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ABSTRACT 

In this paper we present a multi-step homogenization scheme of a tube made of numerous wavy cylindrical 

layers exhibiting periodicity with respect to both the radial and the angular direction. The proposed 

homogenization is a combination of successive semi-analytical, cell-problem-based, homogenization steps and a 

possible, micromechanics-based, homogenization in the interior of every layer. Every step of cell-problem based 

homogenization gives analytical expressions for the homogenized stiffness, thermal expansion and thermal 

conductivity. 

 

1. INTRODUCTION 

Shell structures are present in nature and in engineered systems ([1],[2],[3],[7]). More specifically, in the latter 

case they can have the form of laminate shell composites, of multilayer thermosensitive tubes, of carbon-

nanotube-polymer nanocomposites, of fuzzy fibers based on multi-walled carbon nanotubes. Multi-functionality, 

guaranteeing desirable electronic, optical, magnetic properties, is an important property of multiscale composites 

having a bio-inspired microstructure constructed from the finer to the coarser scale.  

On the other hand, waviness is a designed or accidental property of wavy layer materials, being intensively 

studied during the last decade for its strengthening or weakening effect in thin metallic and ceramic multilayers 

or for its magnetic and optoelectronic effect in high-speed technology, or for its isolating effect in the space laser 

and anti-missile programs ([4], [5],[6],[8]). 

In [9], the combination of the above two microstructure geometries, i.e. shell composite structure and waviness, 

is considered and the homogenization of multilayer wavy tubes made of elastic materials with highly contrasted 

mechanical and thermal properties is proposed. In this communication we will present the principal lines of this 

method, as well as a numerical example of a bimetallic star-shaped composite.  

2. PRINCIPAL LINES OF THE PROPOSED METHOD 

The homogenization scheme is based on a multiscale method presented in [9]. This method is designed to 

furnish the effective thermoelastic properties of a star-shaped tube made of numerous thin elastic wavy layers 

(see fig. 1).  

 

Figure 1. (a) Cross section of the tube divided into 1k  sectors and (b) a typical sector. 
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The structure exhibits periodicity with respect to the radial and the angular direction, but in two, highly different, 

scales: the microstructure is much more fine with respect to the radial direction than with respect to the angular 

direction. This allows for applying a two-step homogenization, consisting from a first step with respect to the 

radial direction, giving a heterogeneous material with angular periodicity, and from a second step with respect to 

the angular direction, giving the effective properties. In both steps, the method gives analytical forms of the 

corresponding cell equations, micro-displacement gradients and homogenized thermo-elastic coefficients.  

Τhe heterogeneous problem, characterized by heterogeneous parameters dependent on a small   tending to 

zero, is described in polar coordinates by the equilibrium equations  
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supplemented by Cauchy, Dirichlet or mixed boundary conditions, where iu , ij , ij , T , Q , q , denote the 

displacement vector, the stress tensor, the strain tensor, the temperature, the radiation and the heat flux, 

respectively, while ijklC , ij , ij  denote the elasticity tensor, the thermal expansion tensor and the thermal 

conductivity tensor, respectively. Moreover, the operators in (1), (2), (3) are defined by 

1
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All thermomechanical functions, unknown and given, are assumed to depend on the macrocoordinates r ,   and 

additionally, in a periodic way, on a generalized periodicity surface  , dependent on   (for the definition of 

generalized periodicity in multilayer materials see [8]). In [9] a two-step homogenization scheme is presented, 

based on the assumption of different scales described above. 
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2.1 Homogenization with respect to the radial periodicity ρ1 

In the first step of homogenization, a function 
  is expressed a function  , ,r   of the polar coordinates 

 ,r   and   bar, where   bar is given by 


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Then,   is assumed of the form 
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The solution of the cell problem is of the form 
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The above coefficients depend on the thermomechanical properties of the constituents and their volume fractions 

and on the gradient of the wavy walls. 

The above solutions allow one to define the homogenized coefficients resulting from the first step of 

homogenization, 
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where , 1 6a b   , , , ,l m r z  and f   denotes the mean value of f  over the unit cell. The above 

coefficients are used as input data for the second step of homogenization. 

 

2.2 Second step of homogenization with respect to the angular direction    
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2.3 Effective properties 

The solutions of the second cell problem are used to define the effective properties of the star-shaped composite. 

More specifically, one obtains the effective elasticity tensor   

             1 1 2 1 2 1 2

6 2 4

eff eff eff effeff a a a

ba ba b r b b zC C C L N C L N C L N        ,     (49) 

for , 1,2,3,4,5,6a b  , the effective thermal expansion tensor  
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   
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,   (50) 

for , 1,2,3,4,5,6a b   and the effective thermal conductivity tensor  

             1 1 2 2 1 2 2

i

eff eff effeff

im im ir r m mL W L W
        ,      (51) 

for , 1,2,3,4,5,6a b  . 

3. NUMERICAL EXAMPLE 

We consider a bimetallic star-shaped shell composite having multilayered sinusoidal walls with parametric 

equation 

   1

1sinr H k k     ,         (52) 

 2 mk    ,          (53) 

for 1,2,...k  , 
1

2
m  , where 1k is the number of sectors of the cross-section, made of two alternative 

elastic isotropic materials having the properties shown in tables 1-4. 

