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Abstract
Stress in a piezoelectric material can be controlled by imposing an electrical field. Thanks to
feedback, this electrical field can be a function of some strain-related measurement so as to
confer on the piezoelectric device a closed-loop macroscopic behaviour. In this paper we address
the modelling of such a system by extending the modal decomposition methods to account for
the closed loop. To do so, the boundary conditions are modified to include the electrical feedback
circuit, hence allowing a closed-loop modal analysis. A case study is used to illustrate the theory
and to validate it. The main advantage of the method is that design issues such as the coupling
factor of the device and closed-loop stability are simultaneously captured.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Piezoelectric devices are intrinsically suited for closed-loop
structure due to their reversibility: they can be actuators and
sensors. It is therefore sensible to modify the dynamics of
such a device by feeding back the strain state using the direct
piezoelectric effect. Then, applying a voltage depending on
this measured strain state, it is possible for instance to confer a
modified compliance to the system or increase dissipation in
an assigned frequency band. This is the basic idea in many
applications where frequency control or damping is required,
especially in the case of collocated structures.

In Moheimani et al (2003) or Fairbairn and Mohei-
mani (2013), for instance, a feedback model is used to modify
the damping of structures with different strategies. As a pre-
requisite to apply the methods though, the frequency response
of the mechanical structure must be identified. Preumont et al
(2008) address the problem of controlling the vibrations of
large trusses. A quasi-static model of the actuator was con-
sidered, because in this case the dynamics of the piezoelectric
actuator was much faster than that of the controlled structure.
This assumption cannot hold in some cases, e.g. MEMS or
energy harvesters. Indeed, in this latter case, the overall

dynamics must be accounted for since the resonance is the
key issue (Dutoit et al 2005, Lavrik et al 2004). Moreover, it
is also a well known fact that the coupling factor is inherent to
the overall feedback structure and the design of the actuator
(Preumont 2005). Therefore, the designer should consider a
comprehensive approach in order to take into account the
dynamics of the piezoelectric actuator in the case of the
closed-loop structure. Of course, the model is crucial in this
context.

The literature on the subject of piezoelectric actuator
modelling is abundant, concentrating on fine quasistatic
modelling (Smits and Choi 1991, Goldfarb and Cela-
novic 1997) or dynamic operation near a specific resonance
(Mason 1935, Ballas 2007). When addressing broadband
operations, one has to consider several modes (Meir-
ovitch 2003). Therefore, modal decomposition is a natural
and widely used tool (Erturk and Inman 2009, Ducarne
et al 2012). The approach consists in finding the modal
shapes for a given electrical condition (open circuit or short
circuit, the latter being the most used) where the electric field
or charge can be eliminated. These modal shapes are used to
form a orthonormal basis on which any response can be
decomposed (Meirovitch 2003, Geradin and Rixen 2014).
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Moreover, in some cases, the modal shapes have analytical
expressions that are helpful to deduce design rules (Ducarne
et al 2012). Even for more complex geometry, modal shapes
of known simpler structures can be used to model the
dynamics (Erturk 2012). However, since the initial analysis is
performed in open loop, many modes may be necessary to
model the closed-loop response since the resonant frequencies
may be modified. Thus, insight can be lost, and in practice the
accuracy of the design is dependent on the number of modes
that are considered.

In this paper, we show that the modal analysis method
can be generalized to take into account the closed loop. The
remainder of the paper is as follows. Section 2 recalls the
modelling of a clamped–free beam equipped with a sensor to
provide feedback possibilities. Section 3 introduces the
extension of the modal analysis in a closed loop. We show
that the boundary conditions can be modified to incorporate
the effect of the feedback as moments dependent on the
measurement. By properly dividing the contribution of the
feedback-induced moment into dissipative or generative
(active power) and non-dissipative (reactive power) con-
tributions, we prove that modal projection on a closed-loop
modal basis is possible. Section 4 presents experimental
results to illustrate the approach and validate the prediction of
a model based on the theory developed.

2. Modal analysis of a bender

2.1. Assumptions and notation

The schematic diagram of figure 1 depicts a simplified model
of a slender beam used in this paper. The bender is
mechanically excited at one end, and feedback is used to
modify its dynamic behaviour. In the following, the overall
feedback circuit will be modelled as an amplifier and a series
impedance so as to take into account simple filtering circuits.

Regarding the mechanical modelling, the problem is
supposed to be two dimensional in the sense that the different
fields are not dependent on x2. The bender is constituted by
two piezoelectric layers polarized to operate on a 31 coupling.
The end at x 01 = is clamped to the moving frame, while a
proof mass M is clamped at the free end at x l1 = . The
moving frame is translated along the direction e3; its position
relative to the reference frame is y(t). The bender is supposed
to be mechanically unloaded, apart from the effect of inertia.

