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Abstract

This work focuses on the occurrence of the first Hopf bifurcation, corresponding to the transition from steady

to unsteady flow conditions, on 2D periodic ordered and disordered non-deformable porous structures. The

structures under concern, representative of real systems for many applications, are composed of cylinders

of square cross section for values of the porosity ranging from 15% to 96%. The critical Reynolds number

at the bifurcation is determined for incompressible isothermal Newtonian fluid flow by Direct Numerical

Simulations (DNS) based on a finite volume discretization method that is second order accurate in space

and time. It is shown that for ordered square periodic structures, the critical Reynolds number increases

when the porosity decreases and strongly depends on the choice of the Representative Elementary Volume

on which periodic boundary conditions are employed. The flow orientation with respect to the principal

axes of the structure is also shown to have a very important impact on the value of the Reynolds number

of the bifurcation. When structural disorder is introduced, the critical Reynolds number decreases very

significantly in comparison to the ordered structure having the same porosity. Correlations between the

critical Reynolds number and the porosity are obtained on both ordered and disordered structures over wide

range of porosities. A frequency analysis is performed on one of the velocity components to investigate pre-

and post-bifurcation flow characteristics.

Keywords: Porous media, Non-Darcy flow, Unsteady one-phase flow, Critical Reynolds number, Hopf

bifurcation

1. Introduction

Flow through porous media out of the classical creeping or Darcy regime is encountered in a wide range

of applications, among which one can cite flow near wells in petroleum engineering, flow in filters and in

columns of reactors for chemical engineering, flow through constructs in perfused or agitated bioreactors

∗Corresponding author
Email address: didier.lasseux@ensam.eu (D. Lasseux )

Preprint submitted to Comput. Fluids April 26, 2016



during biological tissue growth, etc.5

It is certainly impossible to encompass all porous structure topologies involved in a such wide range of

applications due to their variety and complexity. Therefore, model structures such as ordered or disordered

patterns of 2D or 3D objects, like cylinders or spheres, have been widely used to understand most of flow

mechanisms at play. Whilst this type of structure represents an interesting approach to more complex porous

media, it is also of considerable relevance in many practical situations related to environmental issues. Indeed,10

street and building networks in large cities are generally modeled by arrays of cylinders. The knowledge of the

flow features in this configuration is of huge importance to understand and prevent pollutants transport as a

major concern for human health in connection with economic activity [1]. Moreover, wind around buildings

[2] is also important for pedestrian comfort. From an engineering point of view, the knowledge of wind

forces on buildings allowing the prediction of fluid-structure coupling which implies structural vibrations,15

acoustic noise emissions and dangerous resonance phenomena is also a key issue [3]. Arrays of cylinders,

representing clusters of trees, are relevant model structures as well to analyze natural flow in forests, like for

instance wind and remnant tree sway in forest cutblocks [4] or to carry out experimental investigations of

turbulent flow [5]. A careful description of such environmental flows is crucial in the understanding of many

mechanisms including heat transfer processes, pollen dissemination, mass transport of species like pollutants20

[6] and spreading of wildfires [7].

In many circumstances, a macroscopic description of non-creeping flow is of particular interest and

requires relevant relationships relating the average fluid velocity, i.e. the filtration velocity through the

porous structure, to the gradient of the intrinsic average fluid pressure. Different macroscopic models have

been derived, either from an empirical or theoretical point of view. Each of them remains valid for a given25

flow regime that is characterized by an interval of the Reynolds number, Red, defined as Red = ρβ |〈vβ〉| d/µβ ,

|〈vβ〉| being the modulus of the filtration velocity of the fluid-phase β, ρβ and µβ the density and the dynamic

viscosity of the β-phase and d the grain size. As a result, the knowledge of Red intervals for each flow regime

is an important prerequisite for appropriate macroscopic models to be applied.

When Red � 1, the flow remains in the creeping regime and is governed by Darcy’s law [8], a macro-30

scopic linear relationship between the pressure gradient and 〈vβ〉, that has been derived empirically and

demonstrated using up-scaling techniques later on [9, 10, 11].

When Red > 1, inertia becomes significant and Darcy’s law is no longer valid. Forchheimer was the first

who proposed an empirical inertial non-linear corrective term to Darcy’s law [12]. Non-linear macroscopic

momentum equations have been derived theoretically years after [9, 13, 14, 15, 16, 17, 18]. Typically, two35

inertial flow regimes can be identified [19, 20, 21, 22], namely weak and strong inertia regimes where the

inertial correction exhibits a distinct dependence upon the filtration velocity. A regime beyond the strong

inertia has also been identified based on the inertial correction analysis [23, 24, 25].
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Inertial flow classification adopted in almost all analyses has been addressed for flow under steady con-

ditions. Evidently, the knowledge of the Reynolds number associated to the onset of unsteadiness, which40

corresponds to the Hopf bifurcation in the structures under concern [26], is of major interest and this is the

main purpose of the present work. The Hopf bifurcation corresponds to the first bifurcation of the steady

flow solution for a large enough (critical) value of the Reynolds number towards a time-periodic solution.

Loss of steadiness takes place in vortices and gives rise to an oscillatory flow at the bifurcation.

For turbulent flow in porous media, many models have been reported [27] and turbulence models, derived45

from the macroscopic transport equations by time-averaging, have revealed to be quite inaccurate [28]. As

an alternative, models where the microscopic transport equations are first time averaged and then up-scaled

have been proposed [29, 30].

So far, most of existing investigations on the Hopf bifurcation have been carried out for flow around a

unique cylinder of circular or square cross section or for flow past a row of cylinders.50

Flow past a circular cylinder has been analyzed for both the laminar [31] and turbulent [32] flow regimes.

Similar work has been dedicated to the case of flow past a square cylinder, first in the unsteady 2D case

with a zero angle of incidence [33], and then in 3D, [34, 3] considering different angles of incidence [35].

Surprisingly, much less attention has been paid to 2D or 3D patterns of obstacles, the case of a single row of

square cylinders being an exception. In that case, experimental studies [36] and later, numerical simulations55

[37, 38] have been carried out that shed light on the physics of this type of flow. A short analysis of the

critical Reynolds number at which unsteadiness appears for a periodic regular array of parallel cylinders of

circular cross section was reported based on numerical simulations carried out over a narrow range of the

fluid volume fraction (i.e. the porosity) with a special focus on the effect of the pressure gradient orientation

with respect to the lattice axes of the structure [39]. Recent experiments [40] on floor water inrush have60

highlighted a qualitative observation showing that the smaller the porosity of the porous medium, the larger

the critical value of the Reynolds number at which unsteadiness occurs.

To the best of our knowledge, a detailed analysis of the dependence of the critical Reynolds number

corresponding to the first Hopf bifurcation on parameters such as porosity, pressure gradient orientation,

disorder of the structure and the size of the Representative Elementary Volume, although of considerable65

importance, is still lacking and is the objective of the present work.

Two-dimensional arrays of parallel cylinders of square cross section are considered here as a primary

generic approach to more complex porous structures as well as a realistic model for many practical situations

such as environmental flows mentioned above. The attention is focused on the critical Reynolds number value

corresponding to the limit of stationary laminar flow orthogonal to the cylinders axes.70

The paper is organized as follows. The initial boundary value problem and the numerical method used

for the resolution are presented in section 2. Validation tests operated on the classical case of flow around a
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unique cylinder of square cross section and flow around a cylinder of circular cross section in a square pattern

are then reported. In section 3, the dependence of the critical Reynolds number on the Representative

Elementary Volume and porosity is presented in the case of an ordered structure (referred to as OS in the75

following) made of square patterns of parallel cylinders of square cross section. Process leading to unsteady

flow is investigated. A spectral analysis of the transverse velocity signal is carried out and the dependence of

the critical Reynolds number on the pressure gradient orientation is discussed. Finally the case of disordered

structures (DS) obtained from a random placement of the cylinders in each original square unit cell of the

OS [23] is considered and the impact of structural disorder on the critical Reynolds number is presented.80

Conclusions are drawn in section 4.