Property Material 1 (Steel) Material 2 (Aluminum) 

Young Modulus (GPa) 206.742 72.041 

Poisson Ratio 0.30 0.35 

Thermal expansion coefficient (1/K) 12.265E-6 23.201E-6 

Coefficient of heat conductivity (W/nk) 65.106 207.498 

Volume fraction 50 % 50 % 

Table 1. Thermomechanical properties of constituents and volume fraction. 

Mechanical Properties Material 1 (Steel) Material 2 (Aluminum) 

C11, C22,C33 278.307 115.621 

C12, C13,C23 119.274 62.258 

C44, C55,C66 79.516 26.682 

C14, C15,C16 0 0 

C24, C25,C26 0 0 

C34, C35,C36 0 0 

Table 2. Symmetric stiffness tensor coefficients of the two constituents (in Voigt notation and in GPa) 
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Properties Material 1 (Steel) Material 2 (Aluminum) 

α1,α2,α3 12.265E-6 23.201E-6 

α4,α5,α6 0 0 

Table 3. Symmetric thermal expansion tensor (in 1/K) of the two constituents 

Properties Material 1 (Steel) Material 2 (Aluminum) 

krr,kθθ,kzz 65.106 207.498 

krθ,krz,kθζ 0 0 

Table 4. Symmetric thermal expansion tensor (in 1/K) of the two constituents 

The gradients of the generalized periodicity functions for the two steps are given by 

   1

1 11 cosr k H k     ,         (54) 

   1

1 1cosk H k    ,         (55) 

 2
0r  ,           (56) 

 2
1  ,           (57) 
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(f) 

Figure 2. Variation of coefficients of the stiffness matrix (in GPa) from the 1st step of homogenization with 

respect to the angle   in inner layer. 

 In fig. 2, 3 and 4 we see the variation with respect to the angular direction of the coefficients of stiffness matrix, 

thermal expansion and thermal conductivity, respectively, deduced from the first step of homogenization. The 

homogenized coefficients correspond to a monoclinic material. We verify that large gradient of the wavy layers 

enhances shear strength in all planes (fig.2(c)) and tensile strength along the angular direction (fig.2(a)). On the 

other hand, it reduces the tensile strength along the radial direction. At points where the gradient of the layer is 

zero (points 4 and 10), all coefficients are equal to the corresponding coefficients in [8], while the homogenized 

coefficients 1 , 3  and 6  take their maximum and 2  its minimum value. At points where the gradient of 

the layer takes its maximum value (points 1, 7 and 13) the opposite holds. In addition, the homogenized value α6 

from the first step of homogenization is oscillating around zero (fig. 3(d)). Analogous observations are deduced 

from fig. 4.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Variation of coefficients of the thermal expansion tensor (in 1/K) from the 1st step of homogenization 

in inner layer: (a) 1 , (b) 2 , (c) 3  and (d) 6 . In addition 4 5 0   . 
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(a) 

 
(b) 

 
(c) 

Figure 4. Variation of coefficients of the thermal conductivity tensor (in W/mK) from the 1st step of 

homogenization in inner layer: (a) rr , (b)   and (c) r . In addition kzz=136.302 W/mK and 

0rz z   . 

 

In table 5, the effective stiffness matrix, resulting from the 2nd step of homogenization, is shown. We verify that 

the overall behavior is orthotropic. From these values, we compute the effective Young moduli 118.778rrE   

and 116.497E   and the effective shear modulus 23.103rG   , showing an important strengthening 15.6% 

of the shear resistance with respect to the wavyless tube, while the hoop resistance is reduced considerably 

(16.5%). In table 6, the effective thermal expansion tensor is shown, exhibiting a waviness-induced reduction 

15% of the radial effective expansion accompanied by an enhancement 20% of the angular expansion. The 

inverse effect is observed in the effective conductivity behavior shown in table 7:  the radial conductivity 

coefficient is enhanced 19%, while the angular conductivity coefficient is reduced 23% compared to the tube 

with circular layers. 

Table 5. Effective symmetric stiffness matrix (in GPa). 

 

 

 

 

Table 6. Effective thermal expansion tensor (in 1/K) in inner layer. 
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Table 7. Effective thermal conductivity tensor (in W/mK) in inner layer. 

 

4. CONCLUSIONS 

The principal goal of this paper is to evaluate the waviness effect to the overall thermomechanical behavior of 

the star-shaped tube for any wavy form of the layers. Under the assumption of a microstructural two-scale 

periodicity, the two-dimensional cell problem needing a FEM-based computational homogenization is reduced to 

two one-dimensional cell problems, giving exact analytical expressions for the effective thermomechanical 

parameters. The related numerical results for a bimetallic tube with sinusoidal layers show that waviness affects 

in an anisotropic way considerably this behavior, by enhancing the shear resistance, the radial conductivity and 

the angular expansion and by reducing the hoop stress capacity, the radial expansion and the angular 

conductivity. 
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