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An analytical and numerical study for the torsional vibrations of viscous fluid-filled21

three-layer transversely isotropic cylinder is presented in this paper. The equations of22

motion of solid and fluid are respectively formulated using the constitutive equations of a23

transversely isotropic cylinder and the constitutive equations of a viscous fluid. The ana-24

lytical solution of the frequency equation is obtained using the boundary conditions at25

the free surface of the solid layer and the boundary conditions at the fluid–solid interface.26

The frequency equation is deduced and analytically solved using the symbolic Software27

Mathematica. The finite element method using Comsol Multiphysics Software results are28

compared with present method for validation and an acceptable match between them29

were obtained. It is shown that the results from the proposed method are in good agree-30

ment with numerical solutions. The influence of fluid dynamic viscosity is thoroughly31

analyzed and the effect of the isotropic properties on the natural frequencies is also32

investigated.33

Keywords: Fluid–structure interactions; transversely isotropic cylinders; viscous fluid;34

finite element method.35

1. Introduction36

A structure in contact with dense fluid (submerged and/or subjected to liquid)37

has the vibrational characteristics affected by the adjacent fluid. Especially in the38

torsional vibration of a circular structure in contact with a viscous fluid, the motion39

of the solid exerts shear stress to the viscous fluid. Meanwhile the fluid resists the40

motion of the solid, and in so doing the vibrational characteristics of the structure41

are influenced. The indepth study of various vibrational characteristics, as a function42

of material and geometrical parameters is necessary for a wide range of applications,43
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from physiology of blood flow through an artery, non-destructive evaluation of oil1

and gas pipelines, measurement of the fluid viscosity, to the geophysical prospecting2

in cased holes.3

The most general form of harmonic waves in a hollow cylinder of circular cross-4

section has been analyzed by Gazis [1959a, 1959b]. Mirsky [1965] has considered5

the most general type of elastic wave propagation in both hollow and solid circular6

cylinders of transversely isotropic material. Torsional motion has been discussed7

as a special case. Armenakas [1965] has also studied torsional waves in composite8

elastic rods.9

The case of torsional vibrations of transversely isotropic hollow circular cylinders10

in vacuum has been considered [Carcione et al., 1994] who were interested in the11

inspection of material properties effects on the phase velocity of the torsional modes.12

Kuldlicka [2006] has studied the frequency equations for torsional vibrations. Misra13

[1983] investigated the propagation of torsional waves in tubular bones. Kaul et al.14

[1981] presented the free vibration analysis for axially asymmetric torsional waves15

in an elastic, bimetallic rod with cylindrical core and concentric outer casing.16

The case of interaction between the torsional stress waves and the viscous fluid17

has been considered by Kim et al. [1991, 1993]. The research interested in the18

inspection of the effect of the adjacent viscous fluid on the propagation speed and19

attenuation of the torsional wave, and suggested viscosity measurement using tor-20

sional wave.21

In most studies mentioned above, the frequency equation of the vibration prob-22

lem is obtained without taking the effect of the fluid into account. The originality of23

this paper is to investigate the effect of viscous fluid on the modal analysis of three24

layered fibers placed in an finite transversely isotropic cylinder (see Fig. 1). This25

paper also discusses the influence of the properties of the multi-layered medium26

on the natural frequencies. Indeed, the free vibration is studied using the wave27

propagation method and the frequency equation is obtained. Comparisons of the28

results by the present method with those obtained by numerical finite element29

method have been carried out. It is shown that the present approach is simple,30

correct and also gives reasonably accurate natural frequencies.31

2. Theoretical Model of Transversely Isotropic Layers32

2.1. Governing equations33

Consider a transversely isotropic circular cylinder of finite length with three layers34

filled with viscous fluid in the cylindrical coordinate system (r, θ, z). Note that the35

z-axis is taken along the direction of fibers. The material parameters such as the36

elastic modulus, Poisson’s ratio, and the thickness of a layer may be different in37

different layers. Figure 1(a) shows the cross-section of a three-layer elastic cylinder38

filled with viscous fluid. The thickness of every layer is determined by radius a,39

a1, a2 and a3 where a and a3 are the radius of the inner and outer surfaces of the40

1650032-2



Page Proof

April 15, 2016 9:39 WSPC-255-IJAM S1758-8251 1650032

Torsional Vibrations of Fluid-Filled Finite Circular Cylinder

θ
r

Transversely

Fluid
medium

isotropic layers

a

a

a

a

1

2

3

x

(1)

o

(2)