The electrodes are connected as shown. In practice, as
will be explained later, the voltage V2 is fixed while the
voltage V1 is varied. We consider small displacements, and
since the electrodes impose equipotentials it will also be
assumed that the electrical field is mainly along the e3

direction. In the following, the voltage V t( )1 is generated from
the measure of the free tip of the bender w L t( , ),1 .

Voigt notation for tensors will be used in this paper. x⊤ is
the transpose of vector x. Matrices will be indicated by
brackets, e.g., c[ ]E is the matrix of compliances at fixed
electrical field. f ij, denotes the partial derivative with respect
to space variables xi and xj; a repeated index denotes a
repeated partial derivative with respect to one of the space
variables. Finally ḟ denotes the time derivative of the func-
tion f.

2.2. Model

2.2.1. Piezoelectric law. For the following discussion, it is
convenient to consider displacement and voltage to formulate
the problem, thus the relevant piezoelectric equations used
throughout this paper are (Ikeda 1996)

c e

e

T S E

D S E

[ ] [ ]

[ ] [ ]
(1)

E t

S⎪

⎧⎨
⎩ ϵ

= −
= +

with e[ ] the piezoelectric coefficient matrix and [ ]Sϵ the
permittivity matrix at fixed strain. T, S are the stress and
strain tensors; E, D are the electric and electrical displacement
fields. The corresponding thermodynamic potential is then
written as (Tiersten 1969)

G S E T S D Ed ( , ) d d . (2)2 = −

2.2.2. Kinematics of the model. The bonding of the layers is
supposed to be perfect, thus a continuous displacement field is
considered. In this study shear strains are not considered, the
bender being thin and the frequencies being low. Thus an
Euler–Bernoulli displacement field is used, given by (Weaver
et al 1990, Geradin and Rixen 2014)

x x t

u x x t u x t x w x t

u x x t

u x x t w x t y t

u( , , )

( , , ) ( , ) ( , )

( , , ) 0

( , , ) ( , ) ( )
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1 3

1 1 3 1 3 ,1 1

2 1 3

3 1 3 1

⎧
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=
= −
=
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which results in the strain field

{ }u x t x w x tS ( , ) ( , ), 0, 0, 0, 0, 0 . (4),1 1 3 ,1 1= −
⊤

2.2.3. Electrostatic solution. Considering the electrical
displacement D, the condition Ddiv 0= must hold. It is
assumed that the layers are thin along e3 compared to the
dimensions in the other directions. Moreover, the potentials
are imposed on the electrodes located on the horizontal sides
of the bender, hence it is assumed that E E3 1≫ and E E3 2≫ .

Figure 1. Schematic diagram of the system
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Let d a b{ , }∈ denote the considered sub-domain relative to
the layers, then for each layer the electric field is given by
E grad( )dϕ= − . Using (4) and (1), and neglecting the
influence of the electric field along e1 and e2, this condition
reduces to:

D e w x t x x t0 ( , ) ( , , ) 0. (5)d d3,3 31 ,1 1 33 1 3 ,33ε ϕ= ⇔ − − =

Integrating twice with respect to x3 gives the expression of the
electrical potential dϕ in one layer of the bender, which
should be written as (Nadal et al 2014)

x x t
e

w x t
x

A x t x B x t( , , ) ( , )
2

( , ) ( , ).

(6)

d S d d1 3
31

33
,11 1

3
2

1 3 1ϕ
ϵ

= − + +

The functions A x t( , )d 1 , B x t( , )d 1 are functions to be
determined from the equipotential conditions at the electro-
des:

(7)
h
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h V
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( ) 0

(0)
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b 2
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2.2.4. Dynamic equations. The augmented Lagrangian of the
piezoelectric energy harvester is given by

x x t x x t G x x t

M l t l t V Q V Q Fy

u u

u u

1

2
˙ ( , , ) ˙ ( , , ) ( , , )d

1

2
˙ ( , 0, ) ˙ ( , 0, )

(8)

1 3 1 3 2 1 3

1 1 2 2

 ∭ ρ Ω= −

+ + + +

⊤

⊤

where the last four contributions correspond respectively to
the kinetic energy of the proof mass M, the energy supplied
by the two generators, and the mechanical energy due to the
external force applied for the mechanical excitation.

