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Abstract – Because accuracy and efficiency are the main features expected within the finite element (FE) method, 

the current contribution proposes a six-node prismatic solid–shell, denoted (SHB6). The formulation is extended 

here to geometric and material nonlinearities, and focus will be placed on its validation on nonlinear benchmark 

problems. This type of FE is specifically designed for the modeling of thin structures, by combining several useful 

shell features with some well-known solid element advantages. Therefore, the resulting derivation only involves 

displacement degrees of freedom as it is based on a fully 3D approach. Some of the motivation behind this 

formulation is to allow a natural mesh connection in problems where both structural (shell/plate) and continuum 

(solid) elements need to be simultaneously used. Another major interest of this prismatic solid–shell is to 

complement meshes that use hexahedral solid–shell FE, especially when free mesh generation tools are employed. 

To achieve an efficient formulation, the assumed-strain method is combined with an in-plane one-point quadrature 

scheme. These techniques are intended to reduce both locking phenomena and computational cost. A careful 

analysis of possible stiffness matrix rank deficiencies demonstrates that this reduced integration procedure does not 

induce hourglass modes and thus no stabilization is required. 

Key words – solid–shell / assumed-strain method / reduced integration / locking phenomena / nonlinear benchmark 

problems. 
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I.  Introduction 

Accuracy and efficiency of finite elements (FE) are the main 
features expected with the ever-growing resort to FE-based 
software packages. In particular, for the three-dimensional 
analysis of structural problems, the development of effective 
eight-node solid–shell FE has been a major objective over the 
past decades as revealed by several recently published 
contributions [1–5]. However, with the advent of free mesh 
generation tools that do not only generate hexahedrons and in 
order to automatically mesh arbitrarily complex geometries, the 
development of prismatic solid–shell elements has been made 
necessary. Such a solid–shell concept is particularly attractive 
since it combines in a single formulation the essential useful 
features of shell FE and the well-recognized advantages of 
solid FE. Besides the avoidance of complex and elaborate shell 
kinematics, one of the main interests of the solid–shell 
approach is to enable a straightforward connection between 
structural and continuum elements in real-life structures where 
thin structural components commonly coexist with thicker 
three-dimensional parts. Note that most of the methods 
developed earlier were based on the enhanced assumed strain 
method proposed by Simo and co-workers [6–8], and consisted 
of either the use of a conventional integration scheme with 
appropriate control of all locking phenomena or the application 
of a reduced integration technique with associated hourglass 
control. Both approaches have been extensively investigated 
and evaluated in various structural applications, as reported in 
various contributions [9–15]. The current paper proposes the 
formulation of a six-node solid–shell FE denoted (SHB6). It 
consists of a continuum shell derived from a fully three-
dimensional approach, in which the displacements are the only 
degrees of freedom and provided with a special direction 
designated as the „thickness.‟ The assumed-strain method is 
adopted together with an in-plane reduced integration scheme 
using an arbitrary number of integration points – with a 
minimum of two – located along the thickness direction. The 
three-dimensional elastic constitutive law is also modified so 
that a shell-like behavior is intended for the element and in 
order to alleviate shear and thickness-type locking. 

Because reduced integration schemes are known to introduce 
spurious mechanisms associated with zero energy, an adequate 
hourglass control is generally needed. An effective treatment 
for kinematic modes was proposed by Belytschko and 
Bindeman [1], with a physical stabilization procedure to correct 
the rank deficiency of eight-node hexahedral elements. As the 
SHB6 is also under-integrated, a detailed eigenvalue analysis 
of the element stiffness matrix has been carried out. We 
demonstrate that the kernel of this stiffness matrix only reduces 
to rigid body modes and hence, in contrast to the eight-node 
solid–shell element (SHB8PS) [4, 16], the SHB6 element does 
not require stabilization. Nevertheless, we propose 
modifications, based on the well-known assumed-strain 
method [1], for the discrete gradient operator of the element in 
order to improve its convergence rate. 

