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Abstract—The paper studies the impact of first and third 

current-harmonic repartition in a five-phase Permanent Magnet 

machine whose Electromotive Forces (emfs)  have first and third 

harmonics of the same amplitude. With a five-phase machine, it 

is possible for the torque production to achieve independent 

controls of the first and third harmonics of currents by using a 

vector control in each one of the two characteristic orthogonal 

sub-spaces of the machine. The same torque quality as obtained 

with a three-phase machine with sinusoidal emf can be thus 

obtained with a non-sinusoidal emf and with one more 

supplementary degree of freedom for the control. Based on the  

Maximum Torque Per Ampere (MTPA) strategy used for three-

phase machines, a comparison of the obtained torque/speed 

characteristics of the machine is achieved using either one or two 

harmonics.  The voltage limits imposed by the Voltage Source 

Inverter and two different values of the maximum allowed 

current densities are taken into account for obtaining the 

optimum repartition between first and third harmonics of 

currents: it appears that at first, from the point of view of 

efficiency, the MTPA is not optimal except for low speeds and 

secondly that the repartition of currents is not trivial and 

depends for example on the considered maximum current 

densities.   

Keywords—Interior magnet machine; Multi-phase machines; 

Maximum Torque Per Ampere; Copper losses, Core loss, PM 

losses, effeciency 

J       current density in (A/mm
2
) 

condS conductor surface  

Tem  Torque produced by the machine 

1I first harmonic current amplitude  

3I third harmonic current amplitude  

1 first harmonic current phase 

3 third harmonic current phase 

dcV voltage of DC bus . 

sR stator resistance of one phase 

 phase flux 

1d flux of d axis in primary machine 

1q flux of q axis in primary machine 

3d flux of d axis in  secondary machine 

3q flux of q axis in secondary machine 

 p  number of poles pairs.  

1di current of d axis in primary machine 

1qi current of q axis in primary machine 

3di current of d axis in  secondary machine 

3qi current of q axis in secondary machine 

I. INTRODUCTION  

Nowadays, researches intensively explore multi-phase 
machines due to  their advantages such as high torque density 
and fault tolerance but also for a more basic reason: the 
current per phase is reduced when the phase number increases. 
For a given value of DC bus voltage, the number of phases is 
now a design parameter when chosing the adequate power 
components [1-3]. It is currently the case for very high power 
drives (>5 MW) with IGBT transistors or for very low voltage 
(<48V) drives of significant power (>10kW) with MOSFET 
transistors. These advantages make multi-phase drive a 
preferred choice especially in embedded marine and hybrid 
automotive systems with fault-tolerant capability and low 
volume and mass allocation. The compactness of these 
multiphase machines is due to their ability to produce torque 
without pulsation even with non-sinusoidal currents and non-
sinusoidal emfs [4-5]. The higher the number of phases is, the 
higher the number of harmonics which can contribute to the 
the torque production is and this can be done with a simple 
vector control similar to the one of a three-phase machine with 
sinusoidal emf. Fault-tolerant and discrete submarines are thus 
using twelve or twenty six phases [6]. Nevertheless, a high 
number of phases impact the cost since the number of drivers 
and current sensors is increased. Therefore a trade-off between 
torque density, control and cost has to be found when 
choosing the number of phases. Consequently, the choice of  
five phases appears, for low cost applications, as the first 
solution which allows the utilization of both first and third 
harmonic current to produce torque. Since the five-phase 
machine has two degrees of freedom for the control, searching 



the optimal currents that maximize torque is a complex 
problem, especially in the flux weakening zone [7] when 
working within limits for voltages and currents. The problem 
is still becoming more difficult when taking into account 
saturation, saliency and the coupling between the variables, in 
addition to other minor effects-generally neglected-like slot 
effect and the emf harmonics. In fact, neglecting any of this 
behavior can lead either to underestimation or overestimation 
of the machine performances [8][9]. Under all this 
assumptions, it is quite difficult to find analytically the 
optimal current references. So we have to solve the problem 
numerically. 