Applying variational calculus to the Lagrangian (8) leads
to the equations of the problem (Hammond 1981). The
internal mechanical equilibrium involves the following
equations for the extension and the flexion displacement
field respectively:

u x t u x t a¨ ( , ) ( , ) 0 (9 )1 ,11 1 − + =

( )w x t y x t w x t w x t

b

¨ ( , ) ¨ ( , ) ¨ ( , ) ( , ) 0

(9 )

1 1 ,11 1 ,1111 1  − + + − =

where

•  is the mass per unit length
•  is the rotational inertia per unit length
•  is the compressive rigidity
•  is the equivalent flexion rigidity.

The mechanical boundary conditions at the free end are

u l t V t a( , ) ( ) (10 )ex,1 2 = −

w l t V
V

b( , )
2

(10 )fl,11 1
2⎜ ⎟⎛

⎝
⎞
⎠ = −

w l t w l t Mw l t My t c( , ) ¨ ( , ) ¨ ( , ) ¨ ( ) (10 ),111 ,1 − = +

where the electromechanical conversion coefficients for
extension and bending are respectively

e a a(11 )ex 31 =

e ah b. (11 )fl 31 =

At the other end of the bender, the displacements are
supposed to be perfectly imposed, hence

u t a(0, ) 0 (12 )=
w t b(0, ) 0 (12 )=
w t c(0, ) 0. (12 ),1 =

The electrical charges can be deduced from

( )Q t V V w x t a( ) 2 ( , ) (13 )S l
1 1 2 fl ,1

0
⎡⎣ ⎤⎦ = − −

Q t Q t V u x t b2 ( ) ( ) [ ( , )] (13 )S l
2 1 2 ex 0 + = −

al

h
cwith . (13 )S

S
33 ϵ

=

S is the clamped capacitance.

3. Theoretical study

The study will consider the case when V2 is constant, which is
necessary in practice to apply a compressive prestress in order
to avoid excessive tensile stress during bending. Therefore,
the displacement field u x t( , ) is static since the extension and
flexion fields are decoupled, as can be deduced from the
previous equations. Besides, without loss of generality, the
frequency range considered is supposed to be sufficiently low
to neglect the rotational inertia effects in (9b) and thus they
will not be considered.

The equilibrium (9b) with the boundary conditions (10b),
(10c), (12b) and (12c) are used for the modal analysis of the
bender. To do so, the system is supposed to be free, hence all
independent sources of the system are cancelled. This implies
that, for the mechanical side, y(t) must be set to zero.

At a considered resonant angular frequency ω, the solu-
tion to (9b) is

w x t x t( , ) ( ) ( ) (14)1 1ψ η=

where x( )1ψ is the modal shape written as a linear
combination of the Duncan functions (see appendix A),

x A
x

l
B

x

l
C

x

l
D

x

l
( ) s c s c

(15)

1 1
1

1
1

2
1

2
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⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥ψ β β β β= + + +

and t( )η is the vibration,

t t( ) sin( ). (16)η η ω α= +

Moreover the dispersion condition is

l 0. (17)4 2 4 β ω− =

The problem can be simplified further thanks to (12b) and
(12c):

A B 0.= =
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We proceed in the following by modifying the boundary
condition (10b) to include the feedback effect.

3.1. Electrical equations

The electrical circuit that filters and amplifies the measure-
ment signal is now introduced. Assuming a linear circuit, a
Thévenin equivalent circuit is considered. We restrict the
study to the case when the voltage source is proportional to
the measured signal4:

v t G w l t( ) ( , ) (18)c c=

where Gc is the sensor gain possibly followed by an
amplification. For the purpose of the study, we substitute
V v

V
1 2

2= + in (10b) and (13a). This reflects the fact that the
bending moment is actually controlled by disturbing the
middle plane voltage from the value it would normally have
in a pure extension case. Since in the following harmonic
oscillation will be studied, the various variables are expressed
using complex vectors. Then, the displacement w x t( , )1 is
written5

w x t w x t x t x( , ) ( , ) ( ) ( ) ( ) e t
1 1 1 1

jψ η ψ η→ = = ω

with ejη η= α. Furthermore, equations will be written in a

rotating frame so that the e tjω can be dropped, and for
shorthand W L( ),1 ... ,1 ...ψ η= .