Indeed, as revealed by numerical evaluations of the SHB6 
element, its original displacement-based version, without 
modification of its discrete gradient operator, suffered from 
shear and thickness locking. To attenuate these locking 

phenomena, several modifications have been introduced into 
the formulation of the SHB6 element following the assumed-
strain method adopted by Belytschko and Bindeman [1]. 
Finally to assess the effectiveness of the new formulation, a 
variety of nonlinear benchmark problems has been performed 
and good results have been obtained when compared to other 
triangular-based elements available in the literature. In 
particular, it is shown that this new element plays a useful role 
as a complement to the SHB8PS hexahedral element, which 
enables us to mesh arbitrary geometries. Examples using both 
SHB6 and SHB8PS elements demonstrate the advantage of 
mixing these two solid–shell elements. 

II. Formulation of the SHB6 finite element

The SHB6 is a six-node prismatic continuum shell with only 
three displacement degrees of freedom per node. It is provided 
with a special direction called the „thickness,‟ normal to the 
mean plane of the triangle. A reduced integration scheme is 
adopted with at least two integration points along the thickness 
and only one point in the in-plane directions (see Fig. 1). 

Figure 1.  Reference geometry of the SHB6 element, and integration points. 

Kinematics and interpolation 

The SHB6 is a linear, isoparametric element. Its spatial 

coordinates 
i

x  and displacements 
i

u  are respectively related to 

the nodal coordinates 
iI

x  and displacements 
iI

u  through the 

linear shape functions  1 2 6
, ,...,N N NN  as follows:

( , , )i iI Ix x N x h  ,  ( , , )i iI Iu u N x h   (1) 

Above and hereafter, unless specified otherwise, the implied 
summation convention for repeated indices will be adopted. 
Lowercase indices i  vary from one to three and represent 

spatial coordinate directions. Uppercase indices I  vary from 
one to six and correspond to element nodes. The tri-linear 

isoparametric shape functions 
I

N  are: 
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Discrete gradient operator 

Using some mathematical derivations, similarly to the 
procedure for the SHB8PS development [16], we can explicitly 
express the relationship between the linear part of the strain 
field and the nodal displacements. Combining (1) and (2) leads 
to the following expansion for the displacement field: 

 
0 1 2 3 1 1 2 2

1 2

, , , , ,

1, 2,3  ,   

i i i i i i i
u x y z a a x a y a z c h c h

i h h

x h 

h x

     
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
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  (3) 

Evaluating this last equation at the element nodes yields the 
following three six-equation systems: 

0 1 2 3 1 1 2 21 2 3
 ,  1, 2,3

i i i i i i i
a a a a c c i      d s x x x h h     (4) 

where the six-component vectors 
i

d  and 
i

x  respectively 

denote the nodal displacements and coordinates, and vectors s

and h   1, 2   are given by:
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Let us now consider the derivatives of the shape functions 
evaluated at the origin of the reference frame: 

,

= = =0

         ( )  1, 2,3
i i

i

Hallquist Formi
x

x h 


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

N
b N 0   (6) 

Explicit expressions of vectors 
i

b  can be derived by algebra 

together with some useful orthogonality relations: 
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These orthogonality conditions allow the constants 
ki

a  and 
i

c


to be determined by scalar products: 
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which, combined with (3), lead to the following convenient 
form for the displacement field: 

0 1 1 2 2 3 3 1 1 2 2
( )

T T T T T

i i i
u a x x x h h      b b b γ γ d  (9) 

The strain field (i.e., symmetric part of the displacement 
gradient) is then obtained by differentiating this last equation: 
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    (11) 

This form of the discrete gradient operator B  is very useful 
because it allows each of the non-constant strain modes to be 
handled separately to build an appropriate assumed-strain 

field. In addition, it can be shown that the 

γ  vectors involved 

in this operator satisfy the following orthogonality relations: 

0,      
T T

j   
   γ x γ h      (12) 

These conditions will prove to be helpful in the subsequent 
analysis of stiffness matrix rank deficiencies. 