2. Physical model and methodology

2.1. Initial boundary value problem

The single-phase isothermal flow under consideration is that of an incompressible Newtonian fluid β in a

periodic structure. Periodicity is assumed with the idea that a Representative Elementary Volume (REV),85

of characteristic length li in the ith direction (i = 1, 2, 3), can be extracted that contains all the necessary

structural information of the real system, whose characteristic length-scale is L, in order to provide the

transport properties from a local description of the physical process. This approach is rather standard in

upscaling methods in porous media [41, 42]. For permanent incompressible flow within a perfectly periodic

structure, it can be shown that the REV corresponds to the geometrical periodic unit cell defining the90

structure so that the solution of the is independent of the number of periodic unit cells contained in the

computational domain when periodic boundary conditions are employed. Such a property is however not

trivial if one is interested in unsteady flow, and this will be the object of a further analysis in section 3.1.1

as the onset of non stationary flow is under consideration in the present work.

While periodicity can be directly applied to the fluid velocity, vβ , we shall decompose the pressure pβ

into its intrinsic average 〈pβ〉β and deviation p̃β according to [43, 44]

pβ = 〈pβ〉β + p̃β (1)

with

〈pβ〉β =
1

Vβ

ˆ

Vβ

pβdV (2)

Vβ representing the domain occupied by the β-phase within the REV of volume V . With this decomposition,95

the gradient of average pressure can be regarded as the constant macroscopic source of the flow while p̃β is

periodic.

Defining dimensionless velocity, pressure and time, v∗β , p∗β and t∗β from their dimensional analogs and

references respectively given by l2

µβ

∣∣∣∇〈pβ〉β∣∣∣, l ∣∣∣∇〈pβ〉β∣∣∣ and
µβ
l

∣∣∣∇〈pβ〉β∣∣∣ using l as the reference length,
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where l denotes the characteristic size of the geometrical periodic unit cell, the initial boundary value100

problem to be considered takes the following form

∇ · v∗β = 0 in Vβ (3a)

Re∗
(
∂v∗

β

∂t∗ + v∗β · ∇v∗β
)

= −∇p̃∗β +∇2v∗β −∇
〈
p∗β

〉β
+ Re∗

Fr z in Vβ (3b)

v∗β = 0 at Aβσ (3c)

v∗β(r∗ + l∗i ) = v∗β(r∗) i = 1, 2, 3 (3d)

p̃∗β(r∗ + l∗i ) = p̃∗β(r∗) i = 1, 2, 3 (3e)

v∗β = 0 in Vβ at t∗ = 0 (3f)

p̃∗β = 0 in Vβ at t∗ = 0 (3g)

For the sake of simplicity, we used the same symbol for the dimensionless ∇(= l∇) operator. In Eq. (3c),

Aβσ represents the fluid-solid interface within Vβ , while, in in Eqs. (3d) and (3e), the REV is characterized

by the periodic lattice vectors li, i = 1, 2, 3.105

In the momentum equation (Eq. (3b)), Re∗ is the Reynolds number given by

Re∗ =
ρβl

3

µ2
β

∣∣∣∇〈pβ〉β∣∣∣ (4)

In the following, we shall also use a Reynolds number based on the characteristic dimension d of the solid

phase already defined and related to Re∗ by

Red = ρβ |〈vβ〉| d/µβ =
∣∣〈v∗β〉∣∣ d∗Re∗ (5)

where 〈.〉 = ε〈.〉β denotes the superficial average, ε = Vβ/V being the porosity of the structure. The Reynolds

number Rek, which has the advantage of involving macroscopic quantities only, is also often used [45, 46, 23]

and is obtained from Red as

Rek = Red

√
k

d
= Red

√
k∗

d∗
(6)
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where, for an isotropic structure, k∗ = k/l2 is the dimensionless form of the intrinsic permeability denoted

by k and d∗ = d/l.110

Although general, the momentum equation (3b) can be simplified by neglecting the body force term in

the right hand side whenever the constraint Re∗

Fr � 1 is satisfied, Fr =
l3|∇〈pβ〉β|2

µ2
βg

being the Froude number

and g = gz the gravity acceleration, an assumption that is adopted in the remainder of this paper.

The choice of reference pressure and length is such that the flow is driven by a unit dimensionless force

(

∣∣∣∣∇〈p∗β〉β∣∣∣∣ = 1) so that the forcing is selected through the value of the Reynolds number Re∗ while flow115

direction is determined from the orientation of ∇
〈
p∗β

〉β
[23].

The solution of the above problem to determine the critical Reynolds number value, Redc, corresponding

to the onset of unsteady effects is carried out on 2D structures for which the solid σ−phase is under the

form of cylinders of square cross section. An OS, as represented in Fig. 1, is first considered with a porosity

ranging from 15% to 96% and a macroscopic pressure gradient oriented along ex. In a second step, the impact120

of the flow orientation on Redc is illustrated for ε = 0.75 and θ = π/4, θ being the inclination angle between

the macroscopic pressure gradient and ex. Finally, a DS is considered and the effect of structural disorder on

Redc is investigated for ε = 0.75. These two last analyses are mainly motivated by a previous investigation

of inertial flow regimes in such structures that highlighted the strong dependence of these regimes upon the

flow orientation and structural disorder [23].125

  

 

 σ-phase

 

d

 

β-phase

 
l

 

Figure 1: Large-scale structure and the periodic unit cell that corresponds to the Representative Elementary Volume for steady

flow.

Rather than attempting to identify an exact numerical value of the critical Reynolds number that is

extremely difficult if not impossible to achieve, the determination of Redc proposed hereafter is made under

the form of an interval. The lower bound of this interval corresponds to the largest value of Red for which

the flow remains steady remains while the upper bound corresponds to the smallest value for which non

stationary flow is observed. This is achieved from a numerical solution of the initial boundary value problem130

(3) using a finite volume scheme as described in section 2.2 below while interval bounds are determined by
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dichotomy. The intervals are materialized on the figures throughout the article.

2.2. Numerical method

Simulations have been performed using the open source CFD ToolBox OpenFoam (Open Field Operation

And Manipulation) based on the Finite Volume Method (FVM) of discretization [47]. The standard solver,135

icoFoam, which uses the PISO algorithm (Pressure Implicit Split Operator), designed for simulating transient,

incompressible, laminar flow of Newtonian fluids [48], has been set to a dimensionless form by introducing

the Reynolds number Re∗ and the dimensionless mean pressure gradient ∇
〈
p∗β

〉β
.

The Navier-Stokes equation is discretized using Euler backward discretization scheme (except for inertial

term) which is second order accurate ensuring accuracy of the results [3, 34, 49, 50]. Indeed, because140

of incompressibility, the convective acceleration term is kept in its conservative form as ∇.(v∗βv∗β) and is

linearized using an explicit convective velocity, leading to a semi implcit form of the Navier-Stokes equation.

For all space derivatives, the standard Gauss finite volume discretization scheme is employed with a second

order central differences interpolation scheme to interpolate values from cell centers to face centers. These

schemes revealed to be extremely efficient [34, 3] and are optimal from the stability and accuracy points of145

view [50]. It must be emphazised that because of the explicit treatment of the convective term, a Courant

number condition has to be satisfied in order to ensure numerical stability.

