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Influence of the microstructure and voids on the high-cycle fatigue
strength of 316L stainless steel under multiaxial loading

R. GUERCHAIS1,2, F. MOREL1, N. SAINTIER2 and C. ROBERT1

1LAMPA, Arts et Métiers ParisTech, 49035 Angers Cedex 01, France, 2I2M, Arts et Métiers ParisTech, Esplanade des Arts et Métiers, 33405 Talence,
France

ABSTRACT In the present study, the effects of both the microstructure and voids on the high-cycle
fatigue behaviour of the 316L austenitic stainless steel are investigated by using finite
element simulations of polycrystalline aggregates. The numerical analysis relies on a
metallurgical and mechanical characterization. In particular, fatigue tests are carried
out to estimate the fatigue limits at 2.106 cycles under uniaxial and multiaxial loading
conditions (combined tension and torsion and biaxial tension) using both smooth speci-
mens and specimens containing an artificial hemispherical defect. The simulations are
carried out with several configurations of crystalline orientations in order to take into
account the variability of the microstructure in the predictions of the macroscopic fatigue
limits. These predictions are obtained, thanks to a probabilistic fatigue criterion using the
finite element results. The capability of this criterion to predict the influence of voids on
the average and the scatter of macroscopic fatigue limits is evaluated.

Keywords 316L austenitic steel; cubic elasticity; defect; high-cycle fatigue; multiaxial
loadings; polycrystalline aggregate; probabilistic fatigue criterion.

NOMENCLATURE h • ia = volume-weighted average over the polycrystalline aggregate
h • ig = volume-weighted average over the grain

a ¼ 2C1212
C1111�C1122

= Zener anisotropy factor

kθz =Σθz/Σzz = biaxiality ratio in tension–torsion
kθθ =Σθθ/Σzz = biaxiality ratio in biaxial tension

¯
l
s

= unit vector normal to the slip plane (Fig. 1a)

¯
n
s

= unit vector in the slip direction (Fig. 1a)
R =Σ ij,min/Σ ij,max = loading ratio

s� 1 = macroscopic average fatigue limit under fully reversed tension
T = period of the loading cycle

t� 1 = macroscopic average fatigue limit under fully reversed torsion
φθz = phase shift in tension–torsion
φθθ = phase shift in biaxial tension

Σ¼ ¼ σ
¯̄

� �
a

= macroscopic stress tensor

σ
¯̄

� �
g

= mesoscopic stress tensor

¯
σn ¯

n; t
� �

= mesoscopic normal stress vector (Fig. 1b)

σn,a = mesoscopic normal stress amplitude
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σn,m = mesoscopic mean normal stress

¯
τ

¯
n; t

� �
= mesoscopic shear stress vector (Fig. 1b)

τa = mesoscopic shear stress amplitude (Fig. 1b)

I NTRODUCT ION

The present study is dedicated to the high-cycle fatigue
(HCF) strength of a 316L austenitic stainless steel, in
the presence of small defects and under multiaxial load-
ings. The defects considered in this work are artificial
voids, with a low sharpness and dimensions close to the
mean grain size. As the stress concentrations induced by
such voids may favour the fatigue crack initiation, the
evaluation of their influence on the fatigue strength is
crucial for design purposes. A thorough review of fatigue
criteria predicting the effect of defects on the fatigue
limit under fully reversed uniaxial tension was conducted
by Murakami and Endo.1 The authors present a classifi-
cation of these criteria in three categories (empirical
models, models based on the stress concentration factor
and models based on fracture mechanics) and provide a
detailed assessment of their performances and procedure
to identify and apply these criteria. Auricchio et al. have
shown the relevancy of a volumetric approach combined
with an energy-based criterion to assess the fatigue life of
316L steel notched components.2 Furthermore, several
authors have proposed fatigue criteria taking into account
accurately the detrimental influence of defects on the
fatigue limits in other macroscopic loading conditions,
for example, in torsion3 and in combined tension and tor-
sion.4 However, although the practical interest of these
approaches, which relies either on the fracture mechanics
or the theory of critical distance,5 is undeniable, they
often involve a material characteristic length whose
meaning is unclear: sometimes a physical explanation is
invoked, whereas other times this length is associated

with a microstructural length. Besides, some of them do
not allow to account for complex defect geometries.
Moreover, these methods evade the issue of the scatter
of the fatigue strength.

The present work aims to analyse the competition
existing between the stress concentration or stress het-
erogeneity induced by a small void and the one induced
by the anisotropic elastic behaviour of the grains in order
to determine at which defect size the void effect takes
over the natural heterogeneity at the local scale, thus
conditioning the fatigue strength of the polycrystal.
The second objective is to assess if the variability and lack
of representativeness of crystal orientations in the vicinity
of a void may affect the scatter of the fatigue limit. To ad-
dress these issues, a numerical study using finite element
(FE) simulations of polycrystalline aggregate is carried
out. This kind of numerical simulations, in which poly-
crystalline microstructures are explicitly modelled, has
been used in several recent studies dealing with HCF is-
sues. For instance, Bennett and McDowell6 have analysed
the distribution of fatigue crack initiation parameters
(FIP) inspired from well-known HCF criteria and have
attempted to predict the distribution of fatigue crack
lengths in a polycrystal using a crack growth law based
on the FIP. This study was enriched by the work of
Guilhem et al.7 in which the mechanical response of the
grains is studied according to their positions in the aggre-
gate, their orientations and those of the neighbouring
grains. Moreover, FE simulations of polycrystalline ag-
gregates have recently been used to study the influence
of defects on the HCF strength. For example, the effect
of a rough surface on the distribution of some mechanical

Fig. 1 Representation of some mechanical quantities and vectors in (a) a face-centred cubic unit cell and (b) a slip plane.



quantities has been investigated,8,9 and the influence of
the defect size and sharpness has been extensively studied
by Owolabi et al. in the case of semicircular notches,10

under uniaxial loading conditions.
In the present case, the results of the FE simulations

of polycrystalline aggregate allow to evaluate the me-
chanical quantities used in a probabilistic fatigue crite-
rion. The probabilistic approaches offer a convenient
framework to assess the scatter of the fatigue strength
or life as shown, for example, in a recent study conducted
by Charkaluk et al. on a porous steel in low cycle fatigue
regime.11 The methodology followed in this paper has
been applied in previous studies dealing with an electro-
lytic copper.12,13 In these works, the capability of the
probabilistic fatigue criterion to satisfactorily predict the
average fatigue limit has been shown, but the issues of
small defects and of multiaxial loadings were studied sep-
arately because of the lack of experimental data. Never-
theless, it can be essential to make sure of the relevancy
of the predictions in complex conditions involving both
small defects and multiaxial loadings because some appli-
cations can face with these two aspects. For instance,
some medical implants, like stents,14,15 undergo multiax-
ial cyclic loadings and stress concentrations comparable
with those induced by the voids considered in this study.
This is why these two aspects are dealt with jointly in the
present study, by relying on an experimental characteri-
zation of the 316L austenitic steel. Uniaxial HCF tests
have already been carried out by Wiersma and Taylor16

and Donnelly17 on a 316L austenitic steel using smooth
and notched specimens. However, because of the lack
of experimental data on the fatigue strength under multi-
axial loading conditions, a series of fatigue tests is con-
ducted, in the present study, on specimens including a
hemispherical artificial void for a large range of void sizes
and loading conditions, thus allowing to confront the
fatigue limits predicted by the probabilistic fatigue crite-
rion to those estimated experimentally and to define the
validity domain of the probabilistic criterion.

EXPER IMENTAL MULT IAX IAL FAT IGUE TESTS

Characterization of 316L austenitic stainless steel

The austenitic stainless steel American Iron and Steel
Institute (AISI) 316L studied in this work is produced
by Aubert & Duval and commercially named 316L
M25W. It is provided in the form of round bars with a di-
ameter of 40mm and a length of 1.2m. The chemical
composition of this AISI 316L, determined by spark
atomic emission spectrometry and presented in Table 1,
is designed to provide a ferrite-free microstructure.
Moreover, the martensitic transformation, which could

occur during the heat treatment or the mechanical load-
ing, is prevented, thanks to a high percentage of nickel,
thus ensuring a purely austenitic structure (i.e. consti-
tuted by face-centred cubic crystals). Because of a large
proportion of chromium and nickel, the material does
not exactly observe the AISI 316L grade, but for simplic-
ity, it will still be named 316L in the following.