Variational principle 

The expression of the weak form of the Hu–Washizu mixed 
variational principle, as extended to nonlinear solid mechanics 
by Fish and Belytschko [17], reads for a single finite element: 

 ( , , )  ( )

0

T T

s
e e

T ext

v v
dv dv  



     

  

 v ε σ ε σ σ v ε

d f

 (13) 

where   denotes a variation, v  the velocity gradient, ε  the 

assumed-strain rate, σ  the interpolated stress, σ  the stress 

evaluated by the constitutive equations, d  the nodal 

velocities, 
ext

f the external nodal forces, and ( )
s

 v  the 

symmetric part of the velocity gradient. In the simplified form 
of this principle, as described by Simo and Hughes [18], the 
assumed stress field is chosen to be orthogonal to the 
difference between the symmetric part of the velocity gradient 
and the assumed-strain rate, leading to: 

( ) 0
T T ext

ev
dv      ε ε σ d f        (14) 

Therefore, the discrete equations only require the interpolation 
of the displacement and the assumed-strain field. The latter is 

expressed in terms of a B  matrix, projected starting from the 
standard B  operator: 



( , ) ( ) ( )x t x t ε B d      (15) 

Replacing (15) in the variational principle (14), leads to the 
following expression for the internal forces: 

( ) 
int T

ev
dv f B σ ε      (16) 

This formulation is valid for problems involving nonlinear 
material models, in which σ  is a function of the time history 

of the assumed-strain field and other internal state variables: 

( , , ...)σ εF    (17) 

For linear elastic problems, the element stiffness matrix takes 
the following simple form: 

 
T

e
ev

dv  K B C B      (18) 

Note that similarly to the SHB8PS element [16], an improved 
plane-stress type constitutive law is adopted here, to enhance 
the element immunity with regard to thickness locking. 

Hourglass mode analysis 

Hourglass mechanisms are spurious zero-energy modes 
generated by the reduced integration. Therefore, the analysis 
of hourglass modes is equivalent to the investigation of 
stiffness matrix rank deficiency. Within a displacement-based 

approach, a zero-energy mode is a vector 
g

h  that satisfies: 

int
1, ...,( )   ;  

g

I
I n  B h 0      (19) 

We can easily demonstrate that the following  ,  1,...,18
i

i e

vectors are linearly independent, and hence, they form a basis 
for the vector space of the discretized displacements: 
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Assuming that vector 
g

h  belongs to the stiffness kernel, one 

can expand it in terms of the above base vectors: 

18

1

g

i i

i

c


h e  (20) 

Combining (20), (19), and (11), and taking advantage of 
orthogonality conditions (7), one obtains: 
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Evaluating the above equation at the 
int

n  different integration 

points of the SHB6 implies that: 
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     (21) 

and hence: 

1 2 3 5 6 9

g
c c c c c c

 
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s 0 0 y z 0

h 0 s 0 x 0 z

0 0 s 0 x y

This last equation reveals that the kernel of the stiffness matrix 
only consists of the usual six rigid body modes (three 
translations and three rotations), and thus no rank deficiency is 
observed. It should be noted that this formulation of the SHB6 

element is valid for any set of 
int

n  integration points located 

along the same line 1
3

,  ,
I I I
x h  

int
1, ..., ,I n  and 

comprising at least two integration points 
int

( 2)n  . 

Assumed-strain formulation for the SHB6 

In this section, the discrete gradient operator B  will be 
projected onto an appropriate subspace in order to eliminate 
different locking phenomena; the projected operator will be 

denoted B . It has been shown that this assumed-strain method 
is consistent, from a variational perspective, with the Hu–
Washizu principle as long as the stress interpolation is 
appropriately chosen (see Simo and Hughes [18]). However, 
this variational justification of the assumed-strain method does 
not provide a general and systematic way to derive adequate 
assumed-strain fields, and a specific analysis of locking must 
be conducted for each new element developed based on this 
approach. For this purpose, we propose a projection scheme 
that is both effective and simple (see [1] for further details). 
This consists first of decomposing the discrete gradient 
operator B  into two parts as follows: 



1 2
 B B B      (22) 

In this additive decomposition, the first part, 
1

B , contains the 

gradients in the element mid-plane (membrane terms of the 
deformation) as well as the normal strains, whereas the second 

part, 
2

B , incorporates the gradients associated with the 

transverse shear strains: 
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     (24) 

It has been observed, from numerical experiments, that the 
main locking effects in the SHB6 element originate from the 
transverse shears. Therefore, we choose an integration scheme 
that enables us to reduce the associated fraction in the total 

strain energy. To this end, matrix 
2

B  is projected as follows: 

2 2
B B      (25) 

where   is a shear scaling factor. By introducing the additive 

decomposition (22) of the B  operator into (18) and making 
use of projection (25), the stiffness matrix becomes: 