Let Z N

P

(j )

(j )
= ω

ω
be the equivalent series impedance of the

Thévenin equivalent generator; the equations of the circuit are

i
v v

Z
a(19 )c=

−

v i W bj j . (19 )S
fl ,1 ω ω= +

The second equation is deduced by time derivation of (13a).
According to (13a) and (10b), v and vc can be expressed
in terms of displacement or derivatives of displacement.
Writing P p(j ) (j )k

kω ω= ∑ and N n(j ) (j )k
kω ω= ∑

k ∈ + , equations (19a), (19b) and (10b) can be combined,
resulting in the following equation:

(20)

p n W

p W G n w W

(j ) (j )

(j ) (j ) 0.

k
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k
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k
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k
k

k

P

k
k

k

N

k
k

0
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1

0
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,11

fl
2

0

deg( )
1

,1 fl c

0

deg( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ 

 

∑ ∑

∑ ∑

ω ω

ω

+

+ − =

=

+

=

=

+

=

For the sake of clarity, the condition n 00 ≠ is assumed. In
this case, the previous result can be reformulated as

W R W S W T W(j ) (j ) (j ) (21),11 ,11 ,1 ω ω ω= + +

where R (j ) (j ) (j )
k

P p

n
k

k

N n

n
k

0

deg( ) 1
1

deg( )s
k k

0 0

∑ ∑ω ω ω= − −
=

+
=

,

S P(j ) (j )
n

fl
2

0

ω ω= − and T N(j ) (j )
n

fl

0

ω ω= are polynomials.

This defines the new boundary condition for the bending

moment including the closed loop. For the following
discussion, rewrite the previous equation:

( )
W R W S W T W

R W S W T W

(j ) (j ) (j )

j (j ) (j ) (j )

(22)

d d d

q q q

,11 ,11 ,1

,11 ,1

 ω ω ω

ω ω ω ω

= + +

+ + +

where R (j )d ω , R (j )q ω , S (j )d ω , S (j )q ω , T (j )d ω and T (j )q ω are
real even polynomials of ω. Only the non-dissipative
contribution of this condition must be considered for modal
analysis. Multiplying both sides of (20) by the conjugate of

the rotation speed at the end of the tip W(j )*,1ω gives the
complex power transmitted to the bender by the feedback:

W W

R W S W T W W

j

j (j ) (j ) (j ) .

,11 ,1
*

,11 ,1 ,1
*⎡⎣ ⎤⎦

ω

ω ω ω ω

−

= − + +

Two different contributions should be distinguished:

• imaginary terms, corresponding to real projection on the
real axis of the closed-loop bending moment complex
vector (therefore leading or lagging in quadrature with
the rotation speed), which are conservative;

• real terms, corresponding to imaginary part of the closed-
loop bending moment complex vector, which are either
dissipative or supplying power.

Since W , W ,1 and W ,11 are in phase, it can be concluded that
real parts of R, S and T (denoted Rd, Sd and Td in the
following) will contribute to the reactive power, while
imaginary parts (denoted Rq, Sq, Tq) will be responsible for
active power.

3.2. Secular equation

For the modal analysis, only the conservative contribution of
the system need be considered. Thus, according to the pre-
vious discussion, only Rd, Sd and Td are relevant, and thus,
after cancelling the η that appear on both sides of the equality
sign, the boundary conditions (10b) and (10c) are rewritten as

l R l S l T l a( ) ( ) ( ) ( ) ( ) ( ) ( ) (23 )d d d,11 ,11 ,1ψ ω ψ ω ψ ω ψ= + +

l M l b( ) ( ) (23 ),111
2ψ ω ψ= −

Using (17) to rewrite these conditions in β, a general secular
equation can be obtained (see appendix B).

Solving this equation for kβ β= gives the resonant fre-
quencies kω using (17), and once replaced in (14) the mode
shape kψ can be obtained up to a multiplicative constant. In
the usual modal analysis method, the modes are used to
decompose the solution to a given excitation. These mode
shapes, which already partly include the electrical feedback,
are now compared to the classical mode shapes that would
arise from considering short-circuit conditions.

3.3. Properties of the closed-loop modal shapes

The closed-loop (CL) modal shapes can be used to describe
the solution to the forced vibration problem. Indeed, let x( )j 1θ
be the normalized open-loop (OL) modal shapes of the

4 A more general case involves a frequency-dependent measurement
voltage. However, since there are no fundamental differences in the outline
of the demonstration, this simpler case is considered.
5 x denotes a complex number, and j 1= − .
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bender, obtained by replacing the feedback circuit by a short
circuit, which fulfil

0 (24)j j j
2 2

,1111 ν θ θ− + =

where kν are the corresponding modal angular frequencies,
for the boundary conditions