Electron backscatter diffraction (EBSD) analyses are
conducted in order to characterize the grains morphol-
ogy of this 316L austenitic steel. Two sections of the
bar are analysed: the sections perpendicular to the axial
and orthoradial directions. These analyses are performed
in the regions corresponding to the location of the gauge
section of the fatigue test specimen. It has been observed
that the grain morphology is almost equiaxed, with a
mean grain size, defined as the square root of the mean
area of the grain and including the twin boundaries, equal
to 14μm in the section perpendicular to the axial direc-
tion and 13μm in the section perpendicular to the
orthoradial direction.

Finally, the crystallographic texture of the material
is determined by X-ray diffraction using a Seifert
XRD3000 diffractometer with a chromium anode. The
region of the bar that is analysed corresponds to the loca-
tion of the gauge section of the fatigue test specimen.
The diffracting planes used are the planes {111}, {200}
and {220}. The intensities measured on the specimen Ispe
during the X-ray diffraction analysis are corrected in two
steps: the average background noise is deleted from the
intensities Ispe, then these corrected intensities Ispe are
normalized by the intensities Iref measured on a 316L
steel powder, that is, a non-textured sample. After these
corrections, the intensities are then treated by MTEX,18

a MATLAB® Toolbox for quantitative texture analysis,
in order to determine the continuous orientation density
function. It appears from these results that the 316L
austenitic steel studied is weakly textured.

The usual mechanical properties of the 316L steel are
obtained from a tensile test and are presented in Table 2,
namely the Young modulus E, the Poisson ratio ν, the
yield stress Rp0.2 % defined at a plastic strain of 0.2%
and the tensile strength Rm.

Table 1 Chemical composition of 316L M25W steel

Elements C Cr Ni Mo Mn

Wt% 0.02 19.0 15.0 3.0 1.9

Table 2 Tensile properties of AISI 316L M25W steel

E (GPa) ν Rp0.2 % (MPa) Rm (MPa)

194 0.284 346 644



Fatigue tests conditions

The objective is to estimate the average fatigue limits,
defined at 2.106 cycles, of the 316L austenitic steel under
several loading conditions and for various void sizes. Fa-
tigue tests are carried out at room temperature, in an air
environment and at a frequency of 10Hz on an Instron
8850 servohydraulic fatigue testing machine (Instron,
Norwood, Massachusetts, USA). In addition to its capac-
ity to exert an axial force and a torque, the Instron 8850
allows applying a cyclic uniform pressure on the internal
surface of the gauge of a tubular specimen. This pressure
leads to an almost uniaxial stress state characterized by an
orthoradial normal stress Σθθ. The stress state is not
exactly uniaxial because of the radial normal stress Σrr

induced by the internal pressure P. More precisely, the
radial normal stress Σrr is heterogeneously distributed
along the gauge thickness and decreases from �P to 0
between the internal surface and the external surface.
Thus, the maximum ratio between the radial and the
orthoradial normal stresses is located at the internal
surface and is approximately equal to 15%. It should also
be noted that the orthoradial normal stress Σθθ is not
constant along the gauge thickness. Indeed, considering
an isotropic elastic behaviour in the gauge section, the
gradient of the orthoradial normal stress from the inter-
nal surface to the external surface is in average equal to
� 0.59PMPamm�1. It is worth noting that, even though
the hydrostatic stress is equivalent between the two free
surfaces, the shear stress is larger at the internal surface.
Thus, in plain specimens, the fatigue crack initiation is
likely to occur on this surface. On the contrary, in
specimens containing a void, the fatigue cracks are more
likely to occur on the external surface. In any cases,
whatever the loading condition considered, FE simula-
tions including an elasto-plastic model are systematically
used to determine the macroscopic stress state at the

location of the fatigue crack initiation observed experi-
mentally, excepted for one specimen with a void diameter
D = 365μm and loaded in biaxial tension because of an
unexpected initiation on the internal surface. Moreover,
the results are expressed in terms of nominal macroscopic
stress; that is, the defect is neglected in the FE simula-
tions used for the determination of the stress states, as it
is commonly performed.

Six loading conditions are studied:

• uniaxial tension with a loading ratio R =� 1;
• torsion with a loading ratio R =� 1;
• in-phase uniaxial tension and torsion with a loading

ratio R =� 1 and a biaxiality ratio kθz = 0.5;
• out-of-phase uniaxial tension and torsion with a load-

ing ratio R =� 1, a biaxiality ratio kθz = 0.5 and a phase
shift φθz = 90°;

• uniaxial tension with a loading ratio R = 0.1; and
• in-phase biaxial tension with a loading ratio R = 0.1 and

a biaxiality ratio kθθ = 0.5.

The shape and dimensions of the tubular specimens
used for the fatigue tests are presented in Fig. 2. The
external gauge section of the specimen is polished up to
6μm diamond on low napped cloths. In order to study
the influence of voids on the fatigue strength, fatigue
tests are carried out using specimens containing an artifi-
cial void and plain (defect-free) specimens. The artificial
defect geometry chosen in these works is hemispherical.
This void is introduced by sinker electric discharge ma-
chining, using tungsten electrodes, in a flat surface
polished on the gauge section of the specimens (Fig. 3a).
The flat surface is obtained by successive polishing, using
silicon carbide abrasive papers and synthetic nap cloths
impregnated with 3μm diamond suspension, to obtain a
mirror finish. For each loading condition, both smooth
specimens and specimens containing an artificial

Fig. 2 Shape and dimensions of tubular fatigue test specimen (all dimensions are in millimetre).



hemispherical void with a diameter D = 365μm are
tested. In addition, in the cases of the fully reversed ten-
sion and fully reversed torsion, two other defect diame-
ters D are considered: 95 and 510μm. The fracture
surfaces presented in Fig. 3b illustrate the shape of the
hemispherical void for each defect diameter studied.

The objective here is not to precisely determine the
average fatigue limits defined at 2.106 cycles but to obtain
satisfactory estimations of these fatigue limits. Thus, only
a limited number of specimens have been prepared in
these experiments. More precisely, three specimens are
used per configuration (defect size and loading condi-
tion). The method consists in applying successively on a
specimen, increasing loading blocks of constant stress
amplitude during 2.106 cycles. If the specimen sustains
2.106 cycles, at a given stress amplitude, without initia-
tion of a fatigue crack, then another loading stage at a
higher stress amplitude is applied during 2.106 cycles
and so on, until the failure of the specimen is reached.
This procedure is based on the hypothesis that the load-
ing blocks preceding the last stage (i.e. the loading block
leading to the failure of the specimen) does not affect the
fatigue strength. In other words, it is assumed that

neither damage nor strengthening occurs when the load-
ing amplitude is below the fatigue limit defined at 2.106

cycles.
The average fatigue limits are estimated from these

results by averaging, for each component Σij of the
macroscopic stress tensor Σ¼ , two stress amplitudes:

• ΣNF
ij;a corresponding to the maximal amplitude tested

for which no fatigue crack has been observed after
2.106 cycles of loading; and

• ΣF
ij;a corresponding to the minimal amplitude tested for

which no specimen sustained 2.106 cycles of loading.

Results and discussion of the fatigue tests

The results of the fatigue tests in fully reversed combined
tension and torsion, including fully reversed tension and
fully reversed torsion, are gathered in a diagram Σ ij,a–D
in Fig. 4a, and the estimated average fatigue limits are
presented in Table 3. The macroscopic stress amplitude
Σ ij,a corresponds to Σzz,a in the cases of fully reversed ten-
sion and fully reversed combined tension and torsion,
whereas it corresponds to Σθz,a in the case of fully

Fig. 3 (a) Cutaway view of the specimen and magnified view highlighting the hemispherical defect introduced in a flat surface polished on the
gauge section and (b) examples of fracture surfaces illustrating the shape of the hemispherical defect for different defect diameters, introduced
in the fatigue test specimens.



reversed torsion. In this diagram, the filled symbols rep-
resent fatigue test conditions for which a specimen broke
before 2.106 cycles, and the hollow symbols represent fa-
tigue test conditions for which a specimen sustained the
cyclic loading during 2.106 cycles. The dashed lines illus-
trate schematically the evolution of the average fatigue
limit depending on the void diameter D for each loading
conditions.