1 1 1 2

2 1 2 2
 

  

+       

T T

e
e e

T T

e e

v v

v v

dv dv

dv dv

     
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 
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K B C B B C B

B C B B C B

     (26) 

which can be simply written as: 
1 2e

 K K K . The first term, 

1
K , which is not affected by projection, is evaluated at the 

integration points as defined above: 

int

1 1 1 1 1

1

 ( ) ( ) ( ) ( )
I I I I

n

T T

e I
v

Jdv     


     K B C B B C B    (27) 

The second term, 
2

K , embodies all the projection and reads: 

2 1 2 2 1 2 2

T T T

e e ev v v
dv dv dv         K B C B B C B B C B  (28)

The particular choice of additive decomposition (23) and (24) 
together with projection (25) yields a simplified form for the 

second part of the stiffness matrix 
2

K . Indeed, with these 

choices the first two terms, i.e. cross-terms, in the right-hand 

side of (28) vanish, and matrix 
2

K  simply reduces to: 

2 2 2
 

T

ev
dv  K B C B  (29) 

The identification of the shear scaling factor   in (25) has 

been carried out through numerical experiments, and the 
selected value for this parameter is found to be one half. This 
value is motivated by extensive testing on a variety of popular 
test problems, and it leads to reasonably good behavior for the 
element in most of the test problems that have been tested. 

III. Evaluation on benchmark problems

In this section, the evaluation of the SHB6 element will be 
carried out through several popular linear and nonlinear 
benchmark problems. For each test problem, the obtained 
results are compared with the reference solution from the 
literature, and when relevant, they are additionally compared 
with either the solutions given by both the standard three-
dimensional six-node prism element PRI6 and the unmodified 
SHB6 element (i.e., without assumed-strain projection), or 
those yielded by the hexahedral solid–shell element SHB8PS. 
For the sake of clarity, the assumed-strain projected version of 
the SHB6 will be denoted SHB6

bar
. The first preliminary linear 

test problems are mainly intended to assess the performance of 
the element in bending-dominated problems and to illustrate 
the benefit of mixing hexahedral and prismatic solid–shell 
elements such as the SHB6

bar
 and SHB8PS. In all numerical 

tests, a single element is used through the thickness, unless 
prescription of boundary conditions requires using two layers 
of FE. For elastic problems, only two integration points are 
used, whereas for elastic–plastic tests, five integration points 
are used through the thickness. In the reported results, the 
meshes are indicated by the number of subdivisions in each 
direction (length, width), and the total element number is then 
doubled, since each rectangle is divided into two triangles. 

Buckling of a cylinder under external pressure 

In this test, a linear stability analysis of a thin cylinder, which 
is free at its ends and subjected to a uniformly distributed 
external pressure, is carried out. This problem also allows the 
verification of the formulation of the geometric stiffness 

matrix K


. Indeed, in this linear buckling analysis, the Euler

critical pressure is determined along with the corresponding 
buckling mode. This critical state is associated with the lowest 
pressure that makes the global stiffness matrix singular and is 
classically obtained by solving the eigenvalue problem: 

 e c c
  K K X 0


     (30) 

in which 
c
 is the critical buckling load and 

c
X  is the 

associated buckling mode. 
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The geometric and material parameters are shown in Fig. 2. 

Figure 2.  Buckling of a thin cylinder under uniform external pressure: 

geometric and material parameters, boundary conditions and applied loading. 

The reference solutions used for comparison are analytical, 
given by Timoshenko and Gere [19] as well as by Brush and 
Almroth [20]. Owing to the symmetry of the problem, only 
one eighth of the cylinder is modeled, and symmetry boundary 
conditions are applied, which in turn restrict the analysis to 
symmetric buckling modes (i.e., modes 2, 4 and 6 as shown in 

Fig. 3). The corresponding critical pressure 
cr

P  is given by the 

analytical expression:   
32 2

12 1
cr

P En e Rn  , with 

2,  4,  6n  . 

Figure 3.  Buckling modes n° 2, 4 and 6; example of a (20×30×1)×2 mesh 
using SHB6 elements for the analysis of one eighth of the cylinder. 

