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ABSTRACT 
Today, designers use CAD modelers to define and
modify NURBS surfaces involved in the design of
complex shapes like car bodies or turbine blades.
The generated shapes often result from the use of
variational modeling techniques where user-specified
constraints define the shapes. However, for free-form
curve/surfaces, if too much constraints are added to
subparts of a configuration, the system will not be
solvable even if it is globally well-/under-
constrained. When this happens, it is useful to
identify locally unsatisfiable subparts of
configurations and provide the user feedback for
adjustment. Currently, in the domain of geometric
constraint solving, techniques are mainly developed
for Euler geometries rather than parametric entities
like free-form curves/surfaces. In this paper, we
apply the Dulmage-Mendelsohn decomposition
method to isolate structural over-constrained
subparts of configurations. Since structural over-
constraints do not necessarily mean unsatisfiable, a
Jacobian matrix analysis approach is taken to
further detect the inconsistent constraints. Indeed,
these numerical methods can be generalized to detect
overconstraints on free-form curves. We illustrate
our approach on different examples where results
show that Gauss elimination, though restricted to
linear cases, is more relevant in our context than
Dulmage-Mendelsohn decomposition. 

KEYWORDS 
Free-form curves, locally unsatisfiable or redundant
configurations, Dulmage-Mendelsohn
decomposition,  Jacobian matrix analysis 

1. INTRODUCTION 
With the evolution of manufacturing technologies 

and  advances in the domain of new materials,
today’s CAD modelers need to develop high quality
and complex shapes of products. Free-form shapes,
especially in the consumer products industry, not
only need to meet aesthetic criteria but also satisfy
functional criteria.  

The shape of a dashboard, a wing or a turbine blade
are examples of complex shapes obtained by
modifying  

NURBS surfaces to satisfy user-specified
constraints[12]. To satisfy these requirements,
designers are relying on computer aided design
(CAD) software. 

Free-form curves are often designed using
deformation through position, distance tangency,
and/or continuity constraints. However, unlike 2D
sketching where inconsistent constraints can be
identified interactively during the design process,
there is no indicator to analyze the constrained status
of free-form curves. This is partly due to the absence
of suitable techniques for solving algebraic problems
that underlie more complicated specifications. In this
paper, we seek to extend the shape vocabulary of
geometric constraint solvers to free-form class by
applying methods to analyze the structure of system
of equations. 

Therefore, our goal is to provide a diagnosis to the
user through the identification of inconsistent
constraints, subparts, and corresponding explanations. 

Plan of the article 

Section 2 summarizes over-constraints detection
methods from the geometric constraint solving
domain. In section 3, we manually apply a degree of
freedom analysis on different B-spline curves in
order to introduce the examples used in the following
sections. In section 4, we illustrate the use of the 
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Dulmage-Mendelsohn (D-M) decomposition 
algorithm to identify over-constrained parts of the 
corresponding equation systems. In section 5, we 
show how a Gauss elimination can be used in the 
linear case to further discriminate inconsistent and 
redundant constraints. Finally, we discuss about 
future work. 

2. RELATED WORK 

2.1. Selection of geometric constraint 
methods for overconstraints 
detection 

An over-constrained system is a system which 
contains redundant or conflicting constraints. We 
propose to classify the existing constraint solving 
methods into two categories with respect to the type 
of over-constraints detected. Graph based 
decomposition allow to identify structural over-
constraints. However these methods will not detect 
constraints that are numerically inconsistent with 
others in the system [15]. Algebraic methods, such as 
Gauss elimination or Grobner bases, thus generalize 
the notion of over-constraints. However time 
complexity is exponential in the non-linear case, thus 
limiting their use to small systems[8]. For a general 
constraint solver, common practice is to first exploit 
geometric domain knowledge to transform a 
constraint system into a set of small solvable 
subsystems and then compute and assemble the 
solutions of its subsystems. Our presentation in the 
following part is intended to reflect schemes that are 
more suited to isolate over-constraints within the two 
phases. 

Geometric constraint system decomposition 

Jermann and Trombettoni[16] have proposed to 
classify the existing decomposition approaches into 4 
categories according to the way they operate. 