This figure clearly shows the beneficial effect of the
increase in the phase shift φθz from 0° to 90°, on the fa-
tigue strength in the case of a combined tension and tor-
sion loading with a biaxiality ratio kθz = 0.5. Indeed, the
addition of a shear stress amplitude Σθz,a does not lead
to a decrease of the admissible normal stress amplitude
Σzz,a when φθz = 90°, while a significant drop in this

admissible stress amplitude Σzz,a is observed when the
shear stress Σθz is acting in phase with the normal stress
Σzz. For this loading condition, the decrease in the admis-
sible stress amplitude Σzz,a is approximately 20% for
smooth specimens and 30% for specimens containing a
void with a diameter D = 365μm.

Another important conclusion, which can be drawn
from these fatigue tests, is that, whatever the loading con-
dition considered, the curves do not show a clearly de-
fined critical defect size, that is, a defect size under
which the fatigue strength is not affected by the void,
contrary to the observations of Endo and Murakami on
the 0.46% C steel.19 Moreover, the slope of the fatigue
crack initiation threshold in a Kitagawa–Takahashi dia-
gram (log(Σ ij,a) versus log(D)) is not equal to � 1/6.

Fig. 4 Results of the fatigue tests conducted on the 316L steel (a) in uniaxial tension and torsion with a loading ratio R =�1 and (b) in uniaxial
tension and biaxial tension with a loading ratio R = 0.1 and (c) evolution of the ratio ϕ between the fatigue limits in torsion and in uniaxial
tension as a function of the defect diameter D for different steels.



Hence, the trends observed on the 316L steel do not
match to those suggested by Susmel and Taylor,3 relying
on the results of Endo and Murakami.19 In these condi-
tions, it can be more relevant to study the ratio φ between
the fatigue limits under fully reversed torsion t� 1 and
fully reversed tension s� 1 (Eq. 1) versus the void size in
order to identify a common feature between the experi-
mental data found in the literature:

φ ¼ t�1=s�1: (1)

To compare the results obtained with different geom-
etries of defect, an equivalent geometrical parameter is
required. Because of its widespread applications and con-
venience, the parameter

ffiffiffiffiffiffiffiffiffi
area

p
proposed by Murakami

and Endo1,20 is chosen. This parameter is defined as the
square root of the area obtained by projecting the void
on the plane perpendicular to the maximum principal
stress direction. The evolution of the ratio φ as a function
of the parameter

ffiffiffiffiffiffiffiffiffi
area

p
is represented in Fig. 4c and is

compared with those observed by Endo and Murakami
on a 0.46% C steel,19 and by Billaudeau et al. on a
0.35% C steel.21 It appears that the influence of the void
is more detrimental in fully reversed tension than in fully
reversed torsion. Indeed, for each steel considered, the
ratio φ increases with increasing defect size

ffiffiffiffiffiffiffiffiffi
area

p
.

The results of fatigue tests in biaxial tension with a
loading ratio R = 0.1, including the uniaxial tension that
corresponds to the case where kθθ = 0, are gathered in a
diagram Σ ij,a–D in Fig. 4b, and the estimated average fa-
tigue limits are presented in Table 3. From these results,
it appears that an increase of the biaxiality ratio kθθ, from
0 to 0.5, has a beneficial effect on the fatigue strength. In-
deed, the addition of an in-phase macroscopic stress am-
plitude Σθθ,a leads to increase the admissible stress

amplitude Σzz,a by 10%. It is worth noting that the capac-
ity of some fatigue criteria to predict this favourable ef-
fect has been previously reported.12

In addition, under the investigated biaxial tension
condition, it can be observed that a hemispherical void
with a diameter D = 365μm only slightly affects the fa-
tigue strength in comparison with the case without de-
fect. Indeed, the average fatigue limit only decreases by
3% for a void diameter D varying from 0 to 365μm. By
way of comparison, the decrease in the fatigue limit un-
der fully reversed tension is about 23% between the
smooth specimen and the specimen containing a void
with a diameter D = 365μm.

In the case of defect-free specimen, the initiation site
depends on the loading condition. Indeed, for uniaxial
and biaxial tension loadings, fatigue cracks initiate prefer-
entially on the internal free surface because of small
scratches. On the contrary, in the case of loading condi-
tion including torsion, the initiation occurs on the exter-
nal surface. Indeed, because of a larger macroscopic shear
stress at the external surface than at the internal one, the
fatigue cracks are more inclined to initiate on the external
surface despite the detrimental effect of the surface
roughness of the internal surface on the fatigue strength.
In this case, the fatigue cracks generally initiate along slip
bands at the external surface of the specimens even
though some intergranular fatigue crack initiations have
been observed in a few cases. These observations are in
accordance with the distribution of cracks according to
the nature of the initiation site quantified by Mineur
et al.22 from fatigue tests conducted in air on a 316L steel
loaded in fully reversed tension at a macroscopic plastic
strain amplitude Ea = 2.10� 3. In the case of specimens
containing a hemispherical void, the initiation of the fa-
tigue crack occurs along the surface of the void (Fig. 5),

Table 3 Average fatigue limits estimated from the fatigue tests

Loading condition D (μm)

Σij,a (MPa)

Σzz,a Σzz,m Σθz,a Σθz,m Σθθ,a Σθθ,m

Uniaxial tension R =� 1 0 233 0 0 0 0 0
95 213 0 0 0 0 0

365 180 0 0 0 0 0
510 153 0 0 0 0 0

Torsion R =� 1 0 0 0 148 0 0 0
95 0 0 143 0 0 0

365 0 0 121 0 0 0
510 0 0 115 0 0 0

Tension–torsion R =� 1, kθz = 0.5, φθz ¼ 0° 0 188 0 94 0 0 0
365 120 0 60 0 0 0

Tension–torsion R =� 1, kθz = 0.5, φθz = 90° 0 233 0 116 0 0 0
365 169 0 84 0 0 0

Biaxial tension R =� 1, kθθ = 0.5, φθθ = 0° 0 163 199 0 0 81 99
365 157 193 0 0 79 96

Uniaxial tension R = 0.1 0 148 180 0 0 0 0



whatever the defect size investigated, except in the case of
biaxial tension with a void diameter D = 365μm for which
one of the specimens failed because of the initiation of a
fatigue crack on the internal surface, far from the void.
Moreover, no local initiation site is clearly identifiable.
Indeed, in all cases studied, the fatigue cracks seem to
initiate homogeneously on the periphery of the void.
Finally, it can be observed in Fig. 5 that the propagation
of the fatigue cracks occurs macroscopically in the
plane(s) perpendicular to the maximum principal stress
direction. This conclusion applies for each defect size
and each loading condition investigated. It should be
noted that the plane perpendicular to the maximum
principal stress direction varies during the cycle in the
case of loading conditions including torsion. Three
cases can be identified:

1. In fully reversed torsion, two planes are equivalent in
terms of maximum principal stress, leading to the ini-
tiation of two fatigue cracks.

2. In fully reversed in-phase tension and torsion, even
though there are two different planes perpendicular
to the direction of the maximum principal stress
during the cycle, the maximum principal stress is far
greater in one plane than in the other one, leading
to the propagation of the crack only in the
predominating plane.

3. In fully reversed out-phase tension and torsion, an in-
finite number of planes are perpendicular to direction
of the maximum principal stress during the cycle and,
even though the maximum principal stress is not
constant, it is sufficiently high to drive the crack to
propagate in various planes leading to a tortuous mac-
roscopic crack path.