(3)

y

(a) The cross-section of the system (b) Three-dimensional geometry

Fig. 1. The geometry of the cylinder with 3-layers filled with viscous fluid.

cylinder, respectively. It is assumed that the cylinder is free on the outer surface. The1

layers are assumed to be perfectly bonded. The system displacements and stresses2

are defined by the cylindrical coordinates r, θ and z. The length of the cylinder is3

L(0 ≤ z ≤ L). The values related to the inner, middle and external cylinders will4

be denoted by the upper indices (1), (2) and (3), respectively.5

In the case of a torsional vibration problem, all the quantities are independent6

of θ. The nonzero component of displacement is uθ. In the absence of body forces,7

the equation describing the motion of torsional vibrations is governed by8

∂σ(i)
rθ

∂r
+

2σ(i)
rθ

r
+

∂σ(i)
zθ

∂z
= ρi

∂2u(i)
θ

∂t2
(i = 1, 2, 3), (1)

where ρi the mass density, σ(i)
θz , σ(i)

rθ , the stress components, u(i)
θ the displacement9

components along circumferential directions, and t the time.10

Consider a three homogeneous and transversely isotropic cylinders with the two11

end surfaces parallel to the plane of isotropy. For the cylindrical coordinate system12

(r, θ, z) shown in Fig. 1, the generalized Hooke’s law for transversely isotropic solids13

can be written as14

σ(i)
θz = 2C(i)

44 ε(i)
θz , σ(i)

rθ = 2C(i)
66 ε(i)

rθ , (2)

where ε(i)
θz , ε(i)

rθ are the strain components, C(i)
44 and C(i)

66 are the elastic coefficients15

of layer i. The strains components related to the displacements are given by geo-16

metrical relations17

ε(i)
θz =

1
2

∂u(i)
θ

∂z
, ε(i)

rθ =
1
2

(
∂u(i)

θ

∂r
− u(i)

θ

r

)
. (3)
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Substituting Eq. (2) in Eq. (1) and taking into account Eq. (3), yields the following1

second order partial differential equation with constant coefficients2

∂2u(i)
θ

∂r2
+

1
r

∂u(i)
θ

∂r
−

u(i)
θ

r2
+

C(i)
44

C(i)
66

∂2u(i)
θ

∂z2
=

ρi

C(i)
66

∂2u(i)
θ

∂t2
, (i = 1, 2, 3). (4)

Now, to yield a solution for the proposed problem, the specific boundary and con-3

tinuity conditions that have to be satisfied at the interface of three-layer transverse4

isotropic cylinder filed with viscous fluid are, respectively, written as5

• At the solid–fluid interface, the continuity of the stress and velocity of the solid6

and fluid is given by7

σ(1)
rθ |r=a = σ(f)

rθ |r=a, jωu(1)
θ |r=a = vθ|r=a (5)

where vθ is the fluid velocity components along circumferential directions and8

σ(f)
rθ the fluid viscous stress components.9

• The outside (i = 3) surface of the three-layer cylinder are completely stress free.10

At the internal interfaces of layers (i = 1) and (i = 2), and also at (i = 2) and11

(i = 3), there is equality of each displacement and of stress12

σ(1)
rθ |r=a1 = σ(2)

rθ |r=a1 , u(1)
θ |r=a1 = u(2)

θ |r=a1

σ(2)
rθ |r=a2 = σ(3)

rθ |r=a2 , u(2)
θ |r=a2 = u(3)

θ |r=a2

σ(3)
rθ |r=a3 = 0

(6)

We therefore examine the equations of motion for the fluid13

∂σ(f)
rθ

∂r
+

2σ(f)
rθ

r
+

∂σ(f)
zθ

∂z
= ρf

∂vθ

∂t
(7)

where ρf is the density of the fluid. Since the value of amplitude of vibration of14

each transversely isotropic circular cylinder is small compared to its cross-sectional15

dimensions, it then follows that all nonlinear convective inertial effects in the fluid16

can be neglected. Moreover, the hydrodynamic loading on the transversely isotropic17

circular cylinder will be a linear function of its velocity. This implies that the fluid18

dynamics can be modeled as an unsteady linear Stokes flow. Assuming that the19

fluid is Newtonian, its constitutive equation is given by20

σ(f)
rθ = η

(
∂vθ

∂r
− vθ

r

)
(8)

where η is the dynamic fluid viscosity. Substituting Eq. (8) in Eq. (7), yields the21

following second order partial differential equation:22

∂2vθ

∂r2
+

1
r

∂vθ

∂r
− vθ

r2
+

∂2vθ

∂z2
=

1
ν

∂vθ

∂t
(9)

in which ν = η/ρf is the kinematic fluid viscosity.23

In this way, investigation of the considered wave dispersion problem is reduced24

to the study of the eigenvalue problem formulated through the Eqs. (4) and (7) and25

conditions (5) and (6).26

1650032-4
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2.2. Solution method1