1) The recursive division methods 

These methods, first introduced by Owen [17], work 
by recursively splitting the constraint system into 
subgraphs. It handles 2D constraint systems formed 
by points and lines linked by distance and angle 
constraints. These methods are used to detect 
whether a system is solvable, but will not provide 
explanations on which constraints cause the 
inconsistencies. 

2) The recursive assembly methods 

These methods adopt a bottom-up scheme by firstly 
finding rigid subsystems, called cluster and then 

iteratively aggregate rigid components into bigger 
ones[18]. This allows to find minimal rigid (dense) 
subgraphs. Later, Hoffman & al. [5] extends the 
method to locate 1-overconstrained dense subgraphs 
by modifying the incremental network maximum 
flow algorithm. Although this is sufficient when 
incrementally placing constraints during the design, 
it cannot be used when combining or editing 
constrained designs. 

3) The single-pass methods 

These methods decompose a system in a single 
iteration where all the components are produced 
simultaneously. There are two kinds of methods: 
maximum matching and weighted maximum 
matching. Serrano[26] describes the detection of 
over-constraints by finding unmatched constraints 
after applying maximum matching to the constraint 
system, where all constraints and entities have one 
degree of freedom. Also, D-M decomposition 
algorithm can  decompose an equation system into 
over-,well- and under-constrained subsystem based 
on maximum matching[4]. Latham and Middleditch 
extends the work of Serrano by proposing weighted 
maximum matching to identify overconstraints with 
an arbitrary number of degrees of freedom[6]. It is 
performed directly on the constraint graph of the 
geometric system, avoiding the need to translate it 
into an equation system. 

4) The propagation of degree of freedom 
approaches(PDOF) 

According to Trombettoni[19], these approaches are 
more suitable for under-constrained systems. 
Redundant equations must be detected and removed 
before launching PDOF. Therefore, they can not be 
used for overconstraints detection. 

Algebraic methods for detecting inconsistent 
system of equations 
In general, almost all of geometric constraints can be 
translated mechanically into a set of non-linear 
equations. The equations are usually algebraic, and 
non-algebraic formulations involving trigonometric 
functions can be avoided in nearly all cases[21]. 
Therefore, at the equation level, detecting geometric 
overconstraints turns into identifying a set of 
inconsistent or redundant equations among a system 
of equations.  

1) Numerical methods 

Equations are said independent if the Jacobian matrix 
has a full rank at the searched root. For linear 
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systems, the Jacobian matrix is composed of 
coefficients of equation systems, which is 
independent of the roots. Light and Gossard use 
Gauss Elimination(GE) to compute the rank as well 
as further identify invalid equations[14]. Serrano 
extends this work to check existence of 
overconstraints within strong connected components 
of equation systems[7].  However, such roots are 
hard to find in non-linear systems, therefore 
computing the Jacobian matrix is a difficult task. In 
rigidity theory, classical Numerical Probabilistic 
Method(NPM) studies the structure of the Jacobian at 
a random configuration[1]. Michelucci extends the 
NPM to study Jacobian structure at a configuration 
satisfying the incidence constraints (collinearities and 
coplanarities)[2].Based on the extended NPM, he 
then develops the Witness Configuration 
Method(WCM) to identify subtle dependences 
between geometric constraints[20].  

2) Symbolic methods 

Thanks to the consistency algorithm from algebraic 
geometry[8], for polynomials 

1 1, , [ , , ]s nf f x x⋅ ⋅ ⋅ ∈ ⋅⋅⋅� ,we compute a reduced 
Grobner basis(GB) of the ideal with respect to any 
ordering. If this basis is {1}, then the polynomials 
have no common zero in � ; otherwise, they must 
have a common zero. In theory, this algorithm can be 
used to identify all the over-constraints, but the 
computation cost is exponential and thus only limited 
to small systems. Other symbolic methods like Wu-
ritt as well as theory of determinants(TD) are also 
able to characterize over-constrained sets but have 
the same practical limitation as Grobner base. 