F IN I TE ELEMENT MODEL

In order to reproduce numerically, in a reasonable computa-
tion time, the fatigue tests conducted in this study, a simpli-
fied geometry of the specimen is modelled, and FE
simulations of polycrystalline aggregates are carried out.
The first simplification is the use of a two-dimensional (2D)
geometry instead of a three-dimensional (3D) one; the 3D
hemispherical void is hence approximated by a circular hole.
The second approximation consists in explicitly modelling
themicrostructure only in the notch area. An isotropicmatrix
embeds the polycrystal in order to avoid an overestimation of
the stress concentration induced by the void. The use of an
isotropic matrix is a common practice in studies of notched
microstructures (see, e.g. Refs [10,13,23]).

The dimensions of the microstructure presented in
Fig. 6 have been chosen so that a hole with diameter
D = 510μm can be inserted in the polycrystalline aggre-
gate. Given these dimensions and the mean grain size,
the smooth polycrystalline aggregate contains 3265
grains. The process used to generate the 2D polycrystal-
line aggregates geometries is described in Ref. [24]. The
hole diameters D considered in the FE simulations are
0, 50, 95, 365 and 510μm.

The FE mesh of the computer-aided design of the mi-
crostructure is generated using Gmsh.25 Three-node tri-
angular FEs, with linear interpolation and generalized
plane strain hypothesis, are used. In order to estimate sat-
isfactorily the mechanical responses averaged per grain,
each grain is discretized in average with 75 elements that
lead to an FE model, which includes the matrix, contain-
ing approximately 280 000 elements.

The orientation of the crystal frame of each grain,
with respect to the reference frame of the polycrystalline

Fig. 5 Examples of external surfaces and fracture surfaces of specimens containing a hemispherical defect with a diameter D = 365 μm under
fully reversed uniaxial tension, torsion and in-phase tension–torsion.



aggregate, is defined by a triplet of Euler angles. Thus,
orientation sets, composed by 3265 triplets of Euler an-
gles, are constituted; the triplets of Euler angles being
chosen such as to represent the crystallographic texture
measured by X-ray diffraction on a region of the bar coin-
ciding with the gauge section of the specimen. The meth-
odology followed to select relevantly the triplets of Euler
angles is the ‘hybrid integer approximation’ method pro-
posed by Eisenlohr and Roters.26 For each defect size
studied, one geometry of polycrystalline aggregate and
10 orientations sets are used. As a result, the response of
10 different realizations is investigated per defect size.

A cubic elastic model, which describes the anisotropic
elastic behaviour of face-centred cubic structures, is
assigned to the grains. The crystal plasticity is omitted,
which may seem questionable, especially in the case of
microstructures containing a void. However, despite the
drastic simplifications used to reduce the number of
degrees of freedom, it is still significantly high, and
given the number of realizations, loading conditions
and defect sizes studied, the computations could not
be achieved in a reasonable time if a crystal plasticity
model is used. Nevertheless, several studies dealing
with HCF account for the crystal plasticity in their
modelling.6–10,12,13,15,23,24 In particular, in Refs [12,13],
the effect of the constitutive model on the mechanical
responses and on the predictions of the probabilistic
fatigue criterion discussed in the present study has been
evaluated. An isotropic elastic model is used to define
the behaviour of the matrix. The isotropic elastic moduli
(Table 2) are determined with a tensile test, whereas those
used in the cubic elastic model (Table 4) have been identi-
fied by Teklu et al. for an austenitic steel,27 close to the one
studied in the present work.

Homogeneous stress fields are applied to the edges of
the matrix. The boundary conditions are chosen to
model the loading conditions studied in the fatigue

tests. It is worth noting that the torsion loading is approx-
imated by a shear loading. Thanks to the linearity of the
mechanical response and therefore to the superposition
principle, the mechanical responses, over a complete
cycle, are determined by combination of the mechanical
fields computed using FE models with a unit stress
applied on the matrix for three different macroscopic
loadings: uniaxial tension Σzz, uniaxial tension Σθθ and
shear Σθz. The numerical simulations are conducted with
ZeBuLoN FE software (Transvalor, Evry, France).

PROBAB I L I ST I C FAT IGUE CR I TER ION

Definition of the fatigue criterion

The probabilistic fatigue criterion presented in this sec-
tion is inspired by a criterion proposed by Morel and
Huyen28 and has been the subject of studies dealing with
an electrolytic copper.12,13 Before detailing this criterion,
it is worth noting that the mesoscopic mechanical
quantities used in the criterion are computed from
the stress tensors averaged per grain hσ

¯̄
tð Þig , which

are obtained at each time step t of the last loading cy-
cle of the FE simulations of polycrystalline aggregates.
In the present case, t∈]0,T] with T the period of the
loading cycle. The equations defining the mechanical
quantities used in the probabilistic fatigue criterion
are provided in the appendix.

In ductile metallic material, plastic strain is localized in
the form of slip bands in some crystals favourably oriented
with respect to the cyclic loading direction, leading to the
formation, at the surface of the crystals, of intrusions and
extrusions due to plastic slip irreversibility. Several exper-
imental studies have shown that fatigue crack tends to ini-
tiate at the free surface along the interface between the slip
band and the matrix (see, e.g. Ref. [29]). The formation of
slip bands, whose understanding seems therefore essential
to precisely predict the fatigue crack initiation, is governed
by the dislocation structure resulting from complex inter-
actions between dislocations, point defects and grain
boundaries. The various mechanisms involved in the

Table 4 Elastic constants of the austenitic stainless steel at room
temperature

C1111
(GPa)

C1122
(GPa)

C1212
(GPa) a

Cubic elastic constants
of an Fe-18Cr-14Ni
steel 20

198 125 122 3.34

Isotropic elastic constants
of the AISI 316L M25W
steel

256 101 77 1.0

Fig. 6 Shape and dimensions of the polycrystalline aggregate and
the matrix used in the finite element model.



formation of the dislocation structure are summarized in a
thorough review of Sangid.30 Some numerical modellings
try to describe part of these mechanisms to predict the
evolution of the dislocation structure from a given initial
configuration. For example, a study conducted by Déprés
et al.31 has shown the capability of discrete dislocation
dynamics simulations to reproduce heterogeneous dis-
location microstructures similar to those observed in
transmission electron microscopy (TEM) and the crucial
role played by the cross slip in the dipole formation
responsible for the irreversibility of the plastic strain
localization. Although this approach is promising, its
implementation in conjunction with FE analysis of poly-
crystalline aggregate remains difficult and would require
excessive computation times. Thus, because the fatigue
crack nucleation strongly depends on an underlying dis-
location structure, which can hardly be determined in a
polycrystal containing hundreds of grains, its modelling
is considerably idealized in the present work.

The slip among grains being the main driving force of
fatigue crack initiation in ductile alloys, it is natural to as-
sume that the metallic polycrystals investigated in this
study exhibit shear-dominated crack initiation, and thus,
the amplitude of the shear stress acting on the slip planes
is chosen to provide a coarse but sufficient measure of the
slip activity. Moreover, as a positive normal stress acting
on the slip plane facilitates the decohesion at the interface
between the slip band and the matrix, it seems relevant to
include this mechanical quantity in the fatigue criterion.
Several studies carried out by the present authors12,13

clearly showed that the shear stress and the normal stress,
both acting on a slip plane, are strongly affected by the
crystal orientation within the polycrystalline aggregate.
The resulting statistical distributions over an arbitrary
elementary volume of these quantities give a potential ex-
planation of the experimental scatter of the macroscopic
fatigue response usually observed in HCF. Nonetheless,
as pointed out previously, the fatigue crack initiation
remains a very complex mechanism, and the idealized
modelling of the microstructure proposed in this work is
unable to reflect all the local material heterogeneities
and, in particular, the formation of dislocation structures
leading to the localization of the plastic strain in slip
bands. For these reasons, the formation of a fatigue crack
at the scale of a single grain will be assumed to be
governed not only by the mesoscopic shear and
normal stresses acting on a slip plane (and deduced
from the FE computations) but also affected by a statisti-
cal distribution of the crack initiation threshold assumed
to be representative of the local microstructural
heterogeneities. These microstructural heterogeneities
have to be understood as the dislocation structures
resulting from the evolution, through discrete mecha-
nisms, of an unknown initial configuration of dislocations.