(0) 0 (25)jθ =

(0) 0 (26)j,1θ =

l( ) 0 (27)j,11θ =

l M l( ) ( ). (28)j j,111
2θ ν θ= −

The normalization considered is defined by (Erturk and
Inman 2009)

x x M l( )d ( ) 1. (29)
l

j j
0

2
1 1

2∫ θ θ+ =

Note that the same normalization will be applied to the kψ .
The OL modal shapes fulfil

x x x M( ) ( )d (30)
l

j k k j jk
0

1 1 1∫ θ θ θ θ δ+ =

where 1jkδ = if j = k and 0jkδ = if j k≠ . Therefore, the CL
modal shapes x( )k 1ψ can be expressed as

x x( ) ( ) . (31)k
j

kj j kj1

1

1∑ψ α θ α= ∈
=

∞



Since the x( )k 1ψ depend on the wave numbers { }kβ , which
form an increasing sequence, it is clear from the expression
(15) that

x x k j( ) ( ) if . (32)k j1 1ψ ψ≠ ≠

It follows that the kψ are independent vectors that can be
related to a free basis, and thus can also be used as a basis;
that is, any response of the bender can be written

w x t x t( , ) ( ) ( ). (33)
k

k k1

1

1∑ψ η=
=

∞

The standard procedure to solve the vibration problem
involves the projection of the dynamic equilibrium verified
by a modal shape kψ on a modal shape jψ :

x t x t t x( ) ¨ ( ) ( ) ( ) ( )d 0.

(34)

l

k k k k j
0

1 ,1111 1 1
⎡⎣ ⎤⎦ ∫ ψ η ψ η ψ+ =

Using integration by parts, and the boundary conditions (23a)
and (23b), the previous equation for harmonic vibrations (i.e.

t t¨ ( ) ( )k k k
2η ω η= − ) is rewritten as follows:

x x x M l l

R l S l T l l

x x x

( ) ( )d ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )d 0. (35)

k

l

k j k j

d k k d k k d k k j

l

k j

2

0
1 1 1

,11 ,1 ,1

0
,11 1 ,11 1 1

⎛
⎝⎜

⎞
⎠⎟
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∫

∫

ω ψ ψ ψ ψ

ω ψ ω ψ ω ψ ψ

ψ ψ

− +

− + +

+ =

Considering the special case where j = k, and using the
proposed normalization given by (29), the potential energy
for the modal shape, including the feedback, fulfils

R l S l T l l

x x

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) d .

(36)

d j j d j j d j j j

l

j j

,11 ,1 ,1

0
,11 1

2
1

2
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∫

ω ψ ω ψ ω ψ ψ

ψ ω

− + +

+ =

The projection of the dynamic equilibrium of mode jψ on mode

kψ leads to an equation similar to (35) where the k and j indexes
are swapped. The difference of these equations would give

( ) x x x

M l l

R l S l

T l l

R l S l

T l l

( ) ( )d

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) 0. (37)

j k

l

k j

k j

d j j d j j

d j j k

d k k d k k

d k k j

2 2

0
1 1 1

,11 ,1

,1

,11 ,1

,1

⎛
⎝⎜

⎞
⎠⎟

⎡⎣
⎤⎦

⎡⎣
⎤⎦

∫ω ω ψ ψ

ψ ψ

ω ψ ω ψ

ω ψ ψ

ω ψ ω ψ

ω ψ ψ

−

+

+ +

+

− +

+ =

Therefore, the CL modal shapes are generally not orthogonal in
CL for the functional (34).6 Actually, in CL the functional should
be modified to account for the electrical equilibrium of the bender
and the circuit. Fortunately, this tedious task can be avoided to
solve the forced response due to the feature discussed below.

3.3.1. Response to the forced vibration. Indeed, the problem
can still be decomposed. Assuming that the solution can be
written as in (33) the projection of the solution on mode jψ is
written

x t x t

my x x

( ) ¨ ( ) ( ) ( )

¨ ( )d 0. (38)

l

k
k k k k

j

0
1

1 ,1111 1

1 1

⎡
⎣
⎢⎢

⎤
⎦⎥

 ∫ ∑ ψ η ψ η

ψ

+

+ =

=

∞

Isolating the contribution of the jth mode and performing
integration by parts gives

x t

x t x x

x x t

x x t

( ) ¨ ( )

( ) ( ) ( )d

( ) d ¨ ( )

( ) d ( )

l

k j
k k

k k j

l

j j

l

j j

0
1

,1111 1 1 1

0
1

2
1

0
,11 1

2
1

⎡
⎣
⎢⎢

⎤
⎦
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∫

∫
∫

∑ ψ η

ψ η ψ

ψ η

ψ η

+

+

+

≠

∞

6 This depends on the feedback law: for instance, it can be easily deduced
from (37) that if the feedback is proportional to the derivative of the
displacement w l t( , ),1 , the orthogonality property is retrieved for Z 1=
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R l S l