Constraint solving in terms of curves 
D.Podgorelec extends geometric elements to Bezier 
curves and ellipses by mapping them into auxiliary 
lines and points and uses local propagation to solve 
the resulting constraint system[9]. Y. J. Ahn 
implements the construction of quadratic Bezier 
curves subject to tangency and length or energy 
minimization constraints , which offers the ability to 
find curves that are to have prescribed clearance from 
points, circles or straight-line borders[10]. Iddo 
Hanniel & al. use symbolic polynomials to represent 
inequality expressions defined by conditions on 
curves and apply inequality constraints to 
coefficients of symbolic polynomials[11]. These 
methods are focusing on solving specific issues of 
CSP(constraint satisfaction problems) on curves, thus 

lacking the generality. To the best of our knowledge, 
general methods have not emerged yet. 

2.2. Dulmage-Mendelsohn 
Decomposition 

Dulmage-Mendelsohn decomposition algorithm 
allows to decompose a system (based on bipartite 
graph) into over-constrained, well-constrained and 
under-constrained part [22]. The well-constrained 
part can be further induced into irreducible subparts. 
Here we extend this method to analysis system of 

constraints represented in equation level. 

The decomposition has the following properties: 

1) G3  is structural over-constrained part, G1 is 
structural well-constrained part, G2 is 
structural under-constrained part 

2) The unmatched equations(UE) are either 
conflicting or redundant 

3) G1 , G2 and G3 are independent of the 
choice of the maximum matching   

Since here the numerical information of equation 
system is ignored, structural over-constrained part is 
subset of over-constrained parts of a system, that is to 
say, except G3, it is also possible for G1 to have 
overconstraints. Algebraic methods are proposed to 
further analysis the irreducible subparts contained in 
G3. For a discussion on this, the reader is referred to 
the work of Serrano[7]. In section 4.4, we will give 
such examples on B-splines. 

2.3. Jacobian structure of linear 
constraints 

The Jacobian matrix 
The Jacobian matrix is a matrix (n*m) containing the 
partial derivatives of each constraint equation with 
respect to each degree of freedom. It is usually 
defined and arranged as following: 

 
 D-M decomposition Figure 1
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Where thi   constraint is in the form:

( )1 2, 0i jf x x x =���                                                (2) 

Identify inconsistent equations 
Equations (2) are independent if the Jacobian has full 
rank at the searched root. For a linear constraint 
system, Jacobian matrix is the coefficient matrix of 
the equation system and by using Gauss Elimination 
methods, we can check the rank as well as further 
analyze its structure.  

Constructing the Jacobian of (2), the following 
system is obtained: 

1x x J f−′ = −                                                             
(3) 

Reformulate equation (3), we have: 

J x f∆ = −                                                               (4) 

Where x x x′∆ = −  . 

Use the transformation R and C, equation (4) 
becomes:             

TRJCC x Rf∆ = −                                                  (5) 

The structure of equation (5) is as following: 

  (6) 

Equation (7) represents the thi   row of equation (6), 
where subscript i = r+1…n, indicating a specific row 
of the matrix. 

( ) ( )T
i i iRJC C x R f∆ = −                                      (7) 

Since these rows of the product RJC are all zeros, in 

order to have a solution for ( )T
iC x∆ , the following 

must be satisfied: 

0iR f− =   i=r+1…n                                             (8) 

Hence, the non-zero terms of the thi  row in equation 
(8) indicate an inconsistent set of constraint 
equations.  

3. TEST CASES 
In this section, we consider constraints satisfaction 
problems only on curves since it allows us to 
illustrate our problems clearly. 

3.1. Simple Curves 
In this section, we set up three constraint satisfaction 
problems on B-splines with control points as 
variables. For the three configurations, constraints of 
curve 1 are the same while for curve 2, constraints 
are added incrementally. The objective is to 
minimize the deformation of the two curves, while 
satisfying the constraints. However, none of the 

 
Figure 2: Configuration One 

 
Figure 3: Configuration Two 
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configurations are satisfiable. In section 3.3, by 
applying degree of freedom(DOF) analysis based on 
local support property[23], these examples will  be 
used to illustrate several key concepts. 

 

3.2. Complex curves 
Here is a B-spline curve with 13 control points(Fig 
7). 10 of them (green ones) are free to move in order 
to satisfy 9 position constraints (p1-p9). Again, we 
want to minimize the deformation of the curve while 
satisfying the 9 constraints. Here again, the 
constraints can not be satisfied. 

3.3.  Degree of freedom analysis based 
on local support property 

We apply degree of freedom(DOF) analysis on these 
examples manually based on local support property.  