More practically, a fatigue crack is likely to appear in a
grain if the shear stress amplitude τa acting on the most
stressed plane exceeds a threshold τtha . τa is defined as
the radius of the smallest circle circumscribing the path
Γ described by the mesoscopic shear stress vector

¯
τð
¯
n; tÞ

acting on the slip plane
¯
n during the loading cycle

(Fig 1b). A randomized algorithm, summarized in Ref.
[32], is used to efficiently find the minimum enclosing
circle of the path Γ of each slip plane in the
microstructures.

The fatigue crack initiation threshold τtha is then sup-
posed to be a random variable following a Weibull distri-
bution characterized by a shape parameter m and a scale
parameter τ0. Hence, the probability that a fatigue crack
initiation occurs on a slip plane can be expressed by

PFn ¼ P τa ≥ τtha
� � ¼ 1� exp � τa

τ0

	 
m� �
(2)

The mesoscopic normal stress acting on the slip plane
of normal n is assumed to modify the initiation condi-
tions by affecting the scale parameter. More precisely,
the expression of τ0 depends on the mesoscopic normal
stress amplitude σn,a, through a triaxiality factor σn,a/τa,
and the mesoscopic mean normal stress σn,m:

τ0 ¼ τ0′
1� γσn;m

1þ α σn;a=τa
� � (3)

The failure probability PFg of a given grain is sup-
posed to correspond to the maximum among the failure
probabilities PFn of its slip planes. Finally, the failure
probability of the polycrystalline aggregate PFa is com-
puted according to the weakest-link hypothesis:

1� PFa ¼ ∏
Ng

g¼1
1� PFg
� �

(4)

where Ng is the number of grain constituting the poly-
crystalline aggregate. The use of the weakest-link hy-
pothesis is justified by the fact that in HCF regime, the
failure is driven by the initiation and the propagation of
a single crack more than the initiation and the coales-
cence of a large number of cracks. It is worth noting that,
because of the large number of grains contained in the
polycrystalline aggregate, the failure probability of the
polycrystalline aggregate PFa should be understood as
the failure probability at the macroscopic scale.

Identification of the fatigue criterion parameters and
prediction of the average fatigue limits

The fatigue criterion has four parameters which have to
be identified:



• τ0 ′ describing the sensitivity of the fatigue limit to the
mesoscopic shear stress amplitude τa;

• α describing the sensitivity of the fatigue limit to the
mesoscopic normal stress amplitude σn,a;

• γ describing the sensitivity of the fatigue limit to the
mesoscopic mean normal stress σn,m; and

• m describing the scatter of the fatigue limit and indi-
rectly the sensitivity to the void.

These parameters cannot be identified analytically, so
the results from the FE simulations of polycrystalline
aggregates have to be used in the identification process.
In these FE simulations, the polycrystalline aggregates
are loaded at the average fatigue limit level, and the load-
ing conditions applied on their matrix, during the identi-
fication, are chosen for their simplicity and so that to
emphasize each mechanical quantity used in the fatigue
criterion,

• fully reversed uniaxial tension and fully reversed shear
lead to different triaxiality factors σn,a/τa enabling to
identified the parameters τ0 ′ and α; and

• uniaxial tension with a loading ratio R = 0.1 induces
mesoscopic mean normal stress σn,m and thus allows
the identification of the parameter γ.

A measure of the scatter of the fatigue limit (e.g. the
standard deviation of the fatigue strength distribution)
is needed to identify the shape parameter m. However,
because of the lack of experimental data, it is not possible
to estimate correctly the scatter of the fatigue limit.
Therefore, the shape parameter is not identified but
imposed, and two m values are chosen (5 and 20) in order
to better understand the influence of this parameter on
the distributions of the macroscopic fatigue limits
predicted by the probabilistic criterion.

To sum up, the identification of the criterion parame-
ters rely on the results of the numerical simulations on
smooth microstructures loaded, at the average fatigue
limit level, in uniaxial tension with R =� 1 and R = 0.1
and in shear with R =� 1. The average fatigue limits ob-
tained with smooth specimen for these loading conditions
can be found in Table 3. For each value of the shape
parameter m, the parameters τ0 ’, α and γ are identified
such that the failure probability of the aggregates PFa is,
in average on the 10 realizations of microstructures, equal
to 50% for each of the three loading conditions.

Once the parameters are identified, the fatigue crite-
rion is used to predict the average fatigue limits for the
other loading conditions and in the case of holed micro-
structures. For a given loading case and void diameter,
the determination of the predicted average fatigue limit
consists in searching the macroscopic stress amplitudes
Σ ij,a, which have to be applied to the matrix such as, in av-
erage on the 10 realizations, PFa is equal to 50%.

Prediction of the distribution of the macroscopic
fatigue limits

Given the definition of the probabilistic fatigue criterion,
it can be shown that, in the case where grains behaviour
is linear and without any mesoscopic mean normal stress
σn,a, the macroscopic fatigue limit Σ ij,a of a given
microstructure follows a Weibull distribution (Eq. 5)
whose shape parameter m* is equal to the shape parame-
ter m of the distribution of the fatigue crack initiation
threshold τtha :

f a Σij;a
� � ¼ m�

τ�0

Σij;a

τ�0

	 
m��1

exp � Σij;a

τ�0

	 
m�" #
(5)

The scale parameter τ�0 characterizing the distribution
of the macroscopic fatigue limit Σij,a can be identified, for
example, from the macroscopic fatigue limit ΣPFa¼50%

ij;a ,
that is, the loading amplitude for which the failure
probability of the aggregate PFa is equal to 50%, using
the following relation:

τ�0 ¼
ΣPFa¼50%
ij;a

ln 2ð Þ1=m� (6)

It is worth noting that the parameter τ�0, because of its
relation with the macroscopic fatigue limit ΣPFa¼50%

ij;a ,
depends on the microstructure. Thus, the probability
density function fa, which represents the distribution of
the macroscopic fatigue limit induced by the distribution
of the fatigue crack initiation threshold τtha , is also depen-
dent on the realization. In particular, in the case of holed
microstructures, it seems reasonable to suppose that the
configuration of the grain orientations in the vicinity of
the hole affects significantly this distribution. Therefore,
the distribution of the macroscopic fatigue limit, taking
into account the variability of the microstructure, can
be characterized by the probability density function
faverage defined as the average of the probability density
functions fa:

f average ¼
1
N r

∑
Nr

a¼1
f a (7)

with Nr corresponding to the number of realizations. An
example of the probability density functions fa and the
average probability density function faverage, obtained
with a shape parameter m = 20 in the case of microstruc-
tures containing a hole of diameter D = 50μm and loaded
in fully reversed tension, is presented in Fig. 7.



RESULTS AND DISCUSS ION

Predictions of the average fatigue limits

The average macroscopic fatigue limits Σ ij,a predicted by
the probabilistic fatigue criterion are presented, along
with those determined from the fatigue tests results, in
a diagram Σ ij,a–D in Fig. 8 for shape parameters m = 5
and m = 20. The macroscopic stress amplitude Σ ij,a

considered to represent the macroscopic fatigue limit is
the axial macroscopic stress Σzz,a excepted in the case of
the torsion loading for which the macroscopic fatigue
limit is defined by the macroscopic shear stress Σθz,a.

In the absence of voids and whatever the value of the
shape parameter m, the predictions of the probabilistic
fatigue criterion are in good accordance with the experi-
mental average fatigue limits, excepted for the combined
tension and torsion with a phase shift φθz = 90°. Indeed, in
this latter case, the difference between the experimental
and predicted fatigue limits is approximately 22%. More-
over, it is worth noting that the predictions are conserva-
tive when the aggregates are defect-free.

In the presence of a void, the quality of the predictions
is more fluctuating and depends on the value of the shape
parameter m, the best estimates being obtained for a
shape parameter m = 5 among the values studied (two
others values, whose results are not presented, were
tested: 10 and 15). Indeed, for greater value of the shape
parameter, the detrimental influence of the void on the
fatigue strength is overestimated, thus leading to predic-
tions significantly conservatives.