The system of linear equations for the velocity is solved using the Preconditioned Bi-Conjugate Gradient

Solver (PBiCG) for asymmetric matrices and the Diagonal Incomplete Lower Upper (DILU) preconditioner.

In addition, the pressure linear equation is solved using the Preconditioned Conjugate Gradient (PCG)150

solver for symmetric matrices and the Diagonal Incomplete Cholesky (DIC) preconditioner. Although costly

in terms of memory resources because of the required matrices inversions, preconditioning operations are

important in order to reduce the number of iterations performed by the linear solver to obtain a solution.

A Generalised Geometric-Algebraic Multi-Grid solver (GAMG) could also be considered for the pressure

equation.155

Parallel computations were carried out on a 264 nodes cluster of 12 Intel R©Xeon R©x5675 (3,06 GHz) cores

each.

2.3. Convergence criterion and mesh sensitivity

The choice of a consistent dimensionless time step ∆t∗ has been made depending on grid-block size and

velocity magnitude. More precisely, a CFL condition must be verified over the whole mesh for the different160

structures under consideration. It is expressed as

Co =
∆t∗

∣∣∣v∗β∣∣∣
∆s∗

< Comax (7)
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where Co represents the Courant number on each grid-block, ∆s∗ being the dimensionless grid-block size

in the direction of the velocity. In this work, Comax = 0.5, which means that a fluid particle will not move

over more than half a grid-block over a time step as proposed in [51]. Moreover, the choice of a consistent

time step depends also on the oscillation frequency (for unsteady flow). It has been demonstrated that 500165

time steps per cycle are generally needed [52, 53, 54] and we have also taken this latter condition under

consideration.

The steady/unsteady character of the flow is determined from the convergence criterion set for the time

dependent problem in Eqs. (3). Starting initially from rest, the flow enters a transient period until it reaches

stationarity if the Reynolds number is subcritical. This transient period grows longer as Re∗ increases.170

The system of partial differential equations is solved with a segregated approach [55, 56] yielding three

linear systems for v∗βx, v∗βy and p̃∗β . Given the solution of these systems at time t∗(n), which is injected as

an initial guess in the linear systems at time t∗(n) + ∆t∗, residuals are computed as the L1 − norm of the

normalized difference between the right and left hand sides of each linear system. If these residuals are all

smaller than the user-prescribed tolerances, the flow is considered as steady and the simulation ends. If175

not, successive iterations are performed by the linear solver until the residuals are less than the tolerances

providing the solution at time t∗(n) + ∆t∗.

Tolerances for the linear system solvers (PBiCG for v∗βx and v∗βy and PCG for p̃∗β) were respectively set

to 10−10 and 10−7. A special attention was dedicated to the choice of these values so as to ensure an accurate

estimation of Redc. An illustrative example of the dependence of Redc on the tolerance for PBiCG solver is180

provided in Fig. 2 for the most restrictive porosity (ε = 96%) which clearly justifies the 10−10 value. Setting

the tolerance for the PBiCG solver to 10−10, the relative error on the computed Redc, using 10−7 and then

10−10 as the tolerance for the PCG solver, is found to be less than 1%. Similar tests carried out on larger

REVs as employed in section 3.1.1 yield similar conclusions. These values represent significantly more severe

tolerances than the one classically used in works based on the same approach and reported earlier in which a185

tolerance of 10−5 on both the velocity components and pressure residuals was considered to characterize flow

steadiness [51]. It should also be noted that stationarity has to be verified over a sufficiently large number

of time steps in order to ensure that the flow field is fully developed and that no bifurcation is to occur. In

the present analysis, in addition to the condition on the residuals, the bifurcation towards unsteadiness is

checked from the symmetry-breaking of the flow, i.e. when the spatial average of the velocity component190

perpendicular to ∇
〈
p∗β

〉β
becomes non-zero [57]. This could also be performed using a spectral analysis of

this velocity component with an FFT (Fast Fourier Transform), an example of which is reported in section

3.1.3. It must be emphasized that Fast Fourier Transforms have to be carried out over sufficiently large data

samples in order to capture very low frequency peaks [58]. Our dimensionless simulation times range from

∼ 6.3× 104 (∼ 2.5× 106 time steps) for ε = 96% to ∼ 2.1× 106 (∼ 83.4× 106 time steps) for ε = 15.36%.195
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Figure 2: Critical Reynolds number Redc versus velocity tolerance of the PBiCG solver. Vertical bars materialize the upper

and lower bounds of Red at which unsteady and steady flows are respectively observed. Pressure deviation tolerance is set to

10−7. OS (see Fig. 1). ∇
〈
p∗β

〉β
= ex. ε = 96%.

Structured hexahedral meshes (cubic grid-blocks) and extruded triangles (triangular prisms) were em-

ployed for OS and DS respectively and were generated with the open source mesher Salome. It is well

known that to avoid spurious oscillations associated with the central difference scheme for the nonlinear

terms, fine meshes should be adopted to perform accurate simulations [50]. Sensitivity to grid-block size was

hence investigated200

Mesh sensitivity

In Fig. 3, we have represented the values of Redc determined according to the procedure mentioned

above versus the number of grid blocks used to discretize the computational domain in the case of OS for

ε = 15.36% and ε = 96% corresponding to the interval bounds of porosity under investigation. From these

results, the number of grid blocks that ensures mesh convergence can be reasonably taken at about 117600205

for ε = 15.36% and 153600 for ε = 96%, respectively corresponding to dimensionless grid-blocks area of

1.3×10−6 and 6.2×10−6. In the former case, the value of Redc obtained while refining the mesh by a factor

∼ 1.31 (153600 grid blocks) is not modified, whereas, for the latter, Redc differs from less than 0.3% when

the grid-block size is ∼ 27% smaller (194400 grid blocks).

Clearly, the required grid-block size decreases when ε decreases. For the sake of simplicity, the number of210

grid blocks for any value of 15.36% ≤ ε ≤ 96% was chosen according to a linear relationship of the grid-block

area versus ε as defined by the grid-block areas mentioned above that ensure convergence for the two extreme

values of ε.

The validity of this choice was checked for two intermediate values of the porosity, ε = 26.04% and ε = 36%

for which the above mentioned linear relationship leads to 133000 and 144000 grid blocks respectively. Taking215

51100 and 52000 grid blocks instead, yields an error on Redc of ∼ 2.6% in both cases and this tends to confirm
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that mesh convergence is correctly captured with the selected grid-block sizes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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R
e d

c
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·105

45.5

46

46.5

47

nbr. of cells

R
e d

c

1

a) ε = 15.36% b) ε = 96%

Figure 3: Critical Reynolds number Redc versus the number of grid-blocks. Vertical bars materialize the upper and lower

bounds of Red at which unsteady and steady flows are respectively observed. OS. ∇
〈
p∗β

〉β
= ex.

For DS, due to the size of computational domains (see Section 3.2), a coarser mesh was employed

increasing the grid-block size by a factor ranging from 5 (for ε = 36%) to 10 (for ε = 75%).220

A dimensionless time step ∆t∗ = 0.025, satisfying the condition (7), suitable to achieve temporal accuracy

and numerical stability has been adopted for all our simulations.

2.4. Validation

Due to the lack of bibliography treating the first Hopf bifurcation on periodic structures, the methodology

has been validated on the classical case of flow past a cylinder of square cross section (Fig. 4).225
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Figure 4: Computational domain for flow simulation past a cylinder of square cross section and detail of the mesh close to the

cylinder.