For the investigation of the dynamical problem of three-layer transversely isotropic2

cylinder filed with viscous fluid, various solution methods, including numerical3

(FEM and BEM for example) and analytical are used. In the present study, for4

the solution of the problem under consideration, we use the analytical and numer-5

ical method, according to which, first, the exact solution of the problem is found6

and then the eigenvalue equations are obtained from the corresponding contact7

and boundary conditions. Finally, the solution of this eigenvalue equation is found8

numerically using Comsol Multiphysics [Comsol, 2008] Software. Assuming har-9

monic time variations, and using the classical technique of separation of variables,10

the displacement and velocity should be of the following form:11

u(i)
θ (r, z, t) = Ui(r) cos(kz) exp(jωt)

vθ(r, z, t) = V (r) cos(kz) exp(jωt)
(10)

in which k = mπ/L is the wave number in the z-direction, L is the length of the12

cylinder, ω is the angular frequency and j =
√
−1. Substituting expressions (10)13

into the Eq. (4) we obtain the following equation for Ui(r) and V (r):14

d2Ui(r)
dr2

+
1
r

dUi(r)
dr

+
(

β2
i − 1

r2

)
Ui(r) = 0

d2V (r)
dr2

+
1
r

dV (r)
dr

+
(

δ2 − 1
r2

)
V (r) = 0

(11)

In Eq. (11) the radial wave numbers βi and δ can be written in the following form:15

β2
i = k2

(
c2
p

c2
Ti

− C(i)
44

C(i)
66

)
, δ2 = − jω

ν
− k2 (12)

where cp = ω/k is the phase velocity and cTi =
√

C(i)
66 /ρi is the velocity of shear16

elastic wave in the multilayered transverse isotropic cylinder. Equation (12) shows17

that the torsional frequencies are crucially dependent on the ratio of the mate-18

rial constants C(i)
44 /C(i)

66 . The parameter kcTi

√
C(i)

44 /C(i)
66 defined by Eq. (12) is a19

resonance frequency parameter when the radial wave number βi is taken equal to20

zero. The frequencies are the cut-off frequencies and can be plotted as functions of21

the ratio C(i)
44 /C(i)

66 , for different values of the longitudinal wave number m. Equa-22

tion (11) is the general form of Bessel’s differential equations and its general solution23

is presented as follows:24

Ui(r) = AiJ1(βir) + BiY1(βir), V (r) = CJ1(δr) (13)

where J1 is the Bessel function of the first kind and Y1 is the Bessel function of25

the second kind. Ai, Bi and C are real unknown coefficients. The solution of the26

equation of motion given by Eqs. (4) and (9) may be applied directly to each layer27

of the cylinder. Thus, the complete solution for three-layer cylinder will contain six28

1650032-5
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integration constants Ai and Bi (i = 1, 2, 3). These constants may be determined by1

requiring the solution to satisfy the boundary and continuity conditions of cylinder2

Eqs. (5) and (6). The general solution of u(i)
θ depends on whether c2

p/c2
Ti

greater than3

C(i)
44 /C(i)

66 . However, we do not attempt to consider all the possible scenarios here.4

Because once the elastic constants are given, the general form for u(i)
θ in different5

frequency ranges can be identified accordingly. Direct substitution of the expression6

(13) with (10) into the stress relations (2) and (8), leads to7

σ(i)
rθ = C(i)

66

{
Ai

[
J ′

1(βir) −
J1(βir)

r

]
+ Bi

[
Y ′

1(βir) −
Y1(βir)

r

]}
cos(kz) exp(jωt)

σ(f)
rθ = ηC

[
J ′

1(δr) −
J1(δr)

r

]
cos(kz) exp(jωt)

(14)

where the prime signifies differentiation with respect to the argument (i.e., βir or8

δr). Thus, frequency (or wave speed) equation in the the multilayered transversely9

isotropic circular cylinder will be investigated by the use of Eqs. (5) and (6).10