In order to understand the effect of the shape param-
eter m on the average fatigue limits predicted by the
probabilistic fatigue criterion, it is interesting to visualize
the distributions of the failure probability PFg of the
grains in a microstructure for different defect sizes D.
These distributions are illustrated in Fig. 9 for a micro-
structure loaded in fully reversed tension. The results ob-
tained with shape parameters m = 5 and m = 20 are
presented, respectively, in Fig 9a and b. The same orien-
tation set is used in each model; only the void diameter D
varies in the first, second, third and fourth columns are
exposed the microstructures containing a hole with a di-
ameter D equal to, respectively, 0, 50, 95 and 365μm. It
can be observed that, in the absence of void, the distribu-
tion of the failure probability of the grains PFg is hetero-
geneous because of the anisotropy of the grains’

Fig. 8 Comparison between the average fatigue limits determined experimentally and those predicted by the probabilistic fatigue criterion with
m = 5 and m = 20.

Fig. 7 Probability density functions fa describing the distribution of
the failure probability of polycrystalline aggregates loaded in fully
reversed tension and the average probability density function faverage
describing the distribution of the macroscopic fatigue limit.



behaviour and their crystalline orientations leading to
heterogeneous mechanical responses. Moreover, the ad-
dition of a void in the polycrystalline aggregate increases
the heterogeneity of the failure probability PFg because of
the stress concentration induced in the vicinity of the de-
fect. It also appears that in the case of a shape parameter
m = 5, the distribution of the failure probability PFg is
more homogeneous than in the case of a shape parameter
m = 20. Thus, it can be concluded that, even though all
the grains in the microstructure are considered to predict
the failure probability PFa of the aggregate, the contribu-
tion of each grain to the fatigue failure is driven by the
parameters of the Weibull distribution defining the
fatigue crack initiation threshold. The lower the shape
parameter m, the higher the contribution to the failure
of the most stressed grains and the lower the less stressed
grains contribute to the failure.

In order to ease the comparison between the experi-
mental data and the best estimates of the criterion (ob-
tained in the case where the shape parameter m = 5), the
relative differences between the experimental fatigue
limits and those predicted by the probabilistic fatigue
criterion are computed and presented in Table 5. The
relative difference is defined in function of the average
fatigue limits determined experimentally Σexp

ij;a and pre-

dicted Σpred
ij;a in the following way:

Difference ¼
Σexp
ij;a � Σpred

ij;a

Σexp
ij;a

(8)

With this definition, a positive difference corresponds
to a conservative prediction, whereas a negative differ-
ence is a sign of a too optimistic prediction. It can be ob-
served that the difference between the experimental
fatigue limits and the predictions does not exceed 10%
in the case of the tension, torsion and in-phase tension
and torsion loadings for every defect diameters studied.
The predictions are less satisfactory in the case of the
combined tension and torsion with a phase shift
φθz = 90°. Indeed, for this loading condition and for the
considered void diameters D, the differences range from
10 to 20%. However, these predictions have the merit
of being conservative. Finally, the accuracy of the pre-
dicted fatigue limits in the case of in-phase biaxial tension
with a loading ratio R = 0.1 and a biaxiality ratio kθz = 0.5
[0, 1] is very variable: in the absence of void, the macro-
scopic fatigue limit is predicted satisfactorily, whereas in
the presence of a hole with a diameter D = 365μm, the
decrease of the fatigue limit is largely overestimated by
the probabilistic fatigue criterion. In this latter case, a dif-
ference between the prediction and the experimental fa-
tigue limit greater than 20% is observed. Nevertheless,
the inaccuracy of the probabilistic criterion to predict

Fig. 9Distribution of the failure probabilities of the grains PF,g in a microstructure loaded in fully reversed uniaxial tension at the experimental
average fatigue limit level for different defect diameters D and shape parameters m.



the fatigue strength in the case of a biaxial tensile loading
in the presence of a void has to be tempered, given the
fact that the fatigue limit determined experimentally is
questionable for this configuration. Indeed, for this load-
ing condition and this defect size, the average fatigue
limit has been estimated with only two specimens for this
configuration.

Scatter of the fatigue limits

The probability density functions faverage predicted by the
probabilistic fatigue criterion for each defect diameter D
are illustrated in Fig. 10 for different loading conditions.
In this figure, the first and second columns contain the
predictions obtained, respectively, with a shape parame-
ter m = 5 and m = 20. It is worth noting that, in the ab-
sence of void, the macroscopic fatigue limits can be
correctly approximated by a Weibull probability density
function. This observation is no longer valid when the
microstructures contain a hole because of the irregulari-
ties encountered in the distributions of the macroscopic
fatigue limits. It seems reasonable to assume that this lack
of regularity in the distributions of the macroscopic limit
is due to an insufficient number of microstructures to de-
scribe the variety of possible configurations of crystalline
orientations in the vicinity of small holes. The quantita-
tive comparison between the results obtained for differ-
ent hole diameters D and loading conditions is
complicated by the inability to describe the probability
densities faverage by a usual and unique probability law.
For these reasons, the discussion on the distributions is
only qualitative. From the results, it appears that, for a
shape parameter m = 5, an increase in the diameter D of
the circular hole from 0 to 510μm leads to a progressive
decrease in the scatter of the average macroscopic fatigue
limits, whatever the loading condition considered. The
trends are different in the case of a shape parameter

m = 20. Indeed, circular holes with diameters D = 50μm
andD = 95μm increase generally the scatter of the fatigue
limits, whereas for D greater than 95μm, an increase in
the hole diameter induces a decrease in the scatter of
the fatigue strength.

It is important to remind that the best predictions of
the average fatigue limits are obtained with a shape pa-
rameter m = 5. For this value, it appears that the ratio be-
tween the standard deviation and the average
macroscopic fatigue limit Σzz,a in fully reversed tension
is approximately equal to 0.23 in the absence of void.
However, in a 304L austenitic steel, relatively close to
the 316L steel studied, this ratio is estimated at 0.05
(Ref. [33]). Thus, it seems that the probabilistic criterion
strongly overestimates the scatter of the fatigue limit. In
the case of a shape parameter m = 20, the scatter of the
macroscopic fatigue limit predicted by the criterion is in
better accordance with the one observed experimentally
on a 304L steel in fully reversed tension, but the influ-
ence of the void on the decrease in the average macro-
scopic fatigue limits is significantly overestimated. In
these conditions, the identification process discussed pre-
viously seems compromised. The proposed methodology
consists in identifying the shape parameter m so that the
standard deviation of the macroscopic fatigue limit pre-
dicted by the criterion for a given loading condition fits
to the one observed experimentally. Unfortunately, ac-
cording to these results, it seems difficult to conciliate
satisfactory predictions of the average macroscopic fa-
tigue limits in the presence of voids with a correct esti-
mate of the scatter of the fatigue limits. Nevertheless, it
is important to keep in mind that some strong assump-
tions have been used to predict the distributions of the
macroscopic fatigue limits, and the fatigue criterion is
not necessarily the main cause of the incompatibility of
the predictions, in terms of average and scatter. Among
the hypotheses used, the omission of the crystal plasticity

Table 5 Values of the relative differences between the average fatigue limits determined experimentally Σexp
ij;a and predicted Σpred

ij;a with a shape
parameter m = 5 for each loading conditions and each defect diameter D

Loading condition D (μm) Σexp
ij;a (MPa) Σpred

ij;a (MPa) Difference (%)

Uniaxial tension R =� 1 0 233 233 0
95 213 223 �5

365 180 173 4
510 153 152 0

Torsion R =� 1 0 148 148 0
95 143 144 1

365 121 116 4
510 115 104 9

Tension–torsion R =� 1, kθz = 0.5, φθz = 0° 0 188 180 4
365 120 137 �10

Tension–torsion R =� 1, kθz = 0.5, φθz = 90° 0 233 191 18
365 169 150 11

Biaxial tension R =� 1, kθθ = 0.5, φθθ = 0° 0 163 153 6
365 157 90 43



is certainly one of the most influential on the distribution
of the mesoscopic mechanical quantities, especially in the
presence of a void, and consequently, it may affect
the predictions of the fatigue criterion. For example, in
Ref. [13], the effect of the crystal plasticity on the average
fatigue limits predicted by the probabilistic fatigue crite-
rion has been evaluated, and it has been shown that, for a

shape parameter m = 20, the addition of the crystal plas-
ticity leads to an increase of the average fatigue limits in
the presence of voids. Therefore, taking into account
the crystal plasticity in the grain’s constitutive model
might provide more consistent predictions. A thorough
investigation of the effect of the crystal plasticity on the
predictions would deserve to be carried out in order to

Fig. 10 Probability density functions describing the macroscopic fatigue limit distributions for each defect size studied and for different load-
ing conditions: (a) tension, (b) torsion and (c) in-phase tension–torsion.



estimate to which extent the omission of this behaviour is
responsible for the inability to conciliate the average and
the scatter of the fatigue limits predicted by the probabi-
listic fatigue criterion.