T l l t

y t x x

M l t My t l

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

¨ ( ) ( )d

( ) ¨ ( ) ¨ ( ) ( ) 0. (39)

d j d j

d j j j

l

j

j j j

,11 ,1

,1

0
1 1

2

⎡⎣
⎤⎦

∫

ω ψ ω ψ

ω ψ ψ η

ψ

ψ η ψ

− +

+

+

+ + =

The first integral in this expression is nil because the modal
shape fulfils (34), thus it can be deduced using (29) and (36)
that the equation simplifies to

t t t¨ ( ) ( ) ( ) (40)j j j j
2η ω η ϕ+ = −

with the modal inertia forces

t x x M l y t( ) ( )d ( ) ¨ ( ). (41)j

l

j j
0

1 1

⎛
⎝⎜

⎞
⎠⎟∫ϕ ψ ψ= +

These equations allow us to calculate the modal shapes and
the resonant frequencies as well as the coupling factors.
However, to be able to predict the vibration amplitude, it is
necessary to include the active effects of the electrical circuit.

3.3.2. Active effects of the electrical circuit. It remains to take
into account the effect of the sources introduced by the
feedback. Equations (21) and (22) show that the odd powers
of the polynomials R (j )ω , S (j )ω and T (j )ω (that is, Rq, Sq and
Tq) can either dissipate or provide power. The procedure is
the same: that is, assuming the solution (33), the dynamic
equation is projected onto a mode jψ . However, the general
boundary condition for moment is now considered:

w l t w l t w l t w l t

w l t w l t w l t

( , ) ( , ) ( , ) ( , )

˙ ( , ) ˙ ( , ) ˙ ( , )

(42)

,11 ,11 ,1

,11 ,1

R S T

R S T

d d d

q q q

 = + +

× + +

where Rd, Sd, Td, Rq, Sq and Tq are the linear differential
operators with respect to time corresponding to the ω
polynomials defined in (22).

The modal equations are then

t t t t t¨ ( ) 2 ˙ ( ) ( ) ( ) ( ). (43)j j j j j
k

jkj
2

1

∑η ξω η ω η ϕ ϕ+ + = − −
=

∞

In the previous equation the modal damping ξ has been
introduced (Geradin and Rixen 2014). A cross-coupling
between modes appears, with the contributions t( )jkϕ given
by

t t l t l

t l l

( ) ˙ ( ) ( ) ˙ ( ) ( )

˙ ( ) ( ) ( ). (44)

jk k k k k

k k j

,11 ,1
⎡⎣

⎤⎦
R S

T

q q

q

ϕ η ψ η ψ

η ψ ψ

= +

+

4. Experimental validation

4.1. Experimental setup

A picture of the experimental setup is reproduced in figure 2.
The co-fired multilayer bender is a Noliac CMBP05

(Noliac 2011). The material is NCE57. The main specifica-
tions are summed up in table 1, and were used for the model
that is discussed hereafter. The bender is clamped on one side,
fixed on a vibrating pot. On the other side, a magnet is fixed
(weight 0.8 g) and for some tests a tungsten mass can be fixed
on. The magnet is used to measure the end tip displacement
thanks to a Hall sensor. This sensor was calibrated using a
laser sensor (Polytec OFV 505); the sensitivity was estimated
to be 8.3 mV μm−1. The feedback is realized by amplifying
the displacement measure using an operational amplifier to
select the gain by combining resistors, then a power amplifier
(NF HSA 4051) is used to postamplify with gains of 20 and
40, resulting in supply voltages varying from 0 to 250 V. An
accelerometer is fixed on the moving frame. In order to
establish the frequency responses of displacement, a dynamic
signal analyser (Stanford Research SR 785) is used. Finally,
electrical measurements (voltage, current, acceleration and
displacement sensor output) are realized using an oscilloscope
(Tektronix TDS 3014).

4.2. Case study: effect of a position feedback and output series
resistance on the CL resonance

4.2.1. Model. For practical reasons, a series resistance was
implemented. Indeed, sensor noise are amplified in the closed
loop exciting higher resonances, and can even become
destabilizing. To prevent this, the resistance was initially

Figure 2. Experimental setup: (1) bender with a magnet and proof
mass fixed at the end; (2) Hall sensor; (3) shaker; (4) accelerometer.