The results obtained for the three modes (  2, 4n   and 6 ) 

are reported in Table I in terms of critical pressure, normalized 
with respect to the analytical reference solution. These reveal 
that the assumed-strain version SHB6

bar
 has a better 

convergence rate than the SHB6 and PRI6 elements, and 
represents a significantly improved alternative to the PRI6, 
which exhibits locking and very slow convergence rate. 

TABLE I.  NORMALIZED CRITICAL PRESSURE FOR THE THIN CYLINDER 

SUBJECTED TO UNIFORM EXTERNAL PRESSURE. 

Critical 

pressure 
Mesh layout 

( ) ( )

( )

n n

cr cr ref
P P , 

( 2,  4,  6n  ) 

PRI6 SHB6 SHB6
bar

 

(2)
73260

cr
P 

(20×30×1)×2 10.56 1.40 1.25 

(20×40×1)×2 6.45 1.21 1.13 

(20×50×1)×2 4.55 1.13 1.08 

(20×60×1)×2 3.53 1.09 1.05 

(20×70×1)×2 2.91 1.06 1.03 

(4)
293040

cr
P   

(20×30×1)×2 10.56 1.42 1.26 

(20×40×1)×2 6.44 1.22 1.13 

(20×50×1)×2 4.55 1.14 1.08 

(20×60×1)×2 3.52 1.09 1.05 

(20×70×1)×2 2.91 1.06 1.03 

(6)
659340

cr
P   

(20×30×1)×2 10.56 1.46 1.28 

(20×40×1)×2 6.43 1.24 1.14 

(20×50×1)×2 4.54 1.15 1.08 

(20×60×1)×2 3.52 1.10 1.05 

(20×70×1)×2 2.90 1.07 1.03 

Pinched hemispherical shell with mixted FE 

This test problem, which is often used to assess the three-
dimensional inextensional bending behavior of shells, has 
become very popular and has been adopted by many authors 
since it was proposed by MacNeal and Harder [21]. Fig. 4 
shows the geometry, loading, and boundary conditions for this 
elastic thin shell problem (R/t = 250). In this example, a 
mixture of SHB6 and SHB8PS elements is used, in which the 
SHB6 elements are located at the top of the hemisphere. 

Figure 4.  Pinched hemispherical shell problem with a mixture of prismatic 

and hexahedral elements: the SHB6 elements are located at the top, and the 
SHB8PS elements are arranged over an angle of 75°. 

Owing to the symmetry of the test, only one quarter of the 
hemisphere is meshed using a single layer of elements through 
the thickness and with two unit loads along the directions Ox 
and Oy. According to the reference solution [21], the 

displacement of point A along the x-direction is 
ref

w  = 0.0924. 

Note that in order to compare the performance of solid–shell 
elements to that of standard three-dimensional elements, 
SHB6 elements are mixed with SHB8PS elements, and PRI6 
elements are mixed with their three-dimensional counterpart 
HEX8, which are the standard, full integration eight-node 
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hexahedral elements. The normalized results reported in Table 
II reveal a very good convergence rate when the SHB6

bar
 is 

mixed with the SHB8PS, which confirms the interest of 
mixing hexahedral and prismatic solid–shell elements. 

TABLE II. NORMALIZED DISPLACEMENTS AT POINT A FOR THE PINCHED 

HEMISPHERICAL SHELL PROBLEM: MIXED MESHES. 

Number of 

elements 

PRI6 + 

HEX8 

SHB6 + 

SHB8PS 

SHB6
bar 

+ 

SHB8PS

refw w refw w refw w

36 0.001 0.703 0.785 

100 0.002 0.880 0.960 

156 0.004 0.929 0.983 

Buckling of a thick elastic–plastic panel 

In this nonlinear test problem, the limit-point buckling of a 
thick elastic–plastic cylindrical panel is investigated. The 
elastic version of this benchmark has been extensively used in 
the literature. Here we consider an elastic–plastic version in 
which both types of nonlinearities, geometric and material, are 
included. For this new elastic–plastic benchmark problem, we 
had first to build the associated reference solution. The latter 
was obtained using Abaqus S4R5 shell elements, for which 
convergence was achieved with a mesh of 20×20 elements. 
The geometric and material parameters are given in Fig. 5. 
The elastic–plastic constitutive equations correspond to the 
Voce nonlinear saturating isotropic hardening law, which is 

associated with the von Mises yield surface 0
eq

F Y  

such that:  1 exp( )
p

y sat R
Y R C     , in which 

y
  is 

the initial yield stress, 
sat

R  and 
R

C  are material parameters, 

and 
p

  is the equivalent plastic strain. 