DOF analysis of  configuration two-configuration 
four  
According to the local support property of B-splines, 
constrained points on curve 1 and curve 2 are 
influenced by certain area of control points (Table 1). 
Each free control point has a DOF of 2 and position 
constraints constrains 1 degree of freedom. Table 2 
summarizes the DOF analysis results. 

3.3.1. DOF analysis of configuration six 

 
Figure 6: Configuration five-a B-spline curve 

 
Figure 4: Configuration Three 

 
Figure 5: Configuration Four 
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The curve is divided into 10 segments (Seg1-
Seg10). End points of each segment are 
calculated by P(Ui) and P(Ui+1), where Ui and 
Ui+1 are knots. Analysis result is shown in Table 
3.  

From Table 2 to Table 3, we know that a constraint 
system can be locally over-constrained but globally 
be under-, well-and over-constrained. Since all these 
constraint systems have no solution, an over-, under- 
and well-constrained system described from degree 

 

 
Figure 7:  Configuration six-The curve with 9 position constraints 

 p1 p2 p3 p4 p5 

Influenced by 0 2
1 1d d−  

1 3
1 1d d−  

1 3
1 1d d−  

0 2
2 2d d−  

1 3
2 2d d−  

Table 1:  Area of control points that influence the constrained points (configure two –
configure four) 

 Configuration two Configuration three Configuration four 

 Curve 1 Curve 2 Curve 1 Curve 2 Curve 1 Curve 2 

DOF 4 4 4 4 4 4 

DOC 6 0 6 2 6 4 

Status(local) Over Under Over Under Over Well 

Status(global) Under Well Over 
Table 2:  Constrained status of 10 segments (over/under/well is short for over-/under-/well-constrained) 

 Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7 Seg8 Seg9 Seg10 

Affected 
by 

0 0
0 3d d−  0 0

1 4d d−  
0 0
2 5d d−

 
0 0
3 6d d−  0 0

4 7d d−  0 0
5 8d d−  0 0

6 9d d−  0 0
7 10d d−  0 0

8 11d d−  0 0
9 12d d−  

Dof 2*4 2*4 2*3 2*3 2*3 2*3 2*4 2*4 2*3 2*2 

Doc 2*1 0 2*3 0 0 0 2*1 0 2*4 0 

Status Under Under Well Under Under Under Under Under Over Under 

Table 3: Constrained status of 10 segments (over/under/well is short for over-/under-/well-constrained) 
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of freedom point of view does not reflect its 
solvability. 

4. IDENTIFY LOCAL UNSATISFIABLE 
PARTS OF CONFIGURATIONS 

In this section, we try to automatically identify  
additional overconstraints in the previous 
configurations. As our initial trial, identification  
process is conducted at the level of equations.  

4.1. Equation-based representation of 
the constraint systems 

Representation of  constraints for configuration 
two 

0.4(0.  + 0.6x1) + 0.6(0.7x1 + 0.3x2) = 1         (e1) 

0.4(0.  + 0.6y1) + 0.6(0.7y1 + 0.3y2) = 1        (e2) 

(0.5x1 + 0.5x2) = 1.5                                          (e3) 

(0.5y1 + 0.5y2) = 1.25                                        (e4) 

 0.4 (1.2 + 0.6 x2) + 0.6 (0.3 x1 + 0.7 x2) = 2.0    (e5) 

0.4 (0. + 0.6 y2) + 0.6 (0.3 y1 + 0.7 y2)   = 1.0    (e6) 

4.1.1. Representation of constraints for 
configuration six 

Here we use equations to represent the 9 position 
constraints. They are: 

0.125 x1 + 0.59 x2 + 0.26 x3 + 0.02 x4 = 1.0      (e1) 

0.125 y1 + 0.59 y2 + 0.26 y3 + 0.02 y4 = 1.5      (e2)  

0.085 x3 + 0.63 x4 + 0.28 x5 = 3.5                      (e3) 

0.085 y3 + 0.63 y4 + 0.28 y5 = -0.5                     (e4) 

                        ···                                         (e18) 

Where e1 and e2 correspond to p1 position constraint, 
e3 and e4 correspond to p2 position constraint. For 
the other constraints, we use ei to represent them 
orderly. 

For brevity, only configuration two and configuration 
six are taken as examples for this method of 
identification. 