The corresponding dimensionless single-phase isothermal flow problem of an incompressible Newtonian

fluid β is given by (we omit the ∗ for the dimensionless ∇ operator)

∂v∗β
∂t∗

+ v∗β · ∇v∗β = −∇p∗β +
1

Re
∇2v∗β +

z

Fr
(8)

∇ · v∗β = 0 (9)

The associated boundary conditions are

v∗β = 0 at Aβσ and wall (10)

v∗β = ex at inlet (11)

p∗β = 0 at outlet (12)

Starting with the fluid at rest, initial conditions are given by

 v∗β = 0

p∗β = 0

at t∗ = 0 (13)

The dimensionless velocity v∗β , pressure p∗β and time t∗ are respectively defined from the modulus of the230

(uniform) inlet velocity, vref , ρβv
2
ref , and d/vref while all coordinates are made dimensionless by d, the side

length of the square cross section of the cylinder (cf. Fig. 4).
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The Reynolds and Froude numbers in Eq. (8) are respectively given by

Re =
ρβvrefd
µβ

Fr =
v2ref
gd

(14)

Again, we assume Fr � 1 in the context of negligible gravity effects.

To reproduce the flow in an infinite domain, the inlet uniform Dirichlet velocity (Eq. (11)) and outlet235

zero pressure boundary conditions (Eq. (12)) were respectively imposed at a distance 35d upstream and

downstream the cylinder center. Similarly, upper and lower walls were positioned at a distance equal to 50

above and below the cylinder center.

The domain (see Fig. 4) was discretized using a structured grid of hexahedral blocks (with a single

element in the cylinder axis direction) made of 423300 grid blocks with a refinement around the square240

cylinder as shown in Fig. 4. Each side of the square cylinder is in contact with 25 grid blocks and the

grid-block size is linearly decreased by a factor of 8 from the boundaries to the fluid-solid interfaces.
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(a) Laminar steady flow regime. Re = 45. t∗ = 1400.

(b) Laminar unsteady flow regime. Re = 50. t∗ = 1000.

Figure 5: Streamlines and velocity magnitude color map for flow past a unique cylinder of square cross section.

The critical Reynolds number Rec is defined based on the fixed convergence criterion mentioned in

section 2.3. Results are supported by symmetry-breaking that yields an instantaneous non-zero space average

velocity along ey as can be inferred from Fig. 5b. Steady flow is characterized by symmetric streamlines (see245

Fig. 5a) while laminar unsteady flow corresponding to the Hopf bifurcation is characterized by oscillating

streamlines and the emergence of a von Kármán vortex street. The critical Reynolds number leading to

the Hopf bifurcation and the apparition of vortex shedding phenomenon obtained from our simulations is

Rec = 46 ± 1 in agreement with reported values in many references. Indeed, exactly the same value was

obtained in a numerical work by Lankadasu et al. [59] while Yoon et al. obtained Rec = 45 from their250

simulation [35]. Experimentally, Sohankar et al. [60] identified Rec = 47± 2.

To confirm the accuracy of the adopted methodology, the critical Reynolds number was also computed for

an ordered structure made of a square pattern of parallel cylinders of circular cross section with ε = 80%, using
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a geometrical periodic unit cell and periodic boundary conditions on velocity and pressure deviation (Fig. 6).

For this structure, the critical Reynolds number is found to be Redc = 118, 45± 4, 92 (Re∗c = 16250± 750),255

which is in agreement with a value obtained by Koch and Ladd [39], Redc ≈ 122, 9 ± 2, 4. A relatively

different value was reported earlier, Redc ≈ 144, 25 ± 5, 95 [51]. However, unlike the former work, the later

value was obtained without a mesh sensitivity analysis which may explain why the value of Redc is larger.

(a) Steady flow. Red = 141.91 (Re∗ =

15500). t∗ = 15000.

(b) Unsteady flow. Red = 154.20 (Re∗ =

17000). t∗ = 14000.

Figure 6: Streamlines and velocity magnitude color maps. Ordered structure made of a square pattern of parallel cylinders of

circular cross section. The REV is taken as the geometrical periodic unit cell. ε = 80%. ∇
〈
p∗β

〉β
= ex.

3. Results and discussion

3.1. Ordered structure260

3.1.1. Dependence of Redc on the REV size

As stated before, the REV for the permanent version of the flow problem (Eqs. (3)) in the case of a

geometrically periodic structure like the OS of figure 1 corresponds to the geometrical periodic unit cell

of size l. This periodic unit cell has been considered as a REV using periodic boundary conditions on v∗β

and p̃∗β in many reported works, both in steady and unsteady flow conditions [51, 61, 39, 62]. The implicit265

underlying hypothesis in the latter case is that periodic boundary conditions at scale l do not have any effect

on the flow structuring and hence on the critical Reynolds number.

In order to investigate the impact of the periodic boundary conditions on the onset of the Hopf bifurcation,

the critical Reynolds number Redc was evaluated for the OS and a porosity ε = 75% over REVs of different

sizes. Computations were first performed over a geometrical periodic unit cell (see Fig. 7) and the resulting270

value of Redc was then compared to that obtained while considering a REV composed of 3× 3 geometrical

unit cells (see Fig. 8).

14



(a) Limit of the steady flow. Red = 162.05

(Redc = 163.92± 1.87).

(b) Unsteady flow. Red = 165.73 (Redc =

163.92± 1.87).

(c) Unsteady flow. Red = 165.79 (Redc =

163.91± 1.86).

(d) Unsteady flow. Red = 165.73 (Redc =

163.91± 1.85).

Figure 7: Streamlines and velocity magnitude color maps. For unsteady flows, snapshots are at t∗ = 43000 for the same ∇
〈
pβ
〉β

(i.e. the same Re∗ = 29000). OS. The REV is taken as the geometrical periodic unit cell and shifted along the axes of the

cylinders lattice. ε = 75%. ∇
〈
p∗β

〉β
= ex. Re∗c = 28500± 500.

Simulations on the unit cell of Fig. 7 with periodic boundary conditions on v∗β and p̃∗β lead to a critical

Reynolds number Redc = 163.92± 1.87 (Re∗c = 28500± 500). The steady flow (see Fig. 7a) is characterized

by straight streamlines along the average pressure gradient direction ∇
〈
p∗β

〉β
= ex near the the top and275

bottom planes of symmetry of the unit cell and two symmetric vortices that fill the gap between successive

cylinders. The onset of the Hopf bifurcation (Fig. 7b) is characterized by oscillating vortices and streamlines.

First, it must be made clear that the value of Redc remains unmodified, irrespective of the x and y

positions of the periodic unit cell relative to the cylinders lattice. This was checked for the three unit cells

depicted in figures 7b, 7c and 7d which show, however, that the structure of the unsteady flow at a given t∗280

slightly differs from one unit cell to another.
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Figure 8: Instantaneous streamlines and velocity magnitude color map. OS. REV composed of 3 × 3 geometrical unit cells.

ε = 75%, ∇
〈
p∗β

〉β
= ex. Unsteady flow, Red = 137.08 (Re∗ = 25000), t∗ = 6000.

Second, for the same porosity value (ε = 75%), the critical Reynolds number Redc determined on a

REV composed of 3 × 3 geometrical periodic unit cells of the OS is found to be Redc = 100.31 ± 2.28

(Re∗c = 17100± 400), a value significantly different from the former, yielding a relative error of ∼ 63% that

cannot be ignored. This clearly evidences that periodic boundary conditions adopted for both dimensionless285

velocity and pressure deviation fields for the unit cell of Fig. 7 cover flow unsteadiness and postpone the

onset of the Hopf bifurcation in the OS of cylinders of square cross section for an average pressure gradient

aligned with the principal axes of the structure. As will be further shown below, this effect is accentuated

while increasing the porosity. This finding emphasizes the importance of the choice of the REV for unsteady

flow, even for periodic structures. At the onset of unsteady flow, the REV adopted for permanent flow must290

be reconsidered and is larger than the geometrical periodic unit cell.