SUMMARY AND CONCLUS IONS

Experimental tests have been performed on a 316L aus-
tenitic steel in order to characterized its mechanical and
metallurgical properties. In particular, a series of constant
stress amplitude fatigue tests has been carried out to esti-
mate the average fatigue limits at 2.106 cycles of this steel
under various loading conditions (uniaxial tension with
R =� 1 and R = 0.1, torsion with R =� 1, combined ten-
sion and torsion with R =� 1 and with φθz = 0° and
φθz = 90° and in-phase biaxial tension with R = 0.1). The
tests have been conducted on tubular specimen contain-
ing, on the external surface, an artificial hemispherical
void and on defect-free specimen. The diameters D of
the hemispherical voids studied are 95, 365 and 510μm.
These void sizes did not allow highlighting an eventual
critical defect size, under which the fatigue limit is not af-
fected by the void, whatever the loading condition im-
posed on the specimen. However, it has been shown
that some trends observed on metallic material are veri-
fied by the 316L austenitic steel. Especially, the detri-
mental influence of the void is more pronounced in
fully reversed tension than in fully reversed torsion.
Concerning the results of the fatigue tests under multiax-
ial loading conditions, two interesting facts have been
pointed out: the beneficial effects, on the fatigue
strength, of the increase of the phase shift φθz, from 0°
to 90°, in the case of combined tension and torsion and
of the increase of the biaxiality ratio kθθ, from 0 to 0.5,
in the case of biaxial tension.

In a second step, a numerical study has been carried
out in order to predict the distribution of the fatigue
limits for several defect sizes and loading conditions. This
study relies on FE simulations of polycrystalline aggre-
gates, which allow estimating the stress tensors averaged
per grain and, therefore, the mechanical quantities used
in a probabilistic fatigue criterion. The average macro-
scopic fatigue limits are correctly predicted by the fatigue
criterion, with a simplified 2D modelling of the micro-
structure, in the case of fully reversed tension, fully re-
versed torsion and fully reversed in-phase tension and
torsion. In the case of combined tension and torsion with
a phase shift φθz = 90°, the relative differences between
the experimental and the predicted fatigue limits turn
out to be more substantial, but the predictions are con-
servatives. The predictions are more spread out in the
case of biaxial tension: in the absence of void, the average
fatigue limit is satisfactorily predicted by the fatigue

criterion, whereas in the presence of a void with diameter
D = 365μm, a relative difference of 43% is encountered.

The distribution of the macroscopic fatigue limit has
also been estimated by the probabilistic fatigue criterion
and has been studied for different defect diameters and
loading conditions. The scatter of the macroscopic fa-
tigue limit seems generally overestimated when the crite-
rion is identified such as to correctly predict the average
fatigue limit. By changing the shape parameter m of the
Weibull distribution describing the fatigue crack initia-
tion threshold in order to predict a more reasonable scat-
ter, it appears that this latter is sensitive to the void size.
Indeed, circular holes with diameters D = 50μm and
D = 95μm increase generally the scatter of the fatigue
limits. This increase can be attributed to the lack of rep-
resentativeness of the crystalline orientations in the small
region affected by the void. On the contrary, for D
greater than 95μm, an increase in the hole diameter in-
duces a decrease in the scatter of the fatigue strength.
Nevertheless, it is worth noting that this trend has not
been confirmed experimentally because of an insufficient
number of specimens used in the series of fatigue tests.

Even though a simplified modelling of microstruc-
tures (use of 2D geometries and omission of the crystal
plasticity) has allowed obtaining satisfactory predictions,
at least concerning the average macroscopic fatigue limits
for different void sizes and loading conditions, it could be
interesting to evaluate the consequences of these simpli-
fications on the mesoscopic mechanical responses and
on the predictions of the probabilistic criterion. These
analyses can be performed by comparing the current re-
sults with those obtained with more realistic 3D micro-
structure accounting for the crystal plastic. These
questions will be addressed in a forthcoming paper.

Acknowledgements

The authors gratefully acknowledge the technical
support provided by Daniel Cuillerier and Instron®, in
particular Sébastien Picard, during the fatigue tests
setting up.

REFERENCES

1 Murakami Y. and Endo M. (1994) Effects of defects, inclusions
and inhomogeneities on fatigue strength. Int. J. Fatigue, 16,
163–182.

2 Auricchio F., Constantinescu A. and Scalet G. (2014) Fatigue of
316L stainless steel notched μm-size components. Int. J. Fatigue,
68, 231–247.

3 Susmel L. and Taylor D. (2006) A simplified approach to apply
the theory of critical distance to notched components under tor-
sional fatigue loading. Int. J. Fatigue, 28, 217–230.



4 Endo M. and Ishimoto I. (2006). The fatigue strength of steels
containing small holes under out-of-phase combined loading.
Int. J. Fatigue, 28, 592–597.

5 Askes H., Livieri P., Susmel L., Taylor D. and Tovo R. (2013)
Intrinsic material length theory of critical distances and gradient
mechanics: analogies and differences in processing linear-elastic
crack tip stress fields. Fatigue Fract. Eng. Mater. Struct., 36,
39–55.

6 Bennett V. and McDowell D. (2003) Polycrystal orientation
distribution effects on microslip in high cycle fatigue. Int. J.
Fatigue, 25, 27–39.

7 Guilhem Y., Basseville S., Curtit F., Stéphan J. M. and
Cailletaud G. (2010) Investigation of the effect of grain clusters
on fatigue crack initiation in polycrystals. Int. J. Fatigue, 32,
1748–1763.

8 Fang X., YanW., Gao H., Yue Z., Liu J. andWang F. (2012) Fi-
nite element simulation of surface deformation of polycrystal
with a rough surface under repeated load. Finite Elem. Anal.
Des., 60, 64–71.

9 Le Pécheur A., Curtit F., Clavel M., Stephan J., Rey C. and
Bompard P. (2012) Polycrystal modelling of fatigue: pre-
hardening and surface roughness effects on damage initiation
for 304L stainless steel. Int. J. Fatigue, 45, 48–60.

10 Owolabi G., Prasannavenkatesan R. and McDowell D. (2010)
Probabilistic framework for a microstructure-sensitive fatigue
notch factor. Int. J. Fatigue, 32, 1378–1388.

11 Charkaluk E., Constantinescu A., Szmytka F. and Tabibian S.
(2014) Probability density functions: from porosities to fatigue
lifetime. Int. J. Fatigue, 63, 127–136.

12 Guerchais R., Robert C., Morel F., and Saintier N. (2014).
Micromechanical study of the loading path effect in high cycle
fatigue. Int. J. Fatigue, 59, 64–75.

13 Guerchais R., Saintier N., Morel F., and Robert C. (2014)
Micromechanical investigation of the influence of defects in
high cycle fatigue. Int. J. Fatigue, 67, 159–172.

14 Argente dos Santos H. A. F., Auricchio F. and Conti M. (2012)
Fatigue life assessment of cardiovascular balloon-expandable
stents: a two-scale plasticity–damage model approach. J. Mech.
Behavior Biomedical Mater., 15, 78–92.

15 Sweeney C. A., McHugh P. E., McGarry J. P. and Leen S. B.
(2012) Micromechanical methodology for fatigue in cardiovas-
cular stents. Int. J. Fatigue, 44, 202–216.