In this paper, the aim is to explore the maximum capacity 
of the machine when the Maximum Torque Per Ampere 
strategy is applied taking account the whole saturation effects 
(currents, voltages and flux). In order to analyze the impact of 
bi-harmonic control, a comparison is done with the two cases 
where only one harmonic is considered. In section II, elements 
of the special bi-harmonic machine are given. In section III, 
the torque/speed characteristics obtained when operating at the 
voltage/current limits under MTPA strategy are given. 

II. MACHINE DESIGN 

A. Choice of  slots/poles combination 

Of course, the practical torque contribution of each 
harmonic depends on its amplitude in the emf that depends 
itself on the rotor structure (magnet distribution and iron 
geometry) and the stator winding distribution. Among many 
possible interesting combinations and distributions of winding, 
the fractional-slot concentrated ones with number of slots per  
pole and per phase Spp=0.5  is privileged in automotive 3-
phase machine design[4][10]. In fact, this winding distribution 
does not produce low  (sub)harmonic  in the MMF spectrum, 
then protecting the machine from harmful low-order 
harmonics rotating asynchronously with rotor and inducing 
eddy current losses  in the conductive parts of rotor including 
magnets and iron[4][11]. Furthermore, in five-phase machine 
with Spp=0.5, the winding factors of the third and first 
harmonics  are 0.951 and 0.588 respectively, thus increasing 
the third harmonic back-emf term: the machine is then capable 
to provide torques of the same order from both first and third 
harmonic if a suitable rotor is introduced[4][12]. Many magnet 
rotor can be used : Interior magnet, surface  mounted magnets, 
inset machines. The interior  permanent magnet rotor seems to 
be the better choice referring to the others:                 

 Interior magnet structures allow the flux concentration 
which boosts torque  and  improve torque density.  

 A mechanical and magnetic protection of magnets are 
insured. The iron around magnets prevent the MMF 
harmonics to cross the magnets, instead they cross the 
iron. Thus, low PM losses can be expected, which 
improves efficiency referring to surface mounted PM 
machines, where harmful harmonics directly cross the 
magnets, which causes significant losses.  

 Large flux weakening area due to the possibility to 
obtain higher value  of Ld. 

 Reluctant torque in  addition to torque from Permanent 
Magnet, which  improve machine. 

 Consequently, the use of winding which Spp=0.5 with 
Interior magnets rotor can lead to very  low permanent magnet  
losses, thus  making possible very high speed operation 
without magnet demagnetization hazard. This point is very 
important when designing electrical machines  with wide  flux 
weakening area, for marine or automobile applications for 
instance. As mentioned  above, the  fractional-slot 
concentrated winding is used. For five-phase machine and 
Spp=0.5, different combinations slots/poles are  possible: 

 ;...16/40;8/20;4/10;2/5/ polesslots  

The number  of  poles is chosen in order to limit the 
electrical frequency at a given rotation speed, thus helping to 
limit the resulting machine losses. 8 poles seems  to be  a good 
trade-off among the available choices, this combination also 
guarantees low losses  in permanent magnet . Consequently, 
our machine is  20 slots 8 poles 5 phases with interior 
permanent magnets. Some machine parameters are given in 
table (I):  

TABLE I.  GEOMETRICAL MACHINES PARAMETERS 

Stator radius 72.2 mm Poles  8 

Rotor radius 44.9 mm Slot number 20 

Stator yoke 5.8 mm Slot depth 20.5 mm 

Air gap 1 mm 
Slot width to 

slot pitch 
0.5 

Machine 

length 
92.3  mm 

Magnet 

thickness 
4 mm 

Holes 

maximum 

depth 

5.4 mm 
Rated current 

density 
5A/mm2 

Stator 

resistance 
1.11e-4  Rated speed 4300 rpm 

Magnet width 25.6 mm Rated torque 32 N.m. 