In figure 8, we have represented an instantaneous plot of the flow streamlines for Red = 137.08 (Re∗ =

25000). A striking feature of the flow is its periodicity at scale l (size of the geometrical periodic unit cell)

in the direction perpendicular to ∇
〈
p∗β

〉β
= ex. This means that, even for unsteady laminar flow, the REV

size can be restricted to that of one periodic unit cell in the direction perpendicular to the average pressure295

gradient when oriented along the principal axes of the structure. Along ∇
〈
p∗β

〉β
, the flow structure is not

periodic at scale l and significantly differs from the one depicted in Fig. 7b. More than one periodic unit cell

is hence required in order to accurately capture the flow structure at scale L when unsteady flow is expected.

When the size of the REV is further extended in the direction of ∇
〈
p∗β

〉β
= ex, the critical Reynolds

number reaches an asymptotic value which is almost that obtained with a REV made of 2× 1 unit cells (see300

Fig. 9). The flow structure also depends on the REV size as shown in Fig. 9 where instantaneous plots

of streamlines and velocity magnitude color maps are represented at the same t∗ and four different REVs.
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For ε = 96%, for which the REV size effect is expected to be very significant, a relative error of less than

5% was found on Redc between REVs made of 5 × 1 (Redc = 12.82 ± 3.94, Re∗c = 1125 ± 375) and 3 × 1

(Redc = 11.97, Re∗c = 1075± 25) periodic unit cells respectively. As a consequence, the latter was taken as305

the REV allowing the determination of Redc over the whole range of ε as reported below.

(a) Red = 121.24. 2 × 1 geometrical unit

cells (Redc = 96.41 ± 2.37, Re∗c = 16875 ±
875).

•
a

•b

•
c

(b) Red = 129.46. 3 × 1 geometrical unit cells (Redc =

100.82± 2.5, Re∗c = 17250± 500). The spectral analysis of

section 3.1.3 is performed at the reference points (a), (b)

and (c).

(c) Red = 120.92. 4 × 1 geometrical unit cells (Redc = 96.38 ± 2.35, Re∗c =

16875± 875).

(d) Red = 125.74. 5× 1 geometrical unit cells (Redc = 96.17± 2.99, Re∗c = 16800± 950).

Figure 9: Instantaneous streamlines and velocity magnitude color maps at the same t∗ = 9000 and for the same ∇
〈
pβ
〉β

(i.e.

the same Re∗ = 25000). OS. REVs of different sizes are considered. ε = 75%. ∇
〈
p∗β

〉β
= ex.

3.1.2. Dependence of Redc on ε

In Fig. 10, we have reported our results on Redc versus ε in the range 15% ≤ ε ≤ 96% for the OS along

with those obtained with a REV corresponding to the geometrical periodic unit cell for ε ≥ 45%. Below this

value, the Reynolds number characterizing the Hopf bifurcation is not significantly modified by the choice310

of the REV size, while, above this value, the overestimation of Redc increases strongly with ε when the REV

corresponds to the periodic unit cell, Redc being roughly four times larger (46.78 instead of 12.0) with this
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latter choice for ε = 96%.

Two extreme situations may be considered for ε exceedingly close to the limiting values 1 and 0. In the

former case, one could call upon an analogy with flow around a unique cylinder in an infinite domain as315

envisaged in section 2.4 for which Rec = 46. However, periodic conditions on both velocity and pressure

deviation on the REV boundaries lead to a flow structure significantly different. In fact, periodicity implies

that the flow upstream each cylinder is non uniform as it is conditioned by the preceding obstacle, introducing

a perturbation. Consequently, the value of Redc is expected to be significantly smaller and this is indicated

by our results yielding Redc = 11.97 (Re∗c = 1075± 25) for the OS and ε = 96%.320

When ε is extremely small, an analogy with the flow between plane parallel plates is appealing. The

critical Reynolds number corresponding to the first Hopf bifurcation is known to be Reec ≈ 5772.22 in

this plane Poiseuille flow configuration [63], Reec being estimated with half the plates spacing and the

velocity magnitude on the centerline of the channel. The critical Reynolds number obtained on the OS

for the lowest porosity investigated in this work (ε = 15.36%, see Fig. 10) is Redc = 3816.99 ± 138.14325

(Re∗c = 9.65 × 107 ± 3.5 × 106), which, expressed in terms of Reec, yields Reec = 3104.41 ± 112.41. This

significantly smaller value is not surprising since the presence of the channels in the direction perpendicular

to the average pressure gradient for the OS are singularities in the region of which eddies are generated,

yielding perturbations that trigger the bifurcation at a Reynolds number smaller than that expected in the

case of continuous plates.330
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Figure 10: Dependence of the critical Reynolds number, Redc (or Re∗c), on ε. Vertical bars (unobservable here) materialize the

upper and lower bounds of Red (or Re∗) at which unsteady and steady flows are respectively observed. OS. ∇
〈
p∗β

〉β
= ex.

In the porosity range under investigation 15.36% ≤ ε ≤ 96%, Redc monotonically decreases with ε (see

Figs. 10 and 11). This behavior is in agreement with recent experimental results on floor water inrush [40].
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Physically, this can be explained by the fact that, for small porosities, the flow is strongly oriented and

constrained within the horizontal channels while the kinetic energy carried in the eddies in the gaps between

two successive cylinders which may destabilize the flow, is weak compared to the case of larger porosities.335

The graph of figure 10 suggests that sigmoidal fits can be proposed, given by

Redc = a0

(
1− ε
b0 + ε

)c0
(15)

with a0 = 383.75, b0 = −0.02, c0 = 1.23 for 0.1536 . ε . 0.75 and a0 = 40.17, b0 = −0.69, c0 = 0.636 for

0.75 . ε . 0.96, yielding Pearson correlation coefficients [64, 65] R2 = 0.9987 and R2 = 0.9999 respectively.

Our intrinsic permeability results, that may be used to compute Rek (see Eq. (6)), yield correlations with ε

given by

k∗ = a1
εb1

(1− ε)c1 (16)

with a1 = 0.0123, b1 = 3.07, c1 = 0.707 for 0.1536 . ε . 0.75 and a1 = 0.023, b1 = 3.82, c1 = 0.39 for

0.75 . ε . 0.96, the correlation coefficient being R2 = 0.9999.
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Figure 11: Dependence of the critical Reynolds number, Redc (or Re∗c), on ε and sigmoidal fit curves (see text). Vertical bars

materialize the upper and lower bounds of Red (or Re∗) at which unsteady and steady flows are respectively observed. OS.

∇
〈
p∗β

〉β
= ex. REV made of 3× 1 geometrical unit cells.

While increasing the Reynolds number from the creeping regime up to unsteadiness, the flow structure

resulting from ∇
〈
p∗β

〉β
= ex on the OS is characterized by two main features, as depicted in Fig. 12a-d for340

ε = 75%. First, streamlines in the horizontal gaps between the cylinders become less tortuous and, second,

eddies in the vertical gap, which remain symmetric, are simultaneously growing until they occupy the whole

space between two successive cylinders. At this stage that just precedes the Hopf bifurcation (see Fig. 12d),
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the flow along ∇
〈
p∗β

〉β
within the horizontal gaps resembles that between plane parallel plates as observed

elsewhere [61].345

(a) Steady creeping flow. Red = 0.33

(Re∗ = 50).