Note that for an isotropic circular cylinder the set of equations (4) simplify and11

can be expressed as follows [Morse et al., 1946]:12

∂2u(i)
θ

∂r2
+

1
r

∂u(i)
θ

∂r
−

u(i)
θ

r2
+

∂2u(i)
θ

∂z2
=

ρi

µi

∂2u(i)
θ

∂t2

where µi is the Lamé constant and Eq. (12) becomes13

β2
i = k2

(
c2
p

c2
Ti

− 1

)

where cTi =
√

µi/ρi is the velocity of shear elastic wave in the isotropic layer.14

2.3. Frequency equation15

In this section, we shall derive the frequency (or wave speed) equation for the16

multilayered transversely isotropic circular cylinder. Combining the continuity and17

boundary conditions (5) and (6) with Eqs. (10), (13) and (14) yields for each mode18

number m the following linear system19

Mx = 0, xT = [C, A1, B1, A2, B2, A3, B3] (15)

The matrix M is defined as follows:20

M =





−M11 M12 M13 0 0 0 0

M21 M22 M23 0 0 0 0

0 M32 M33 −M34 −M35 0 0

0 M42 M43 −M44 −M45 0 0

0 0 0 M54 M55 −M56 −M57

0 0 0 M64 M65 −M66 −M67

0 0 0 0 0 M76 M77





1650032-6
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and whose elements are given in the appendix. For a nontrivial solution, the deter-1

minant of the matrix M must be equal to zero. Thus, the frequency equation can2

be obtained3

|Mpq| = 0 (p, q = 1, 2, . . . , 7) (16)

For given material and geometric properties, the frequency equation (16) is a tran-4

scendental relation between the angular frequency ω and the wave number k. For5

any value of k, the frequency equation will yield an infinite number of values of ω,6

each corresponding to a different mode of wave propagation.7

3. Results and Validation8

We consider the three-layer circular cylinder filled with a viscous fluid shown in9

Fig. 1 and assume that the radius of the internal circle of the inner cylinder is a and10

the thickness of the inner, middle and outer cylinders is h1 = a1 − a, h2 = a2 − a111

and h3 = a3 − a2, respectively. The resulting frequency equations of the three-layer12

model, one-layer model and coupled model cases of the cylinder is given in Eq. (16)13

are transcendental in nature with respect to the frequency ω and wavenumber β and14

δ. To obtain the roots of the frequency equation, the Mathematica Software [Math-15

ematica, 2010] is used. To validate the analytical results, the natural frequencies16

and mode shapes are also computed using Comsol Multiphysics FEM Simulation17

Software [Comsol, 2008].18

In One-layer model case, we show an example of an equal-material properties19

structure and thickness equal to a3−a. Thus, we consider the geometric and material20

properties of finite circular cylinder given by Kudlicka [2006] without fluid. In the21

three-layer model case, we have replaced the middle layer by an isotropic layer.22

As an example, we consider the geometric and material properties of finite circular23

cylinder given by Markus et al. [1995] without a viscous fluid. In this example, the24

three-layer cylinder, has the inner and outer transversely isotropic layers of equal25

thickness h1 = h3. The thickness of this middle layer is h2 = h1/10. The outer radius26

to the total thickness ratio a3/h = 2 and h = h2+2h1. The mechanical properties of27

the transversely isotropic layer are listed in Table 1 and the following values of the28

the isotropic layer (middle layer i = 2) were assumed: ρ2 = 1050 [kg/m3] (density),29

ν2 = 0.48 (Poisson ration) and E2 = 0.3 [GPa] (Young’s modulus).30

Table 1. The material and geometric properties of the three-layer transversely
isotropic cylinder filled with fluid.

Property C(i)
44 [GPa] C(i)

66 [GPa] ρi [kg/m3] hi/a η [Pa · s]

Inner layer (i = 1) 5 6 1576 10/21
Middle layer (i = 2) 5 6 1576 1/21
Outer layer (i = 3) 5 6 1576 10/21
Fluid 1000 1 1

1650032-7
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Table 2. First three roots ω of the frequency equation (16) in the case of one-layer
transversely isotropic cylinder filled with fluid for m = 1, 2, 3 and η = 1 [Pa · s].

Longitudinal mode Present FEM 100×(FEM-Present)/Present
number (m)

1 0.0147258 0.014727 0.008
1 0.0492623
1 0.103543
2 0.0148574 0.014858 0.004
2 0.0493939
2 0.103675
3 0.0150768 0.015078 0.007
3 0.0496132
3 0.103894

Table 3. First three roots ω of the frequency equation (16) in the case of three-layer
transversely isotropic cylinder filled with fluid for m = 1, 2, 3 and η = 1 [Pa · s].