4.2. Bipartite graph representation of the 
constraint systems 

Representation of  constraints for configuration 
two 

 
Figure 8: Bipartite graph of configuration two 

Representation of constraints for configuration 
six 

 
Figure 9: Bipartite graph representation of configuration 

six 

Based on the equations described in section 4.1, 
bipartite graph representation of both systems is 
shown in Fig.8 and Fig.9, where vertices are used to 
represent variables and equations while edges 
indicate their relationship. 

4.3. D-M decomposition of the systems 
Decomposition of configuration two 

 
Figure 10: Maximum matching of configuration two 

 
Figure 11: Associated directed graph of the over-

constrained sub-graph 
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Decomposition of configuration six 

 

 
Figure 13: Associated directed graph of over-

constrained/under-constrained sub-graph 

Fig. 11 shows that the curve 1 is over-constrained 
which is consistent with the result shown in Table 2. 

For configuration six, Fig.13 shows that the 
constraint system is divided into four parts: two 
under-constrained parts, one over-constrained part 
and the rest is well constrained. The result matches 
well with Table 3. 

4.4. Limitation of applying D-M 
decomposition algorithm 

The over-/under-/well-constrained sub-systems 
decomposed by D-M algorithm is structurally over-
/under-/well-constrained. As stated in section 2.2, it 
is also possible for well-constrained sub-systems to 
have overconstraints. Here we show such examples 
on B-splines. 

On the segment 3 of configuration seven, the 
constrained point is restricted to two different 
positions at the same time(conflicting constraints:p3 
and p4); On the segment 9 of  configuration eight, 
the constrained point is restricted to the same 
positions twice(redundant constraints:p8 and p9) 

 

 
Figure 12: Maximum matching of configuration six 

 
Figure 14: Configuration seven- a b-spline curve with 8 position constraints 
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From Fig.16, we can know that even if we have 
modified several constraints in configuration seven 
and eight, results after D-M decomposition are the 
same: Seg 3 in configuration seven and Seg 9 in 
configuration eight are still well-constrained! This is 
contradictory to our modification in both 
configurations. In order to accurately find all the 
overconstraints, we resort to the algebraic methods. 

5. DETECTION USING JACOBIAN 
MATRIX ANALYSIS 

To further detect over-constraints in these two 
configurations (including both conflicting and 
redundant constraints), we apply Gauss elimination 
on their corresponding equation systems. As 
illustrated in Fig.17 and Fig.18, conflicting 

 
Figure 15: Configuration eight- a b-spline with 8 constraints 

 
Figure 16: Sub-graphs after D-M decomposition 

 
Figure 17: Analysis result of configuration seven 
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constraints (e7 and e8) and redundant constraints 
(e15 and e16) are detected. 

 

6. CONCLUSION AND FUTURE WORK 
In this paper we have tried to evaluate different 
methods for detecting over-constrained subparts of 
free-form based geometric configurations. First, 
considering the local support property of free-form 
curves, we have applied a DOF analysis and shown 
that it is not sufficient to detect all inconsistencies. 
Then, we have applied D-M decomposition to the 
corresponding equations systems in order to 
automatically detect structural over-constraints. 
Since these methods ignore the numerical 
information, inconsistent constraints may still be 
undetected. Therefore, we have shown that a 
Jacobian Matrix analysis can be used to fully 
discriminate conflicting and redundant constraint. 
However, the time complexity of the numerical 
analysis restricts its use to small cases when facing 
non-linear equations. 

In the geometric constraint solving domain, a 2-step 
approach is often used to circumvent this, where a 
graph-based method is first realized to decompose 
the system into subparts on which algebraic solving 
methods are applied. In future work, we plan to adapt 
these approaches to the detection of inconsistent and 
redundant constraints. 

Graph methods such as MFA are an efficient way of 
decomposing into irreducible subsystems[3]. 
However, in terms of constraint solving on free-form 
curves, as far as we know, there is no graph-
reduction methods that are able to structurally 
decompose a system while considering its geometric 
information. A perspective could be to develop a 
graph-based decomposition that takes into account 
the local support property. Combined with an 
algebraic method such as witness configuration[24, 

25], this could provide a general and reliable 
approach for the identification of overconstraints. 
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