B. Stator and rotor structure 

Given the number of slots and poles, the machine has a 
periodicity equal to the greatest common divisor of the 
number of slots and poles. For this machine, the periodicity is 
equal to 4; consequently, the quarter of the machine (5 slots 
and 2 poles) represents the full winding pattern. The winding 
distribution is represented by the winding distribution matrix 
D given by [12]:   
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  The term D(m,n) represents the conductor of the phase n  in 
the slot m, so each term represents for which phases the 
conductors in a slot belong to. +1 represents a forward 
conductor and -1 a backward conductor. The choice of 



winding distribution should be accomplished by the design of 
a structure to satisfy the functionalities defined in the 
introduction.The classical rotor structure does not allow to 
obtain a significant third harmonic in the flux spectrum 
referring to the first harmonic. In fact, we need to modify the 
rotor structure to achieve this goal. In [4], the authors describe 
a new rotor structure that contains additional magnets in the 
rotor, which can boost the third harmonic flux. Similarly 
without adding extra magnets, we choose to introduce holes in 
the middle of the pole pitch, thus significantly changing the 
flux embraced by the winding. The new rotor structure is 
called "bi-harmonic rotor”. As shown in[13], the improvement 
of the third harmonic in rotor can increase the flux density in 
the air gap, thus reducing  the copper  losses. Figure (1) shows 
the winding distribution and illustrates the differences between 
the classical structure of rotor (-a)  and the new structure 
allowing to boost the third harmonic flux (-b).Notice that the 
winding star connection is adopted for this machine. 

 

                             (a)                                                       (b) 

Fig.1.  Rotor structure. a)mono-harmonic rotor, b) bi-harmonic rotor[4].  

 

                           (a)                                                            (b) 

Fig.2. Comparison of flux between mono-harmonic and bi-harmonic  rotors. 
a) Spectrum of flux. b) flux waveform.    

                            (a)                                                            (b) 

Fig.3. back-emf of bi-harmonic  rotor. a) Waveform. b) Spectrum.    

Figure (2)-a and (2)-b shows respectively in red the magnetic 
flux spectrum and waveform of the bi-harmonic rotor. It can 
be observed that the amplitude of third harmonic is significant. 
In figure (3), the corresponding emf is given. Compared with 
the three phase machines which are controlled in only one 

),(   sub-space obtained by applying the Concordia 

transformation, a five-phase can be controlled in two 

orthogonal sub-spaces ),( 11  and ),( 33   defined by a 

Concordia transformation extended to five-phase machines. 
Each sub-space represents a fictitious machine, which are 
mechanically coupled and rotates are the same speed rotation. 
The first machine is called primary machine and the other 
secondary machine.   Projection of the back-emf into the sub-
spaces is represented in figure (4)- over two electrical periods: 

 

Fig.4.  Projection of the back-emf in ),( 11  and ),( 33  sub-spaces 

For the projection into the sub-spaces ),( 11  (primary 

machine) we can observe harmonics 1 and 9 whereas, for the 
projection into sub-space ),( 33  (secondary machine), only 

the third harmonic effect is visible since the other harmonics 
terms are very low. This result is in accordance with the 
property of harmonic repartition for balanced vectors between 
the two-subspaces [4-14]. Given that the star connection is 
adopted and assuming a sinusoidal emf in each sub-space,   
therefore, three strategies of control are possible: supply with 
the first harmonic, supply with the third harmonic and supply 
with both harmonics in opposition with three-phase machine 
where it is possible to supply the machine by only one 
harmonic. 

III. TORQUE/SPEED CHARACTERISTICS UNDER MTPA CONTROL  

As previously explained, this machine with bi-harmonic 
rotor can be supplied by the first current harmonic, the third or 
both. In this part, we aim to determine for the three supply 
strategies, the torque/speed characteristics. 

A. MTPA  problem formulation 

Since each harmonic is associated to rotating dq-plane, the 
two dq- plane being orthogonal, the current density in one 
phase is given by :  

 

condS
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                        (2) 

 

For the three supply strategies the current density is chosen 
to 10  A/mm

2
 for transient operations and 5A/mm2 for steady 

state operations. The DC bus is always 48 V. 