Table 1. Characteristics of NCE57 piezoelectric material

T
33

0

ϵ
ϵ

1800 — Relative dielectric constant

tan δ 170 10 4× − — Dielectric loss factor
d31− 170 10 12× − C N−1 Piezoelectric charge constant

k31 0.33 — Electromechanical coupling factor
ρ 7.7 103× kg m−3 Density
s11
E 17 10 12× − m2 N−1 Elastic compliances
Q 70 — Mechanical quality factor
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introduced in combination with the capacitance S low pass
filter.

To address the effects of this resistance, since Z Rs= ,
the following polynomials are considered:

N R a(45 )s=

P b1. (45 )=
Then the condition (42) is

w l t G w l t w l t
R

w l t( , ) ( , ) ˙ ( , ) ˙ ( , )

(46)

,11
fl

c ,11
fl

2

,1




τ= − −

with Rs
Sτ = . So, for this simple case,

w l t

w l t

w l t G w l t

w l t w l t

w l t
R

w l t

w l t

( , ) 0

( , ) 0

( , ) ( , )

and

˙ ( , ) ˙ ( , )

˙ ( , ) ˙ ( , )

˙ ( , ) 0.

fl c

s

,11

,1

,11 ,11

,1
fl

2

,1

⎧
⎨⎪

⎩⎪
⎧

⎨
⎪⎪

⎩
⎪⎪

R

S

T

R

S

T

d

d

d

q

q

q





τ

=
=

=

= −

= −

=

4.2.2. Mechanical resonance. As far as the effect of the
feedback on resonance is concerned, only w l t( , )Td has to be
considered. For the sake of generality, the variable change

x

l
ζ = is introduced. The plot of β against the normalized gain

k
G lfl c

2
= (figure 3) then depicts the effect of this feedback

on the modal shapes (see figure 4 for the case of the first
mode), and thus on the resonance frequencies for various
mass ratios M

μ = .

• k 0> reduces β, that is it decreases resonance frequen-
cies, thus it can be assimilated to a softening in the sense
that it acts as if the rigidity of the bender were less than in
OL. The effect is rather drastic, as for k = 1 the first mode
will become unstable due to buckling.

• In contrast, k 0< increases β, although rather progres-
sively, so a hardening is induced by the CL. Asymptotic
analysis shows that for the first mode limk β π=→∞ .

The theoretical (solid and dashed lines) and measured
(crosses and dots) wave numbers are compared for some
values of the normalized gain k in figure 5. Theoretical values
of β are obtained using the secular equation discussed in
appendix B. The normalized gains are calculated using the
theoretical expression of k, the manufacturer coefficients of
table 1 and the values of the feedback gains of the amplifier
circuit (set to G { 40, 26, 20, 13, 0, 13, 20,c = − − − −
26, 40}). Taking into account the gain of the sensor and the
flexion rigidity, the reduced gains were k { 1.13, 0.74,= − −
0.57, 0.37, 0, 0.37− − , 0.57, 0.74, 1.13}. The experimental
values of β are deduced from the measured resonance
frequencies. Two values of the tip mass to bender mass ratio
μ were considered ( {0.06, 0.54}μ = ). The experimental

results are in good agreement with the theoretical
prediction.

The effects of the CL on the dissipation are now
examined. Due to the variation of β with respect to k, the
modal shapes jψ are modified, and therefore so are the modal

forces jϕ (41). This is depicted in figure 6 (top) for the two

first modes. Moreover, they affect the modal damping, as can
be seen in relations (43) and (44). In this case, assuming that
the cross-coupling of the modes is negligible near the mode

Figure 3. Theoretical effect of the normalized feedback gain k on the
wave number β.

Figure 4. Theoretical effect of the normalized feedback gain k on the
modal shapes.

Figure 5. Theoretical (th.) and measured (exp.) wave number β
versus normalized gain k.
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resonance since the considered mode dominates, it is possible
to express the CL damping factor as follows:

( )r l s l l
1

2
( ) ( ) ( )j j q j q j j,11 ,1 ,1ξ ξ ψ ψ ψ′ = − +

where

r
l

s
R

l
and .q q3

fl
2

2

τ κ
= − =

The curves of the damping versus k for the case 0.06μ = are
presented in figure 6, and it can be seen that the feedback has
a clear impact, especially on the first mode. Note that to
obtain these curves the OL damping was estimated from the
OL quality factor on the frequency response. For both modes,
the damping vanishes as the gain tends to low values, which
indicates a possible instability. The predicted resonance curve
of the tip vibration amplitude and phase shift at imposed
acceleration are depicted in figure 7. The model predictions
are in good agreement with the experiment, as for the
resonance amplitudes and frequencies. Still, some discrepan-
cies can be found, as the experimental resonance curves are
non-symmetric, especially for low values of damping. Tests
showed that the resonance curves are different for increasing
and decreasing frequency sweeping and present amplitude
jumps, which is typical of piezoelectrics (soft Duffing
resonance). This is out of the scope of the model, and the
tests presented in figure 7 are obtained for a decreasing
frequency sweep and small acceleration amplitude (0.5 g).
Damping is also correctly estimated, in the limit of the model.
In figure 8 predictions of the amplitude are compared to
experience (top). Furthermore, predictions of the model