Figure 5.  Description of the thick elastic–plastic panel benchmark problem; 

example of mesh with (30×30×2)×2 SHB6 FE for one quarter of the panel. 

Owing to the symmetry, only one quarter of the structure is 
modeled. The panel is hinged at its edge BC (mid-surface of 
the panel), free at its edge CD, and subjected to a concentrated 

force P at point A along the vertical direction Oz (see Fig. 5). 
It is noteworthy that this test is very sensitive to the particular 
location of the prescribed boundary conditions (mid-surface, 
upper or lower edge), and the corresponding responses show 
significant differences. Therefore, to reproduce shell boundary 
conditions (i.e. on the mid-surface), two layers of 3D elements 
need to be used along the thickness. The results shown in Fig. 
6 correspond to the following meshes: 20×20 S4R5, 
(20×20×2)×2 SHB6

bar
, and 15×15×2 SHB8PS FE. In Fig. 6, 

the applied load is plotted versus the vertical displacement at 
the load point A. To be able to capture the snap-through 
behavior and to follow the curve beyond the limit-point, the 
Riks path-following strategy has been adopted [22]. It can be 
observed that the elastic–plastic behavior decreases the first 
limit load, which is here about 75% of its elastic value. These 
results are in good agreement with the reference solution 
obtained with Abaqus S4R5 shell elements, which confirms 
the ability of the proposed solid–shell FE to predict such 
critical points and the associated post-buckling response. 

Figure 6.  Load–deflection results for the thick elastic–plastic panel: 
comparison between the proposed solid-shell FE and the reference solution. 

Pull-out of an open-ended cylindrical shell 

This test problem consists of an elastic thin cylindrical shell 
with free edges subjected to a pair of diametrically opposite 
radial forces. The geometric and material properties as well as 
the boundary conditions and loading are described in Fig. 7. 
Only one octant of the cylinder is modeled, due to the 
symmetry, with a single element along the thickness.  

Figure 7.  Description of the open-ended cylindrical shell benchmark test: 

example of mesh with 20×30×1 SHB8PS FE for one octant of the cylinder. 



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
/P

m
a
x

Radial displacements at points A, B and C

Reference results

SHB6

SHB8PS Uz(A)

-Ux(C)

-Ux(B)

bar

The reference results for this test were given by Sze et al. [23], 
using the Abaqus shell element S4R with a converged mesh of 
24×36 elements. The results shown in Fig. 8 correspond to the 
following meshes: 24×36 S4R, (45×45×1)×2 SHB6

bar
, and 

20×30×1 SHB8PS elements, and represent the normalized 
load versus the radial displacements at points A, B, and C. 
These reveal that the results of the proposed solid-shell 
elements are in good agreement with the reference solution. 

Figure 8.  Load–deflection results for the open-ended cylindrical shell test: 

comparison between the proposed solid-shell FE and the reference solution. 

IV. Conclusions

A new solid–shell element SHB6
bar

 has been developed and 
implemented into the finite element code ASTER. The key idea 
of this development is the adequate combination of a reduced 
integration rule with the well-known assumed-strain method. 
An interesting feature of this approach is the convenient fully 
three-dimensional framework on which this solid–shell element 
is based (six-node prism with only three translational degrees 
of freedom per node). Also it has been shown that no zero-
energy modes arise from the adopted reduced integration 
scheme, and thus no stabilization procedure is required. As 
revealed by the benchmark problems, the SHB6

bar
 element 

brings significant improvements compared to the standard 
three-dimensional six-node prismatic element denoted PRI6. 
The projection using the assumed-strain technique makes the 
quality of the element even better under combined bending and 
shearing. This type of element blends naturally with the eight-
node hexahedral solid–shell element SHB8PS, thus enabling 
one to analyze any structural geometry quite easily, which is 
the main motivation behind the development of the present 
SHB6

bar
 element. Recall that meshing arbitrarily complex

geometries is not permitted using only hexahedral elements. 
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