I represent the current in the phase a, given by:  

)3cos()cos( 3311   tItII  

The MTPA problem  is formulated as follow: 
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Where Vphase is the peak value of voltage in a phase (i.e. phase 
1) given by (4): 

 

dt

d
IRV sphase


                         (4) 

and 
maxJ  is the maximum current density allowed,    is the 

flux in a phase. Due to significant saturation effect and 

complex magnetic circuit of PMSM, the inductances may vary 

largely during operation, which makes the analytical 

estimation difficult, in addition to the saliency effect. The 

saturation effect is mainly driven by the current density value. 

Consequently, we need to evaluate the parameters of the 

inductance matrix under several load conditions as proposed 

in [15][16][17]. In order to obtain a complete numerical model 

of the machine, the flux is simulated using the finite element 

FE under 4356 load conditions. For each current vector 

corresponding to a load condition, the flux winding is 

calculated numerically. Generally the expression of flux is: 
 ),,,(),,,( 33113311 qdqdmagnetqdqdwindingphase iiiiiiii  
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Where [id1;iq1;id3,iq3] is the current expressed in (d1,q1,d3,q3) 

frame obtained  by the Park transformation over the current  in 

),,,,( 3311 o  frame. The homopolar component is zero 

since winding is star connected.   

 The mean torque expression, used in the objective function is 

calculated as follow:   

)(3)( 33331111 dqqddqqdem iipiipT      (6) 

                     

 

 

where p is the poles pairs number. In fact, (6) is used to 

estimate the mean torque value, based on the flux calculated 

numerically. It should be highlighted that this model takes into 

account the magnetic coupling that exists between the two 

fictitious machines and the axis (d,q) in the same machine. 

Furthermore, saturation effect is considered in flux 

calculation. Taking into account these aspects can lead to 

better use of the allowed DC bus. It is worth noting that the 

purpose of this study is to determine the maximum torque that 

can be provided by the machine for each speed under current 

and voltage constraints. In the following sections, we will 

determine the torque/speed characteristic for each supply 

strategy. 

 

B. Torque/Speed Characteristics for two values of current 

density  constraints 

In this part, the MTPA is solved for two values of
maxJ : 

5A/mm
2
 and 10A/mm

2
. As mentioned above, the machine can 

be supplied either by first harmonic current, or third harmonic 

or both. For each value of current density, we will solve the 

MTPA problem for each current supply strategy. 

a) Problem  resolution  for 5J A/mm
2
 

   In this part the current density is less or equal to 5 A/mm
2
 

for the three supply strategies. Since the back-emf of the third 

harmonic amplitude is larger than the first harmonic as we can 

see in figure (3), the secondary machine is able to produce 

more torque than the primary machine for the same current 

density. And the primary machine has a base speed greater 

than the secondary machine. 

The problem resolution leads to the torque/speed characteristic 

presented in figure (5). As we can observe, with the secondary 

machine (or the third harmonic supply), the machine can 

provide more torque than the primary machine for the same 

current density. Furthermore, the supply of the machine by 

first and third harmonic together boosts the torque. It is worth 

noting that we have to reduce the current density for all the 

speeds above the base speed (> 3200 rpm) for the third 

harmonic supply to guarantee the maximum torque when 

exceeding the base speed.  

 
 fig.5. Torque/Speed characteristic for the each supply strategy(Jmax=5A/mm2) 

 

The current density for each strategy in function of rotation 

speed is given in figure (6), where the values are normalized 

with respect of the maximum current density Jmax (equal to 

5A/mm
2
 in this part).  

 



 
fig. 6. Current supply for each control strategy (Jmax=5A/mm2) 
 

b) Problem resolution for 10J A/mm
2
 

      Now the problem is solved for a current density less or 

equal to 10 A/mm
2
 for each supply strategy. Figure (7) 

represents the resulting torque/speed characteristic. The 

secondary machine is supposed to provide more torque than 

the primary machine for the same current density, but in this 

case, we observe the opposite. This is due to the magnetic 

saturation effect of the machine when supplied by the third 

harmonic current with 10A/mm
2
 current density.  

