ),

D = η
2 (α̇1)

2 + η
2 (α̇2)

2.
(47)
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Fig. 2. The visco-elastic Shanley’s column with kinematic hardening.

The quasi-static equations of the system submitted to the action of a vertical load of amplitude λ(t) ∈ [0, λM ] are⎧⎪⎪⎨
⎪⎪⎩

E(2z − α1 − α2) + λ(t) = 0,

� sin 2θ + (α2 − α1) cos θ − λL
E�

sin θ = 0,

ηα̇1 = E(z + � sin θ − α1) − hα1,

ηα̇2 = E(z − � sin θ − α2) − hα2.

(48)

The quasi-static response of the system under the action of a varying load parameter λ(t) is now considered. The
symmetric quasi-static evolution associated with the symmetric initial condition

α1o(0) = α2o(0) = 0, θo(t) = 0, z = zo(t)

can be considered since the explicit expression of this solution is straightforward. Its asymptotic stability is obtained
from (45) i.e. from the positivity of the matrix �Wo

,qq:

�Wo
,qq =

⎡
⎢⎣

2E 0 −E −E

0 2E�2 − λL −�E �E

−E −�E h + E 0
−E �E 0 h + E

⎤
⎥⎦

since the dissipation potential is quadratic and strictly convex. It is then concluded that the symmetric response is

asymptotically stable if λ(t) < λT = Eh
E+h

2�2

L
for all t .

The equilibrium positions of the system under the action of a constant load λ are given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(2z − α1 − α2) + λ = 0,

� sin 2θ + (α2 − α1) cos θ − λL
E�

sin θ = 0,

z + � sin θ = E+h
E

α1,

z − � sin θ = E+h
E

α2.

In function of the load parameter λ, two equilibrium curves are obtained with trivial symmetric positions, cf. Fig. 3

θ = 0, α1 = α2 = − λ

2h
, z = −λ

2

E + h

Eh

and a non-symmetric positions

λ = Eh

E + h

2�2

L
cos θ, z = −λ

2

E + h

Eh
.

The stability analysis of these equilibrium positions is straightforward from the criterion of second variation of en-
ergy. For this example, a symmetric position is asymptotically stable if λ < λT and unstable if λ > λT while a
non-symmetric equilibrium position is unstable. Indeed, in the last case, the matrix �Wo

,αα − �Wo
,αu

�Wo −1
,uu

�Wo
,uα ad-

mits as eigenvalues 2Eh
E+h

and −LλT sin2 θ < 0, thus the criterion of second variation is unsatisfied.
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Fig. 3. Equilibrium curves of the Shanley’s visco-elastic column.

5. Conclusion

In this discussion, it has been shown that the criterion of second variation of energy is a sufficient condition ensuring
the stability of a quasi-static response under the perturbation of the initial conditions for a standard dissipative system.
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