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    Passivation Role in Stress Corrosion Cracking (SCC):  1 

Research Strategy 

• Film rupture-dissolution model (FRM): describes intergranular SCC, shown in 

Fig.1, as repetitive cycles of local surface activation,  dissolution, and passivation 

near the crack tip [1].  Fig. 2 illustrates one of these cycles as described next:  

Fig.5: Passive film thickness formed during the 

passive as calculated by eq.2. 
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Fig.7: cBV values indicate less protective passive film built over 

stressed samples than that  for  non-stressed  ones. 

• Stressed and non-stressed samples of 304L stainless steel are subjected to potentiodynamic cycling tests as shown 

in Fig. 2. These serve as an electrochemical simulation of SCC activation/passivation  cycle as described by 

FRM. 

 

• Experiments were performed in 2 M H2SO4 solution at room temperature. 

 

• In-situ atomic emission spectroelectrochemistry (AESEC) [3] was coupled with conventional electrochemistry during 

the tests.  By this, the passivation current due to  metallic dissolution can be quantified, as shown by Fig. 4. 

Fig.2: Representation of crack propagation by the film 

rupture-dissolution model. 
Fig.3: Polarization curve showing an 

activation/passivation cycle.  

Mechanical  
Slip-induced passivity breakdown causing fresh surface exposure to corrosive environment. 

(process1-2 in Fig.2 and 3) 

 Electrochemical 

• To develop a model quantifying the passivation kinetics  and parameters of passive films constructed in acidic medium.  

• To use this model to check the influence of stress on stainless steel passivation and passive film quality. 

Excessive material dissolution takes place  until the surface repassivates again.  

( process 3-4 in fig. 2 and 3 ) 

   Objectives 

Atomic Emission Spectroscopy and Conventional Electrochemical Experiments 

Fig.1: SCC of 304L stainless steel after 88 h immersion 

in 2 M H2SO4 + 0.5 M NaCl. 

    Quantification of Passive Film Thickness and Quality in Acidic Medium: 2 

Fig.4: AESEC experiment showing the metallic dissolution current 

densities during  a potentiodynamic activation/passivation cycle. 

 A: activation pulse. B: Open circuit potential (OCP). C: Passivation 

pulse. D: OCP.  

High Field Ion Conduction Model and Passive Film Thickness (HFIC) 
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Fig.6: Experimental passivation transients based on eq.10 during 

the anodic pulse. 

• For stressed samples  slightly higher charge exchange  thicker passive film. (1.64  vs 1.58 nm ±0.03). 

 

• Slopes of curves in Fig. 6 = cBV.  a direct measure of the passivation rate and the film ionic conductivity.  

        cBV is inversely proportional to the film quality [4]. Fig. 7 shows this factor for stressed and unstressed cases. 

    Influence of Stress on Passive Film Thickness and Quality: 3 

Stressed 

Non-stressed 

Stressed 

Non-stressed 

• HFIC was adapted to describe the current evolution during passivation [2], as given by eq.1. 

 

• Passive film thickness can be calculated using Faraday’s law as indicated by eq.2. 

 

• The term  𝑞𝑓𝑖𝑙𝑚 represents the charge exchange responsible for passive film formation. 

 

• The external current during passivation is due to three components as explained by eq.3. 

 

• In acidic solutions, the major part of anodic current measured during passivation is due to metallic dissolution [2,3], 

where  𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑖𝑐 is negligible [3]. 

 

• The portion of charge due to film formation can be calculated by quantifying the dissolution component as given by 

equation 5 and 6. 

 

• A particular approximation is taken as 𝑖𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑖𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 to calculate the current fraction due to iron dissolution 

𝑓𝐹𝑒 . By this, 𝑓𝐹𝑒  can be calculated as given by eq.7. 

 

• The calculation of 𝑓𝐹𝑒  is based only on the metallic mass fractions in the alloy and their oxidation numbers  in such 

acidic medium as derived from Faraday’s second law  eq.8. 

 

• Using AESEC quantified data for metallic dissolution during passivation (region C in Fig.4), 𝑖𝑚 𝑖𝐹𝑒  can be 

calculated. This ratio can be used in eq.9 to calculate 𝑓𝑚 for the concerned metals.  By eq.2, passive film 

thickness is calculated as shown in Fig.5. 
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