 
Fig.7. Torque/Speed characteristic for the each supply strategy (Jmax=10 
A/mm2) 

Figure (8) gives an insight of the machine flux densities for 
two cases: first harmonic supply and third harmonic supply for 
the same current density. As it can be observed, the machine is 
saturated when it’s supplied by the third harmonic current with 
a flux density exceeding 2 T in some spots of the machine, 
teeth in particular. 

 

            (a)                                                            (b) 

Fig.8.Magnet flux density variation for J=10A/mm2 (a) First harmonic supply. 
(b) Third harmonic supply. 

The current density for each rotation speed with repect to Jmax 

is given by figure (9). It can be noted that, even if the ratio 
J1/Jmax is constant in the case of both harmonics supply, the 
phase angles of the first and the third harmonic currents 
change  to maintain constant the voltage at speed higher than 
6000rpm. 

 

Fig. 9. Current supply for each control strategy (Jmax=10 A/mm2) 

Other than boosting torque, the simultaneous injection of the 
two current harmonics makes wider the flux weakening area 
and allows the machine to produce torque at very high speed 
under the same DC bus. Voltage induced by each current 
harmonic compensates the voltage produced by the other 
harmonic. As in the previous case where the current density is 
less than 5A/mm

2
, the current density should be reduced in  

the case of the third harmonic supply when exceeding base 
speed (>1700 rpm), and when exceeding 10000rpm  for the 
first harmonic supply. However, we continue to supply the 
machine by 10 A/mm

2
 for the harmonic injection over all the 

studied speed range.     

IV. ANALYSIS OF LOSSES AND EFFICIENCY WITH MTPA 

STRATEGIES  

       Generally, MTPA strategy targets minimization of copper 

losses without taking into account other losses like core losses 

and PM losses. So, it is important to examine the evolution of 

these losses for the optimal torque/speed characteristic 

founded in part III. In addition on frequency, these losses may 

also depend  on the amplitude of the third harmonic current 

and the corresponding phase. Losses calculation is followed 

by efficiency calculation. 

a) Analysis of losses and efficiency for J5 A/mm
2
 

    In this section, a calculation of the total losses which 

includes copper losses, core losses and PM losses is performed 

for the torque speed characteristic founded in part (III.B.a). 

Ansoft Maxwell 2D software is used to evaluate these losses. 

Figure (10) shows the corresponding results. Based on the 

results in figures (5) and (10), we can determine the efficiency 

versus speed for each supply strategy, which is represented in 

figure (11). At low speed (<2000 rpm), the machine supplied 

with both current harmonics has the higher efficiency, this is 

due to the fact that this strategy enhances torque in 

comparison of the two other strategies and the losses are 



equivalent for three strategies as it  can be observed in figure 

(10).  

 

Fig.10. Losses vs. speed for each supply strategy (Jmax=5 A/mm2). 

Thus, at low speed the MTPA strategy with both current 
harmonics is the best one when searching to maximize 
efficiency, but it seems not be optimal when searching to 
minimize losses. Between 2000 rpm up to 6000 rpm, it 
appears that if the required torque is lower than 22 Nm as seen 
in figure (5) than it is better to use only the first harmonic 
which is the optimal control  when searching for maximize 
efficiency and minimize losses.  

 

Fig.11. Efficiency vs. speed characteristic for the each supply strategy 
(Jmax=5 A/mm2). 

On contrary, the injection of third harmonic component with 
the first harmonic is necessary when the required torque is 
higher. Above 6000rpm the injection of both harmonics 
provides the highest efficiency and the lowest losses. It is 
probable that the corresponding current waveform produces 
less core and magnet losses than with only one harmonic. 
When supplied with only the third harmonic, the efficiency is 
low in comparison with the two other supply strategies. 
Consequently, third harmonic current alone should be avoided. 
In the case of first harmonic supply, the only factor that 
influences losses is the frequency. However in the case of the 
strategy of both harmonics, losses depend not only on 
frequency but also depend on the distribution of the current 
density between harmonics 1 and 3. At a given speed, if the 
third harmonic is very significant with respect to the first 
harmonic, we will expect high losses especially when 