taking into account the damping introduced in the CL by
the electrical circuit are compared to the prediction including
only the mechanical (OL) damping (bottom). This clearly
illustrates the combination of both modal forces and damping
in the CL. It can be noted that as predicted the system is close
to instability, as the feedback gain approaches high positive
values and the Bode diagram cannot be plotted due to noisy
measurements.

4.2.3. Current at resonance. Finally, figure 9 compares the
measured and predicted currents delivered by the amplifier to
the piezoelectric device at the mechanical resonance
frequencies. The theoretical current is obtained by replacing
the expression of the derivative of the displacement into (13a)
and performing a time derivation:

( )i t Q t V w L t( ) ˙ ( ) 2 ˙ ˙ , .S
1 1 1 fl ,1

motional current


  
κ= = −

Again, the results are in good agreement. Additionally, the
motional current is represented to illustrate the effect of
variation of β due to k that results in an inflexion of the
motional current curve when the resonant frequency
increases.

Figure 6. Theoretical dependence of the modal forces (top) and of
the CL damping coefficients (bottom) on the normalized gain k for
different values of μ.

Figure 7. Comparison of the theoretical (plain lines) and measured
(dashed lines) dependences of the dynamic mechanical gain (top)
and phase (bottom) on the normalized gain k ( 0.06μ = ).

8

C Giraud-Audine et al



5. Conclusion

This paper proposes an alternative modal decomposition so as
to study the effects of feedback on the dynamics of a piezo-
electric device. The method is general and consists of the
following steps.

• The boundary conditions of the dynamic equation of the
system are modified to include directly the feedback as
written in (21). Two contributions can be distinguished:
reactive (non-dissipative) terms depending on even-time
derivatives of the displacement or the spatial derivative

of the displacement, and active terms depending on odd-
time derivatives of the same functions.

• A modal analysis, consisting in solving the partial
derivative equations when the dissipative terms are
cancelled. This results in a set of modal shapes (closed-
loop modal shapes) that presents some properties
similar to the classical modal decomposition: the
equation of motion can still be projected to form an
infinite system of independent equations depending
solely on time.

• Finally, the dissipative contributions are included as
external sources and the solution is then written as a
decomposition on the closed-loop modal basis.

The method has been applied to a simple setup that allows us
to derive the solutions and has been validated against
experimental results. The benefit of the approach is to
consider the closed-loop system as a whole system and
represent the electromechanical interaction including the
control. The classical modal decomposition, obtained by
considering the short-circuited resonance, can also be used
to obtain this, but the truncation of the projected solution is
still the key to the accuracy of the model near a resonance of
the closed-loop system. In contrast, the proposed method
can efficiently model the dynamics with a few modes.
Moreover, some issues such as stability or energy consump-
tion can be directly addressed. Therefore, the expected
benefits of the method are in the field of design or control of
devices where the decoupling of the mechanical structure
dynamics and the piezoelectric device is not verified, e.g.
energy harvesters such as the one used here, or atomic force
microscope tips.
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Appendix A. Duncan functions

Duncan functions are defined as

x x x as ( ) sinh( ) ( 1) sin( ) (A.1 )i
i= + −

x x x bc ( ) cosh( ) ( 1) cos( ) (A.1 )i
i= + −

with i {1, 2}∈ . They fulfil the property

s c s c s .1,1111 1,111 2,11 2,1 1= = = =

Figure 8. Measured and predicted mechanical gains at mechanical
resonance frequencies (top) and comparison of the model predictions
when including the CL damping introduced by the electrical circuit
(dashed) or not (plain) (bottom).

Figure 9. Measured and predicted mechanical gains and electrical
gains (dots and crosses) and motional current (triangles) at
mechanical resonance frequencies.
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Appendix B. Expression of the secular equation

Defining

R R
l

S S
l

T T
l

( ) , ( ) ,

( )

d d d d

d d

4

4

4

4

4

4

⎛
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⎞
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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β β β β

β β

′ = ′ =

′ =

the secular equation is obtained after some calculus:
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( )

(B.1)
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− − ′ − ′ − ′

× + =
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