(b) Steady weakly inertial flow. Red = 1.82

(Re∗ = 280).

(c) Steady strongly inertial flow. Red =

9.53 (Re∗ = 1500).

(d) Limit of the steady flow. Red = 98.32

(Re∗ = 17000).

Figure 12: Streamlines and velocity magnitude color maps. OS. ε = 75%. ∇
〈
p∗β

〉β
= ex.

This kind of behavior is observed over a wide range of porosity values, with, in particular, a pair of

developing symmetric eddies (just as for a unique cylinder) in the vertical gaps. However, for small enough

porosities, this pattern is modified as this is clearly evidenced on Fig. 13 where six vortices are obtained

for ε = 15.36% (Fig. 13a) leaving a quasi-dead zone in the center of the vertical gap. For ε = 36%, four

vortices can be observed (Fig. 13b) occupying the whole vertical gap, in contrast with the case for ε = 96%350

where the two symmetric vortices do not have a horizontal extent large enough to occupy the whole region

between successive cylinders, even at the Hopf bifurcation threshold (Fig. 13c). Clearly, more work, that

is however beyond the scope of the present investigation, is required to correlate the observations on the
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flow structure and its evolution with the Reynolds number to the different regimes (in particular the weak

and strong inertia regimes and the transition between the two) highlighted in previous works in the same355

geometrical configuration [23].

In all situations of the OS with ∇
〈
p∗β

〉β
= ex, when the critical Reynolds number Redc is reached,

unsteadiness is first observed on the eddies which become asymmetric and start oscillating vertically with

varying periods and amplitudes as pointed out elsewhere [66, 51], propagating a perturbation on the entire

flow over the whole structure (Fig. 8). This is the object of a more thorough analysis in the next section360

3.1.3.

(a) ε = 15.36%. REV composed of 1 × 1 ge-

ometrical unit cell. Red = 3678.85 (Re∗ =

9.3 × 107). Inset: Close-up view of the lower-

half vertical gap.

(b) ε = 36%. REV composed of 1× 1 geomet-

rical unit cell. Red = 782 (Re∗ = 1.425× 106).

Inset: Close-up view of the lower-half vertical

gap.

(c) ε = 96%. REV composed of 3 × 1 geometrical unit cells. Red = 11.96

(Re∗ = 1050).

Figure 13: Streamlines and velocity magnitude color maps. OS. ∇
〈
p∗β

〉β
= ex. Limit of steady flow.

3.1.3. Spectral analysis on v∗βy

Time evolution of the dimensionless transverse velocity v∗βy in the OS made of 3 × 1 geometrical unit

cells, for ε = 75% and ∇
〈
p∗β

〉β
= ex is now analyzed for different Reynolds numbers at three different points
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Figure 14: Dimensionless y-component of the fluid velocity versus dimensionless time at reference points (a), (b) and (c) as

reported in Fig. 9b and corresponding spectra versus the Strouhal number St. OS. REV composed of 3 × 1 geometrical unit

cells. ε = 75%. ∇
〈
p∗β

〉β
= ex. 22



(see Fig. 9b) located at the center of the channel parallel to ∇
〈
p∗β

〉β
, (point (a)), on the centerline of the365

wake in the middle of the vertical gap between two successive cylinders, (point (b)) and at point (c) located

at lex from point (a). We recall that the critical Reynolds number for this structure is Redc = 100.82± 2.5

(Re∗c = 17250 ± 500). In parallel, a spectral analysis is carried out in terms of the Strouhal number given

by St = fl
vref

=
µβf

l|∇〈pβ〉β| , f being the frequency of oscillations of v∗βy once this velocity has been Fourier

transformed using an FFT algorithm. The analysis is made for dimensionless times ranging from 1.22× 104370

to 2.455× 104 (∆t∗ = 0.025).

At the limit of steady flow (Red = 98.32, Re∗ = 16750), permanent flow is obtained from t∗ ≈ 0.25× 104

on. The spectral analysis on point (a) shows a zero single dominant frequency (see Fig. 14a). At the onset

of unsteady flow (Redc = 103.32, Re∗ = 17750) for which a permanent behavior is reached at t∗ ≈ 1.5× 104,

the analysis at point (a) shows a quasi-periodic nature of the flow, characterized by four distinct frequencies.375

The two first ones correspond to Strouhal numbers St ≈ 0.01 while the two largest ones, associated to modes

of smaller amplitudes, are characterized by Strouhal numbers St ≈ 0.03 (see Fig. 14b-d). These results

contrast with those obtained for flow around an isolated square cylinder [50] for which the bifurcation is

characterized by a periodic unsteady flow (i.e. a unique non-zero frequency). A similar behavior was pointed

out by Dybbs et al. [66] for flow around spheres and by Ghaddar et al. [51] for flow around parallel circular380

cylinders. In this latter case, vortex shedding on a periodic structure was observed to be composed of a

traveling wave made of a combination of modes of distinct periods and amplitudes.

Spectra at points (b) and (c) for Redc = 103.32 (Re∗ = 17750) (Figs. 14c-d) show that the same frequency

content is observed on adjacent geometrical unit cells. This is a clear indication that the non-periodic flow

at scale l observed on Fig. 9b is simply due to a phase shift from one geometrical unit cell to another.385

For a larger Reynolds number (Redc = 129.46, Re∗ = 25000, see Fig. 14e), characteristic frequencies

observed at the Hopf bifurcation persist while amplitudes of the corresponding modes increase. Moreover,

as the Reynolds number increases, linear combinations of the four frequencies are appearing. Here, it must

be emphasized that permanent flow is reached faster as the Reynolds number increases when simulation is

initiated with the fluid at rest.390

Finally, for a Reynolds number Red ≈ 200, a transition from quasi-periodic flow to a frequency-locking

mode is observed. This is characterized by the apparition of new observable spectral peaks that are non

linear interactions of the four frequencies observed at the onset of unsteady flow.

3.1.4. Influence of ∇
〈
p∗β

〉β
orientation

The influence of the orientation of the dimensionless gradient of the average pressure gradient ∇
〈
p∗β

〉β
395

on Redc in the OS for ε = 75% is investigated in this section using ∇
〈
p∗β

〉β
oriented 45◦ with respect

to the two principal directions of the structure, i.e. ∇
〈
p∗β

〉β
= (ex + ey) /

√
2. Two REVs, respectively
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made of 1 × 1 and 3 × 3 geometrical unit cells, were employed along with periodic boundary conditions to

determine Redc. In contrast with the case where ∇
〈
p∗β

〉β
= ex, no impact of the REV size was noticed

as Redc = 29.7 ± 0.6 (Re∗c = 12500 ± 500) was found in both cases. This observation may be explained400

by the fact that in the present case, oscillating eddies when unsteadiness appears, do not develop across

the boundaries where periodicity is imposed. The critical Reynolds number value is more than three times

smaller than that obtained with ∇
〈
p∗β

〉β
= ex (Redc = 100.82± 2.5, Re∗c = 17250± 500). As suggested by

the flow structure illustrated in Fig. 15, this much smaller value of Redc can be attributed to the absence of

preferential channels yielding significantly more tortuous streamlines that cover the entire domain and for405

which symmetry can be more easily broken, triggering the bifurcation to unsteady state.

(a) Steady flow. Red = 29.1 (Re∗ = 12000). (b) Unsteady flow. Red = 30.32 (Re∗ =

13000). t∗ = 27740.

(c) Unsteady flow. Red = 30.32 (Re∗ =

13000). t∗ = 27760.

(d) Unsteady flow. Red = 30.32 (Re∗ =

13000). t∗ = 27800.