functioning at high speed. This is the case of the speeds 
between 2000 and 6000 rpm in figure (5) where we have  
significant third harmonic current with respect to the first 
harmonic current, and this explains why efficiency is low 
when comparing with the first harmonic supply strategy, but 
we have to consider the very large torque gain. When speed 
exceeds 6000 rpm, the contribution of the secondary machine 
is reduced either by the reducing current density or flux 
weakening. Consequently, the efficiency becomes better than 
the first harmonic current supply as we can observe in figure 
(7).   

     In this part, we studied three supply strategies applied to 
the machine. The current density is less or equal 

( 5J A/mm
2
). The supply of the machine with both the first 

and third harmonic current is the better strategy that 
guarantees higher torque with better efficiency depending on 
the speed range. However, when considering losses, this 
strategy becomes more interesting at high speed (>8000 
rpm).In the next section, the current density will be less or 
equal to 10 A/mm^2 and the same supply strategies will be 
applied  

b) Analysis of losses and efficiency for J10 A/mm
2
 

     In this section, the current density is 10A/mm
2
. This 

current density is used in transient operation where we need 

high torque for a short time. Losses are calculated also for 

these cases. Figure (12) shows the corresponding results. 

Based on figure (7) and (12), the efficiency is evaluated as we 

can observe in figure (13). 

 

Fig.12.Losses vs speed characteristic for each supply strategy 
(Jmax=10 A/mm2). 

 

Fig.13.Efficiency vs. Speed characteristic for each supply strategy (Jmax=10 
A/mm2). 



From figure (11), the same conclusion as in the previous part 
can be drawn: the injection of the third harmonic alone in the 
machine should be avoided. The efficiency of this strategy is 
always the worst among the strategies. For the two other 
strategies, the efficiencies are equivalent for speeds lower than 
8000 rpm. The injection of both harmonic becomes interesting 
at high speed (higher than 8000 rpm). However, taking into 
account losses, the injection of the two harmonics may not be 
the optimal solution when considering thermal limitations of 
the machine. This strategy has the highest losses. The use of 
such supply must be limited to transient operation where high 
toque is required for a short time.   

V. CONCLUSION 

In this paper, Maximum Torque Per Ampere Strategy 
taking into account Voltage limitation was applied to five-
phase interior permanent magnet synchronous machine  with a 
special rotor  structure enhancing the third harmonic in the 
back-emf. Three control strategies are considered for this 
machine: first harmonic current supply, third harmonic current 
supply or both. Even if the winding factor is much higher for 
the third harmonic, it appears that the supply of the machine 
only by the third harmonic is never the best solution. Using 
both harmonics is always more interesting but not always 
because the two harmonics directly contribute each other to 
the torque production. With 10A/mm2 current density, the 
injection of third harmonic at high speeds (8000-14000 rpm) 
allows, when saturation of voltage occurs, to impose higher 
amplitude of first harmonic current, the torque due to the third 
harmonic being small. Moreover, it appears that if MTPA is 
optimal for torque production at given copper losses, it is not 
optimal at given losses, except at low speeds when core and 
Permanent Magnet Losses are negligible. For instance, it 
appears that between 2000 rpm and 6000 rpm, if high torque is 
required, first and third harmonic current can be injected but 
with a decrease of efficiency. So, the problem needs to be 
solved introducing core losses in optimization process which 
calculate current references. A new algorithm, searching to 
obtain Maximum Torque for a given level of total losses  
should be implemented. 

REFERENCES 

[1] E.Levi, “Multiphase electric machines for variable speed applocations,”  
IEEE on Trans. on Industrial Electronics, vol.55, no.5, pp.1893-1909, 
2008. 

[2] F.Scuiller, E. Semail and J.F. Charpentier, “Muli-crietiria based design  
approach of  multi phase permanent magnet low-speed synchronous 
machines,”  IET Electr. Power appl., 2009, vol.3, Iss.2, pp.102-110. 