Longitudinal mode Present FEM 100×(FEM-Present)/Present
number (m)

1 0.0147258 0.014727 0.008
1 0.0492623
1 0.103543
2 0.0148574 0.014858 0.004
2 0.0493939
2 0.103675
3 0.0150768 0.015078 0.007
3 0.0496132
3 0.103894

For the torsional natural frequencies of viscous fluid-filled three-layer trans-1

versely isotropic cylinder, the following concluding remarks could be drawn:2

◦ Tables 2 and 3 show the comparison of analytically and numerically obtained3

natural frequencies. The very good agreement is observed between the results4

of the present method and those of FEM and the relative difference ((FEM-5

Present)/Present) is ≤ 0.1%. Tables 2 and 3 also shows that the frequencies are6

in order with the modal parameter m. The frequency of mode (m = 1) is lower7

than that of mode (m = 2) for example.8

◦ In the case of one-layer transversely isotropic cylinder without fluid, the results9

in the Table 4 are identical to those presented in Kudlicka [2006], indicating the10

validity of our Model.11

◦ This is shown in Table 5, in the case of three-layer model in vacuo, for m = 1, 2, 3,12

where results are given for different values of the middle layer stiffness E2, that13

the natural frequencies are perceptibly altered by change in the middle layer14

stiffness. However, in the coupled model case, the middle layer stiffness E2 does15

not have any significant influence on the natural frequency and the two models16

(the three-layer and one-layer model) are hence almost equivalent as shown in17

Tables 2 and 3.18

1650032-8
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Table 4. First three roots β of the frequency equation (16) in the case
of one-layer transversely isotropic cylinder for m = 1, 2, 3.

Longitudinal mode number Present [Kuldlicka, 2006] Present
(m) β β ω

1 3.4069 3.407 6657.98
1 6.4277 6.428 12547.28
1 9.5228 9.523 18584.55
2 3.4069 6689.26
2 6.4277 12563.90
2 9.5228 18595.78
3 3.4069 6741.07
3 6.4277 12591.58
3 9.5228 18614.48

Table 5. Influence of the middle layer stiffness E2 [GPa] on the ω in the case of
three-layer transversely isotropic cylinder for m = 1 in vacuo.

m E2 = 0.1 E2 = 0.5 E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5

1 1487.5 3039.7 3976.3 4938.9 5441.3 5749.5 5957.2
1 11056.2 12640.2 12695.2 12719.2 12726.8 12730.6 12732.8
1 13102.0 13668.5 14253.7 15206.4 15918.9 16455.6 16866.9
2 1619.36 3106.63 4027.8 4980.67 5479.3 5785.5 5992.0
2 11061.3 12655.2 12710.5 12734.7 12742.5 12746.3 12748.7
2 13117.3 13683.4 14268.1 15219.9 15931.9 16468.2 16879.3
3 1817.9 3214.9 4112.2 5049.4 5542.0 5845.0 6049.5
3 11069.8 12680.3 12736.0 12760.6 12768.5 12772.6 12775.1
3 13142.8 13708.2 14292.1 15242.5 15953.6 16489.2 16899.8

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

a/L

Ω

One−layer model in vacuo
Three−layers model in vacuo
Coupled model

Fig. 2. The frequency curves for different models, as Ω = ωa/cT versus a/L.

◦ The frequencies given in Tables 2–5 are restricted to circular cylinders with1

L/a = 15. To study the dependence of frequencies on the geometric ratio of2

the cylinder, we plot the normalized frequency, ωa/cT , against L/a in Fig. 2.3

The frequency spectrum for the vibration modes is given in Fig. 2 for the three

1650032-9
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c

One−layer model in vacuo
Three−layers model in vacuo
Coupled model

Fig. 3. The phase velocity c = cp/cT dispersion curves in function of a/L for different models.

