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Abstract

This work presents a constitutive model for metastaustenitic steels exhibitingtrain Induced M artensitic Transformation

(SIMT). Based on the description of the kinetics of phiemesformation proposed by Olson and Cotsingnd later generalized to
3D by Stringfellow et al.q] and Papatriantafillou et al4], this model includes the effect of temperaturaréase on the kinetics of
SIMT and on the thermal softening of the phases. Thig/scapturing relevant phenomena exhibited byastable austenitic steels
when subjected to plastic deformation at high strates. A systematic procedure for the identificabf the constitutive parameters
has been proposed. The predictions of the coriggtdiescription are compared with experiments lier austenitic steéllSI 304

provided by Rodriguez-Martinez et ab].[ Good correlation between experiments and maugliare achieved in terms of

macroscopic strain-stress curves and volume fractfonartensite formed during straining.

Keywords: austenitic steel, strain induced marteasiinsformation, constitutive equation, thermecgiglasticity, thermography,

X-ray diffraction

1. Introduction

Austenitic grades are the most commonly used stssnl
steels in industry. The high nickel content shifte martensite
start temperature to very low temperatures duringliog,
keeping the material fully austenitic after quenchiat room
temperature. This gives excellent work hardeningghh
strength, ductility and formability, as well as goaeldability.
Some of the less highly alloyed austenitic -andaegely used-
grades are referred to as metastable because ipfatity to
transform from the initial austenite phase to msite. This
transformation may occur in different ways and afighem,
namely Strain Induced Martensitic Transformat®IMT, takes
place when the steel yields at a range of tempastd J - M,
that covers many of the in-service conditions redctby
metastable austenitic steels in industrial appboat The
analysis of such a process therefore presents igteag¢st. Due
to their ductility and work hardening ability, mstable
austenitic steels are used for energy absorptiamash or blast
protection. The abovementioned processes, involviigh
strain rates, are often accompanied by a risempéeature due
to the dissipation of plastic work. This means tlhe
martensitic transformation approaches adiabaticifylso,
forming and machining processes, used to shape @oenps
made of metastable austenitic steels, take placendn-
isothermal conditions. This work presents a coutstiéc model

thermal softening of the phases. A systematic phaefor the
identification of the constitutive parameters iogosed. The
predictions of the constitutive description are paned with
dynamic experiments for the austenitic s#&k| 304 provided

by Rodriguez-Martinez et al6]] Good correlation between
experiments and modelling are achieved in terms of
macroscopic strain-stress curves and volume fractad
martensite formed during straining.

2. The constitutive description

Since the variation of temperature is intended ® b
considered in the proposed model, the equatiordsnetics of
SIMT due to Stringfellow et al.7] have been modified with a
new exponential law to account for the influenceéenfiperature
change in the thermodynamic driving force. Thersiedins are
taken into account, contributing to the instantarse@olume
expansion that accompanies the martensitic tramsfiton. The
homogenization process proposed by Ponte Castabgdad
Suquet 8], and used by Papatriantafillou et aM] [for
Transformation Induced Plasticitf RIP) steels, is considered
to obtain equivalent properties from the constieitequations
of austenite and martensite. A potential law idusedetermine
strain hardening, strain-rate hardening and thesofiening of
the phases. The temperature increase during stgaifs
obtained through equivalent properties. Within aotational

for steels exhibitingSIMT, based on the previous works of frame, the classical return mapping algorithm isppsed to
Olson and Cohen 3], Stringfellow et al. 7] and solve the set of nonlinear rate equations in ddideformation
Papatriantafillou et al.4]. The model includes the effect of frame. An implicit scheme is used to correct tlial stress and
temperature increase on the kinetics IMT and on the to discretize every constitutive equation, anchiplemented in
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ABAQUS/Explicit to reproduce the experimental résdor the 5. Conclusions
considered austenitic steel.

This contribution presents a constitutive model for

3. Identification of the constitutive model describing the martensitic transformation occurririg
parameters metastable austenitic steels at high strain raié® model
extends formulations of Olson and Coh8&]y Btringfellow et al.

The identification procedure is split into two art [71 and Papatriantafillou et al. 4], including both the

temperature sensitivity of the single phases ardeémperature

Identification of the material parameters invohietb the  sensitivity of the transformation. A straightfordamethod for
strain hardening/softening definition of the singleasegi. e. ~ the model calibration has been developed. The gtfeds of
determination of the strai, rate and temperaturassvities of ~ the constitutive model agree with experimental itssa terms

the phases)This is supported by the experimental data report Of macroscopic stress-strain curves and volumetiéracof
in[1, g. martensite formed during loading.
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