16 Wiersma S. and Taylor D. (2005) Fatigue of materials used in
microscopic components. Fatigue Fract. Eng. Mater. Struct., 28,
1153–1160.

17 Donnelly E. (2012). Geometry effect in the fatigue behavior of
microscale 316L stainless steel specimens. PhD thesis, National
University of Ireland.

18 Bachmann F., Hielscher R. and Schaeben H. (2010) Texture
analysis with MTEX-free and open source software toolbox.
Solid State Phenomena, 160, 63–68.

19 Endo M. and Murakami Y. (1987) Effects of an artificial small
defect on torsional fatigue strength of steels. J. Eng. Mater.
Technol., 109, 124–129.

20 Murakami Y., Matsunaga H., Abyazi A. and Fukushima Y.
(2013) Defect size dependence on threshold stress intensity for
high-strength steel with internal hydrogen. Fatigue Fract. Eng.
Mater. Struct., 36, 836–850.

21 Billaudeau T., Nadot Y. and Bezine G. (2004). Multiaxial fatigue
limit for defective materials: mechanisms and experiments. Acta
Mater., 52, 3911–3920.

22 Mineur M., Villechaise P. and Mendez J. (2000). Influence of
the crystalline texture on the fatigue behavior of a 316L austen-
itic stainless steel. Mater. Sci. Eng. A, 286, 257–268.

23 Bertolino G., Constantinescu A., Ferjani M. and Treiber P.
(2007). A multiscale approach of fatigue and shakedown for
notched structures. Theor. Appl. Fract. Mech., 48, 140–151.

24 Robert C., Saintier N., Palin-Luc T. and Morel F. (2012)
Micro-mechanical modelling of high cycle fatigue behavior of
metals under multiaxial loads. Mech. Mater., 55, 112–129.

25 Geuzaine C. and Remacle J. F. (2009). Gmsh: a 3D finite
element mesh generator with built-in pre- and post-processing
facilities. Int. J. Numer. Meth. Eng., 79, 1309–1331.

26 Eisenlohr P. and Roters F. (2008). Selecting a set of discrete ori-
entations for accurate texture reconstruction. Comp. Mater. Sci.,
42, 670–678.

27 Teklu A., Ledbetter H., Kim S., Boatner A., McGuire M. and
Keppens V. (2004) Single-crystal elastic constants of Fe-15Ni-
15Cr alloy. Metall. Mater. Trans. A, 35, 3149–3154.

28 Morel F. and Huyen N. (2008) Plasticity and damage heteroge-
neity in fatigue. Theor. Appl. Fract. Mech., 49, 98–127.

29 Basinski Z. S. and Basinski S. J. (1992). Fundamental aspects of
low amplitude cyclic deformation in face-centred cubic crystals.
Prog. Mater. Sci., 36, 89–148.

30 Sangid M. D. (2013). The physics of fatigue crack initiation. Int.
J. Fatigue, 57, 58–72.

31 Déprés C., Robertson C. F. and Fivel M. C. (2004) Crack initi-
ation in fatigue: experiments and three-dimensional dislocation
simulations. Mater. Sci. Eng. A, 387–389, 288–291.

32 Bernasconi A. and Papadopoulos I. (2005). Efficiency of algo-
rithms for shear stress amplitude calculation in critical plane
class fatigue criteria. Comp. Mater. Sci., 34, 355–368.

33 Malésys N. (2007) Modélisation probabiliste de formation de ré-
seaux de fissures de fatigue thermique. PhD thesis, Ecole
Normale Supérieure de Cachan.

APPENDIX

DEFINITIONS OF THE MECHANICAL QUAN-
TITIES USED IN THE PROBABILISTIC
FATIGUE CRITERION
The aim of this appendix is to detail the mathematical
relationships allowing to compute the mechanical
quantities used in the probabilistic fatigue criterion,
namely, the amplitude of the shear stress τað ¯nÞ ,the amplitude of the mean normal stress σn;að ¯nÞ and
the mean normal stress σn;mð ¯nÞ, both acting on a given
slip plane Δ defined by its unit normal vector

¯
n. It is

worth noting that in a face-centred cubic crystal
structure, the slip planes correspond to the set
of planes {111}. The mechanical quantities are com-
puted for a given grain, using the mesoscopic stress
tensor hσ

¯̄
tð Þig , that is, the stress tensor averaged over

the grain, with t∈]0,T]. Knowing the mesoscopic stress
tensor hσ

¯̄
tð Þig at time t, one can determine the stress

vector
¯
σð

¯
n; tÞ acting on a given slip plane using the

following equation:

¯
σ

¯
n; t

� �
¼ σ¼ tð Þ

D E
g
:
¯
n (A:1)



It should be noted that it is essential to express vectors
and tensors in the same basis in order to carry out cor-
rectly these computations.
The mesoscopic stress vector

¯
σð

¯
n; tÞ can be

decomposed into two vectors: the normal stress vector

¯
σnð ¯n; tÞ and the shear stress vector

¯
τð
¯
n; tÞ, which are de-

fined respectively in Eqs A.2 and A.3:

¯
σ
n ¯

n; t
� �

¼
¯
σ

¯
n; t

� �
:
¯
n

h i
¯
n ¼ σn ¯

n; t
� �

¯
n (A:2)

¯
τ

¯
n; t

� �
¼

¯
σ

¯
n; t

� �
�

¯
σ
n ¯

n; t
� �

(A:3)

In high-cycle fatigue, the strains are sufficiently small
to ensure that the direction of the vector

¯
n and thus

the direction of the normal stress vector
¯
σnð ¯n; tÞremain constant during the loading cycle. In this case,

the amplitude of normal stress σn;að ¯nÞ and the mean
normal stress σn;mð ¯nÞ can be easily expressed as follows:

σn;a ¯
n

� �
¼ 1

2
max
t∈ 0;T½ �

σn ¯
n; t

� �h i
� min

t∈ 0;T½ �
σn ¯

n; t
� �h i	 


(A:4)

σn;m ¯
n

� �
¼ 1

2
max
t∈ 0;T½ �

σn ¯
n; t

� �h i
þ min

t∈ 0;T½ �
σn ¯

n; t
� �h i	 


(A:5)

Unlike the normal stress vector
¯
σn ¯

n; t
� �

, the direction
of the shear stress vector

¯
τð
¯
n; tÞ is not necessarily con-

stant during the loading cycle. Therefore, the shear
stress vector

¯
τð
¯
n; tÞ acting on the slip plane may

describe a path Γ in the plane Δ (Fig 1b). Under these
conditions, the definitions of the amplitude of the
shear stress τað ¯nÞ and the mean shear stress τmð ¯nÞ areless obvious than in the case of the normal stress.
Among the possible definitions of τað ¯nÞ and τmð ¯nÞ ,the one based on the minimum circumscribed circle
encompassing the path Γ is chosen (Ref. [32]). In this
case, the amplitude of the shear stress τað ¯nÞ is definedby the radius of the smallest circle circumscribing the
path Γ , and the vector defined by the origin of the
shear stress vector and the centre of this circle corre-
spond to the mean shear stress vector

¯
τmð ¯nÞ. Findingthe centre of the minimum circumscribed circle

encompassing the path Γ is a minimization problem,
which can be formulated as follows:

¯
τ
m ¯

n
� �

¼ argmin

¯
τ ’

¯
n

� �
∈Δ

max
t∈ 0;T½ � ¯

τ
¯
n; t

� �
�

¯
τ′

¯
n

� � � �
(A:6)

Once the centre is determined, the radius τað ¯nÞ of thesmallest circle circumscribing the path Γ is computed
using the following relationship:

τa ¯
n

� �
¼ max

t∈ 0;T½ � ¯
τ

¯
n; t

� �
�

¯
τm ¯

n
� �

 (A:7)

This shear stress amplitude τa ¯
n

� �
must not be mis-

taken for the resolved shear stress amplitude acting
along a given slip direction, that is, the amplitude
based on the projection of the shear stress vector

¯
τð
¯
n; tÞ on a slip direction defined by its unit normal

vector
¯
l.