Figure 15: Streamlines and velocity magnitude color maps. OS. REV composed of 1 × 1 geometrical unit cell. ε = 75%.

∇
〈
p∗β

〉β
= (ex + ey) /

√
2.
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3.2. Disordered structures

The purpose is now to analyze the impact of structural disorder on the critical Reynolds number. Here,

disordered structures (DS) correspond to arrays made of n × n parallel cylinders of square cross section

having all the same size, each center of individual square inclusion being randomly placed in the original410

unit cell of the corresponding ordered structure following a uniform distribution (see Fig. 16). To avoid

too close adjacent cylinders, the random placement was performed in a subdomain of size 0.85l. The final

disordered domain is obtained by reassembling n× n random cells of edge size l obtained from this process

(see [23]).

Figure 16: Streamlines and velocity magnitude color map. DS. ε = 75%. ∇
〈
p∗β

〉β
= ex. Limit of steady flow, Red = 85.92

(Re∗ = 30000).

The dependence of Redc on porosity was investigated in the range 36% ≤ ε ≤ 75%, keeping the pressure415

gradient oriented along ex. For these structures, computational domains with n = 10 were considered and

this choice was guided by an analysis of inertial regimes performed on similar structures [23]. Since the

purpose is to estimate the Reynolds number at the bifurcation expected on an infinite medium having the

same statistical structural properties, an ergodic assumption was employed. The computation of Redc was

carried out on five different realizations of the same structure, a procedure that remains computationally420

tractable although each realization was discretized with a grid-block number ranging from roughly 7.7× 105

for ε = 36% to approximately 1.6 × 106 for ε = 75%. The value of Redc is estimated from the arithmetic

mean of the values obtained for the five different realizations.
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ε (%) Redc (mean) σRe k∗ (mean) σk

36 331.53± 6.21 27.7 72.03× 10−5 74.11× 10−7

55.11 156.71± 5.68 12.47 34.47× 10−4 46.51× 10−6

75 83.51± 2.45 4.69 13.15× 10−3 25.38× 10−5

Table 1: Computational results on the mean values and standard deviations of Redc and k∗ obtained on five different realizations

of DS and three values of the porosity.

In Table 1, we have reported the results on Redc and k∗ (mean values and standard deviations σRe and

σk) for the three values of ε. Fitting curves are such that a0 = 127.86, b0 = −0.234, c0 = 0.59 (see Eq. (15))425

whereas a1 = 0.0137, b1 = 3.07, c1 = 0.707 (see Eq. (16)), the correlation coefficient being R2 = 0.9999 over

the interval 0.36 . ε . 0.75 for both quantities.

While the Reynolds number at the bifurcation is decreasing with increasing ε, as was observed on OS,

it must be noted that the range of variation of Redc is much narrower compared to the OS. This is further

illustrated in Fig. 17 where our results on Redc are represented versus ε for both OS and DS. More precisely,430

for ε close to unity, Redc is weakly modified by the presence of disorder, while the bifurcation on DS occurs

for much smaller Reynolds numbers when porosity decreases. The origin of this strong modification for

small values of ε lies in the local enlargements and constrictions together with obstacles misalignment that

create tortuous channels as a result of disorder. Misalignment breaks flow symmetry and forces local flow

separation as illustrated in Fig. 18. Enlargements in the direction perpendicular to ∇
〈
p∗β

〉β
favor eddies435

generation at significantly smaller Reynolds numbers that disturb the flow in the tortuous channels oriented

along ∇
〈
p∗β

〉β
contributing to early bifurcation towards unsteadiness. When cylinders are far enough apart

(i.e. for large enough values of the porosity), the influence of all these effects is much less significant as the

relative impact of disorder on the sizes of the gaps is smaller, explaining why Redc remains quasi unmodified

when disorder is present in this range of ε.440
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Figure 17: Dependence of the critical Reynolds number Redc (or Re∗c) on ε and sigmoidal fit curves (see text). Vertical bars

materialize the upper and lower bounds of Red (or Re∗) at which unsteady and steady flows are respectively observed. Ordered

(OS) and disordered (DS) structures. ∇
〈
p∗β

〉β
= ex.

Figure 18: Close-up view of streamlines and velocity magnitude color map extracted from Fig. 16. DS. ε = 75%. ∇
〈
p∗β

〉β
=

ex. Limit of steady flow, Red = 85.92 (Re∗ = 30000).

4. Conclusions

Direct Numerical Simulations of one-phase incompressible flow on 2D periodic structures composed of

cylinders of square cross section as model porous materials have been carried out. Special attention has been

paid to computational accuracy (grid-block size and solvers tolerances) in order to investigate the occurrence

of unsteadiness corresponding to the first Hopf bifurcation. The bifurcation was characterized by a critical445

Reynolds number Redc at the center of a Reynolds number interval whose lower and upper bounds are
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respectively the largest and smallest values for which steady and unsteady flow is observed. The overall

procedure was validated by successful comparisons of Redc with reported values on several configurations

namely transverse flow over an isolated cylinder of square cross section and cylinders of circular cross section

arranged on a square pattern.450

Our analysis, focused on ordered (OS) and disordered (DS) square patterns of parallel cylinders of square

cross section, highlighted several important results.

First, it was shown that, for OS and a macroscopic pressure gradient along one of the lattice axes, the

determination of Redc requires a computational domain (i.e. a Representative Elementary Volume (REV)

of the structure) larger than the geometrical periodic unit cell in the flow direction while employing periodic455

boundary conditions on velocity and pressure deviation. This is of particular importance when the porosity

of the structure under concern is larger than ε ∼ 45%. The critical Reynolds number was determined over a

wide range of porosities showing that Redc strongly decreases with ε. Even if this behaviour is quantitatively

highly structure-dependent, it can certainly be generalized to any other kind of geometries and in 3D. The

flow analysis highlighted that the bifurcation is triggered by the oscillation of asymmetric vortices which460

take place between two successive cylinders along the flow direction. A spectral analysis on the velocity

component orthogonal to the applied macroscopic pressure gradient indicates that vortices oscillation at the

bifurcation is quasi-periodic, characterized by two pairs of frequencies, the two frequencies in each pair being

close to each others. These frequencies persist for post-bifurcation Reynolds numbers up to a frequency

locking mode that occurs at large enough Reynolds numbers.465

In a second step, the impact of the macroscopic pressure gradient orientation relative to the lattice axes

was illustrated on the OS indicating that when it is not aligned with the two principal directions of the

structure, Redc is strongly decreased. This results from much more tortuous streamlines induced by the

absence of preferential flow channels compared to the case where the pressure gradient is along one of the

lattice axes. For a macroscopic pressure gradient oriented at 45◦ with respect to the lattice axes, no influence470

of the REV size was observed.

Computations carried out on DS indicated that bifurcation occurs at much smaller Reynolds numbers

compared to OS having the same porosity. The reduction is much more significant as ε decreases. The

physical explanation lies in the occurrence of local enlargements, together with misalignment introduced by

disorder leading to much more tortuous streamlines, local flow separation, as well as early vortices symmetry475

breaking and oscillation.

For both OS and DS, the Reynolds number at the Hopf bifurcation was accurately correlated to the

porosity according to sigmoidal functions over a wide range of ε. These relationships are valid for model

porous structures made of parallel cylinders that are however representative of many real configurations like

networks of streets and buildings or forests for which many different flow, heat and/or mass transfer-related480
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problems are of major concern. As expected, it clearly appears that disorder favors mixing and could be

introduced to improve this mechanism as a less energy demanding alternative to increasing flow rate while

keeping order.