[3] L. Parsa, “On advantage of multi-phase machines ,” Proc. IEEE-IECON 
2005 annual meeting, 6-10 November 2005. 

[4] B.Aslan, E.Semail, “New 5-Phase Concentrated Winding Machine Bi 
Harmonic Structure for Automotive Application,” IEEE XXIth 
International conference on Electrical machines (ICEM), Berlin-
Germany, September 2014. 

[5] B.Aslan, E.Semail  and  J.Lagranger, “General Analytical Model of 
Magnet Average Eddy-Current Volume Losses for Comparison of 
Multi-phase PM Machines with Concentrated Winding,”  IEEE Trans. 
on Energy Conversion, Vol. 29, no. 1, pages. 11, March 2014. 

[6] J.Eckert Siemens, “ Method for operating a submarine and submarine,” 
patent,  WO2012143210 , 26.10.2012. 

[7] Li. Lu, B.Aslan, L.Kobylanski, P.Sandelscu, F.Meinguet, X.Kastelyn 
and E.Semail, “Computation of optimal Current references for flux-
weakening of Multi-phase Synchronous machine,”  IECON (38 th 
annual conference of the IEEE Industrial Electronics society), Canada, 
2012. 

[8] L.Parsa, K.Namhum and H.A. Toliyat, “Field weakening Operation of 
High Torque Density Five-Phase PM motor drives, ” Proceedings of 
IEEE International confrence on Electric machines and drives 
(IEMDC2005), pp.1507-1512, 2005. 

[9] S. Xuelein W.Xuhui and C.Wei, “research on field weakening control of 
multi-phase PM synchronous motor,” (ICEMS) 2011 International 
conference on Electrical machines and Systems, Aug 2011. 

[10] A.M. El-Refaie, “Fractinnal-Slot concentrated windings synchronous 
permanent magnet machines : opportunities and challenges,”  IEEE 
Trans. on Industrial Electronics, vol.5, no.1, pp.107-121, Jan 2010. 

[11] N.Bianchi and E. Fornasiero “Impact of MMF space harmonic on rotor 
losses in fractionnal-slot permanent-magnet machines,” IEEE Trans.On 
Energy Conversion,vol.24,no.2, June 2009 

[12] F.Scuiller, E.Semail and J.F.Charpentier, “General modeling of the 
windings for multi-phase machines: Application for the analytical 
estimation of mutual stator inductance for smooth air gap machines” 
Eur. Phys. J. Appl. Phys. 50, 31102 (2010). 

[13] J. Pyrhonen, P.Kurronen and A. Paraviainen, “General  modelling of the 
windings for multi-phase machines-Application for the analytical 
estimation of mutual stator inductance for smooth air gap machines,” 
IEEE XVIIth International conference on Electrical machines (ICEM), 
Crete Island, Greece 2006. 

[14] X. Kestelyn, E. Semail , “Vectorial Modeling and Control of Multiphase 
Machines with Non-salient Poles Supplied by an Inverter,” Chap7 in 
book “ Control of Non-conventional Synchronous Motors”, ISTE Ltd 
and John Wiley & Sons Inc, 2012, 44 pages. 

[15] N.Bianchi, S. Bolognani, “Magnetic Models of saturated Interior 
Permanent Magnet motors based on Finite Element Analysis,” The 1998 
IEEE Industry Applications Conference, Thirty-Third IAS Annual 
Meeting. October 1998. 

[16] X.Jiang, B.Wang, W.Li and H.Zhu , “Inductance Parameter Simulation 
Analysis and Measurement of Permanent magnet synchronous motors, ” 
Trans tech Publications, Switzerland,Advanced Materials research Vol 
651(2013) pp931-936.  

[17] A. Soualmi, F. Dubas, D. Dépernet, A. Randria, and  C.Espanet, 
“Inductances estimation in the d-q axis for an interior  Permanent-
Magnet synchronous machines ,with Distributed windings, ” IEEE  2012 
XX International Conference on electrical machines, 2012. 

 

 

 

 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5899