0.01 0,1 0.5 1 2

0.05

0.1

0.15

0.2

Viscosity η

ω

Third mode
Second mode
First mode

Fig. 4. First curves of the frequency in function of liquid viscosity for various modes.

models considered. Only the first mode (i.e., m = 1) is shown. It is noted that the1

frequency spectrum for the vibration modes m = 2 and 3 has similar behavior to2

that of m = 1.3

◦ Figure 2 gives the frequency spectrum Ω = ωa/cT of a cylinder for, respectively,4

one-layer model in vacuo, three-layer model in vacuo and the coupled model. cT5

denotes a reference velocity given by :
√

C66/ρ. The intersection of a mode curve6

with the frequency axis (Ω) indicates a cut-off in the sense that it is a propagation7

limit, i.e., a resonance with infinite wavelength.8

◦ Figure 3 shows the phase velocity (c) dispersion curve of three models adopted9

in this study with L/a = 15, where m = 1. The dependence of phase velocities10

c upon the ratio a/L and nature of model adopted is clearly illustrated. This11

behavior is also found for m = 2 and m = 3.12

◦ Figure 4 illustrates the influence of the dynamic viscosity of fluid on the angular13

frequencies with m = 1. As expected, Fig. 4 indicates that the angular frequencies
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(a) One-layer model in vacuo (b) Three-layer model in vacuo

(c) Coupled model

Fig. 5. Modal shapes of the three models for m = 1: the colors pertain to the displacement field.

(a) One-layer model in vacuo (b) Three-layer model in vacuo

(c) Coupled model

Fig. 6. Modal shapes of the three models for m = 2: the colors pertain to the displacement field.
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(a) One-layer model in vacuo (b) Three-layer model in vacuo

(c) Coupled model

Fig. 7. Modal shapes of the three models for m = 3: the colors pertain to the displacement field.

increase with the increase of the dynamic viscosity of fluid. This behavior is also1

found for m = 2 and m = 3.2

◦ In Figs. 5–7 we give some mode shapes of the three models adopted in this study.3

These mode shapes are identical to those obtained in El Baroudi et al. [2014] for4

an isotropic circular cylinder. It is seen from Figs. 5–7 that the anisotropy and5

viscous coupling do not affect the modal shapes.6

4. Conclusion7

An exact method has been presented for studying the coupled structural-fluid anal-8

ysis of a three-layer transversely isotropic finite circular cylinder filled with a viscous9

fluid using the wave propagation approach. For uncoupled analysis in the case of10

one-layer model, the natural frequencies of the transversely isotropic cylinder by11

the present method are compared with the results available in Kudlicka [2006].12

For coupled analysis the comparisons of the frequencies by the present method13

and numerical FEM are carried out. Through the comparisons it is possible to14

conclude that the present method is correct. It is concluded that the methodol-15

ogy proposed by this paper can be widely applied to infinite number of layers.16

This study takes into consideration the effect of fluid viscosity and the effect of17

layers, both of these factors are important in engineering. This method can be18
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easily applied to the measurement of the fluid viscosity in the case of submerged1

structures.2
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Appendix6

Elements of the matrix given in Eq. (16) is as follows:7

M11 = η[aJ ′
1(δa) − J1(δa)] (A.1)

M12 = C(1)
66 [aJ ′

1(β1a) − J1(β1a)] (A.2)

M13 = C(1)
66 [aY ′

1(β1a) − Y1(β1a)] (A.3)

M21 = J1(δa) (A.4)

M22 = να2J1(β1a) (A.5)

M23 = να2Y1(β1a) (A.6)

M32 = J1(β1a1) (A.7)

M33 = Y1(β1a1) (A.8)

M34 = J1(β2a1) (A.9)

M35 = Y1(β2a1) (A.10)

M42 = C(1)
66 [a1J

′
1(β1a1) − J1(β1a1)] (A.11)

M43 = C(1)
66 [a1Y

′
1(β1a1) − Y1(β1a1)] (A.12)

M44 = µ2[a1J
′
1(β2a1) − J1(β2a1)] (A.13)

M45 = µ2[a1Y
′
1(β2a1) − Y1(β2a1)] (A.14)

M54 = J1(β2a2) (A.15)

M55 = Y1(β2a2) (A.16)

M56 = J1(β3a2) (A.17)

M57 = Y1(β3a2) (A.18)

M64 = µ2[a2J
′
1(β2a2) − J1(β2a2)] (A.19)

M65 = µ2[a2Y
′
1(β2a2) − Y1(β2a2)] (A.20)

M66 = C(3)
66 [a2J

′
1(β3a2) − J1(β3a2)] (A.21)

M67 = C(3)
66 [a2Y

′
1(β3a2) − Y1(β3a2)] (A.22)
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M76 = a3J
′
1(β3a3) − J1(β3a3) (A.23)

M77 = a3Y
′
1(β3a3) − Y1(β3a3) (A.24)
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