Even if significant effect on the critical Reynolds number was pointed out when weak disorder is intro-

duced, a thorough study would be necessary when stronger disorder is considered, in terms of shapes, size485

and spatial distributions of the solid phase. Additional work is also needed to extend the analysis to more

realistic porous structures using detailed pore-scale images.
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[25] M. Agnaou, D. Lasseux, A. Ahmadi, Simulations d’écoulements inertiels en milieu poreux, in: 21ème540

CFM, AFM, Courbevoie, France, 2013.

[26] B. Kumar, S. Mittal, Prediction of the critical Reynolds number for flow past a circular cylinder,

Comput. Methods Appl. Mech. Engrg. 195 (2006) 6046–6058.

[27] M. J. de Lemos, M. H. Pedras, Recent mathematical models for turbulent flow in saturated rigid porous

media, J. Fluids Eng. 123 (4) (2001) 935–940.545

[28] B. V. Antohe, J. L. Lage, A general two-equation macroscopic turbulence model for incompressible flow

in porous media, Int. J. Heat Mass Transfer 40 (13) (1997) 3013–3024.

[29] A. Nakayama, F. Kuwahara, A macroscopic turbulence model for flow in a porous medium, J. Fluids

Eng. 121 (2) (1999) 427–433.

[30] C. Soulaine, M. Quintard, On the use of a Darcy-Forchheimer like model for a macro-scale description550

of turbulence in porous media and its application to structured packings, Int. J. Heat Mass Transfer 74

(2014) 88–100.

[31] B. N. Rajani, A. Kandasamy, S. Majumdar, Numerical simulation of laminar flow past a circular

cylinder, Appl. Math. Modell. 33 (3) (2009) 1228–1247.

[32] S. Dong, G. E. Karniadakis, DNS of flow past a stationary and oscillating cylinder at Re=10000, J.555

Fluids Struct. 20 (4) (2005) 519–531.

[33] A. Sohankar, L. Davidson, C. Norberg, Numerical simulation of unsteady flow around a square two-

dimensional cylinder, in: Proc. 12-th AFMC, 1995, pp. 517–520.

[34] A. Sohankar, C. Norberg, L. Davidson, Numerical simulation of flow past a square cylinder, in: Proc.

of FEDSM99 3rd ASME/JSME Joint Fluids Engineering Conference. July, 1999, pp. 18–23.560

[35] D. H. Yoon, K. S. Yang, C. B. Choi, Flow past a square cylinder with an angle of incidence, Phys.

Fluids 22 (4) (2010) 043603.

[36] M. Cheng, P. M. Moretti, Experimental study of the flow field downstream of a single tube row, Exp.

Therm Fluid Sci. 1 (1) (1988) 69–74.

[37] J. Mizushima, T. Akinaga, Vortex shedding from a row of square bars, Fluid Dyn. Res. 32 (4) (2003)565

179–191.

31



[38] S. R. Kumar, A. Sharma, A. Agrawal, Simulation of flow around a row of square cylinders, J. Fluid

Mech. 606 (2008) 369–397.

[39] D. L. Koch, A. J. Ladd, Moderate Reynolds number flows through periodic and random arrays of aligned

cylinders, J. Fluid Mech. 349 (1997) 31–66.570

[40] J. Wu, S. Yin, Non-Darcy seepage and stopped floor water inrush prevention, Progress in Mine Safety

Science and Engineering II (2014) 163.

[41] E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory, Lecture Notes in Physics,

Springer, 1980.

[42] S. Whitaker, The method of volume averaging, Theory and Applications of Transport in Porous Media,575

Kluwer Academic, Dordrecht, The Netherlands, 1999.

[43] W. G. Gray, A derivation of the equations for multi-phase transport, Chem. Eng. Sci. 30 (2) (1975)

229–233.

[44] M. Zuzovsky, P. M. Adler, H. Brenner, Spatially periodic suspensions of convex particles in linear shear

flows. III. Dilute arrays of spheres suspended in Newtonian fluids, Phys. Fluids 26 (7) (1983) 1714–1723.580

[45] S. Rojas, J. Koplik, Nonlinear flow in porous media, Phys. Rev. E 58(4) (1998) 4476–4782.

[46] T. D. Papathanasiou, B. Markicevic, E. D. Dendy, A computational evaluation of the Ergun and

Forchheimer equations for fibrous porous media, Phys. Fluids 13 (10) (2001) 2795–2804.

[47] Foundation OpenFoam, Openfoam the open source CFD toolbox user guide version 2.3.0 (February

2014 2014).585

[48] R. I. Issa, Solution of the implicitly discretized fluid flow equations by operator-splitting, J. Comput.

Phys. 62 (1985) 40–65.

[49] X. H. Wang, W. F. Zhu, Z. Y. He, Numerical estimation of the critical Reynolds number for flow past

one square cylinder with symmetric geometry boundary condition, in: New Trends in Fluid Mechanics

Research, Springer, 2009, pp. 76–76.590

[50] A. K. Saha, K. Muralidhar, G. Biswas, Transition and chaos in two-dimensional flow past a square

cylinder, J. Eng. Mech. 126 (5) (2000) 523–532.

[51] C. K. Ghaddar, On the permeability of unidirectional fibrous media: a parallel computational approach,

Phys. Fluids 7 (11) (1995) 2563–2586.

32



[52] J. S. Cox, K. S. Brentner, C. L. Rumsey, Computation of vortex shedding and radiated sound for a595

circular cylinder: subcritical to transcritical Reynolds numbers, Theor. Comput. Fluid Dyn. 12 (4)

(1998) 233–253.

[53] W. K. Anderson, J. T. Batina, Accurate solutions, parameter studies and comparisons for the euler and

potential flow equations, in: AGARD, Validation of Computational Fluid Dynamics., Vol. 1, 1988.

[54] C. L. Rumsey, M. D. Sanetrik, R. T. Biedron, N. D. Melson, E. B. Parlette, Efficiency and accuracy of600

time-accurate turbulent Navier-Stokes computations, Comput. Fluids 25 (2) (1996) 217–236.

[55] S. V. Patankar, D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in

three-dimensional parabolic flows, Int. J. Heat Mass Transfer 15 (10) (1972) 1787–1806.

[56] J. P. V. Doormaal, G. D. Raithby, An evaluation of the segregated approach for predicting incompressible

fluid flows, ASME paper NHTC (85-HT) (1985) 9.605

[57] L. Zhang, DNS study of flow over periodic and random distribution of cylinders and spheres, Ph.D.

thesis, University of Illinois at Urbana-Champaign (2008).

[58] J. A. R. Vázquez, A computational fluid dynamics investigation of turbulent swirling burners, Ph.D.

thesis, Universidad de Zaragoza, Instituto Universitario de Investigación Mixto CIRCE (2012).

[59] A. Lankadasu, S. Vengadesan, Onset of vortex shedding in planar shear flow past a square cylinder, Int.610

J. Heat Fluid Flow 29 (4) (2008) 1054–1059.

[60] A. Sohankar, C. Norberg, L. Davidson, Low-Reynolds-number flow around a square cylinder at incidence:

study of blockage, onset of vortex shedding and outlet boundary condition, Int. J. Numer. Methods

Fluids 26 (1) (1998) 39–56.

[61] J. G. I. Hellstrom, P. J. P. Jonsson, T. S. Lundstrom, Laminar and turbulent flow through an array of615

cylinders, J. Porous Media 13 (12) (2010) 1073–1085.

[62] F. Kuwahara, T. Yamane, A. Nakayama, Large eddy simulation of turbulent flow in porous media, Int.

Commun. Heat Mass Transfer 33 (4) (2006) 411–418.
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