
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/11375

To cite this version :

Paul TESSIER, Jean-Philippe PERNOT - Towards a priori mesh quality estimation using Machine
Learning Techniques - In: Tools and Methods for Competitive Engineering (TMCE’14), Hongrie,
2014 - Proceeding of Tools and Methods for Competitive Engineering - 2014

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/11375
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

TOWARDS A PRIORI MESH QUALITY ESTIMATION
USING MACHINE LEARNING TECHNIQUES

Jean-Philippe Pernot*, Paul Tessier
Arts et Métiers ParisTech
LSIS - UMR CNRS 7296

*corresponding author: jean-philippe.pernot@ensam.eu

ABSTRACT
Since the quality of FE meshes strongly affects the
quality of the FE simulations, it is known to be very
important to generate good quality meshes. Thus, it
is crucial to be able to estimate very early what can
be the expected quality of a mesh without having to
play in loop with several control parameters. This
paper addresses the way the quality of FE meshes
can be estimated a priori, i.e. before meshing the
CAD models. In this way, designers can generate
good quality meshes at first glance. Our approach is
based on the use of a set of rules which allow esti-
mating what will be the mesh quality according to
the shape characteristics of the CAD model to be
meshed. Those rules are built using Machine Learn-
ing Techniques, notably classification ones, which
analyse a huge amount of configurations for which
the shape characteristics of both the CAD models
and meshes are known. For an unknown configura-
tion, i.e. for a CAD model not yet meshed, the learnt
rules help understanding what can be the expected
classes of quality, or in another way what are the
control parameters to be set up to reach a given
mesh quality. The proposed approach has been im-
plemented and tested on academic and industrial
examples.

KEYWORDS
Finite Element Method, meshing, CAD model char-
acterization, mesh quality, a priori quality estimation,
Machine Learning Techniques.

1. INTRODUCTION
Numerical simulations play a key role in the study of
complex mechanical and physical phenomena. The
Finite Element Method (FEM) has been designed to
find solutions to boundary value problems whose
underlying complex mathematical equations cannot
be reasonably solved analytically. The idea is to ap-
proximate those complex equations defined over a
large domain while decomposing and connecting
many simple element equations over many smaller

subdomains, the Finite Elements (FE). In mechanical
engineering, the domain usually corresponds to a
CAD model on which specific material behaviour
laws as well as boundary conditions have been speci-
fied. The generation of the FE requires the meshing
of the CAD model which has potentially been
adapted in a pre-processing step. Since the quality of
the final simulation results strongly rely on the quali-
ty of the generated meshes, it is crucial to concentrate
on the meshing step which is driven by a set of con-
trol parameters [3].

a) b1) b2) b3)

Fig. 1. Evolution of the mesh quality when increasing the
number of elements (from b1 to b3) during the meshing of
a CAD model (a).

N Q≥0.5 Q<0.5 Qworst Qmean

207 104 (50.24%) 103 (49.76%) 0.311 0.515
1100 876 (79.64%) 224 (20.36%) 0.334 0.582
4647 4372 (94.08%) 275 (5.92%) 0.402 0.623

Table 1. Mesh quality a posteriori estimation.

Today, the meshing step is still a time-consuming
iterative process where engineers spend a lot of time
adjusting several control parameters (e.g. max devia-
tion, target element size, number of elements, local
refinements, etc.) before finding a good combination
that generates an acceptable mesh with respect to the
simulation requirements (e.g. without skinny ele-
ments causing problems which can ruin a simula-
tion). Often, the meshing is performed several times
in loop since it is not possible to evaluate the mesh
quality (e.g. aspect ratio, skew, taper, warp) before
having generated the mesh. Actually, it is admitted
that an element with an aspect ratio smaller than 0.5
can be considered as a “bad” element with respect to

the accuracy of the final simulation results [2]. Fig-
ure 1 shows three meshes (fig. 1.b1 to 1.b3) generated
from the same CAD model (fig. 1.a) but using differ-
ent element target sizes. It is clear that increasing the
number of elements improves significantly the mesh
quality thus resulting in less skinny and degenerated
elements having an aspect ratio smaller than 0.5 (ta-
ble 1). The worst and mean aspect ratios also get
better. Mesh refinements can also be foreseen to
adapt the size of the elements to the local configura-
tions. Since this process is not fully automated, engi-
neers still have to manually adjust the control param-
eters to find a good balance between the quality of
the mesh (to try to get more accurate simulation re-
sults) and the speed of the resolution (strongly de-
pending on the number of FE elements).

Actually, because there exists no bijective functions
between the control parameters space and the result-
ing mesh quality, the meshing process is necessarily
iterative. This is mainly due to the fact that this map-
ping between the mesh generator’s control parame-
ters and the resulting mesh quality strongly relies on
the characteristics of the shapes of the CAD model to
be meshed. Moreover, since the effects of the control
parameters overlap, it is even more difficult to cir-
cumscribe the parameters’ individual effects and
clearly identify simple rules to estimate the resulting
quality.

This article addresses such a complex issue of under-
standing the relationships and rules that drive the
quality of a mesh generated from a CAD model, its
shape characteristics and the mesh generator’s con-
trol parameters. A framework is set up and aims at
identifying those complex rules to be able to define a
priori, i.e. before meshing the CAD model, which
classes of mesh quality can be expected. It uses Ma-
chine Learning Techniques (MLT) to discover those
rules from a set of identified known configurations
[17]. Each configuration is made of a CAD model, its
associated shape characteristics, several meshes gen-
erated from different values of the control parame-
ters, and the classes of quality for each mesh. Shape
characteristics refer to various shape descriptors such
as a distance distribution function which characteriz-
es the thickness of the part over the entire surface, or
the ratio between the volume of the part and the vol-
ume of its oriented bounding box which characterizes
also how much the part is massive or empty. Each
generated mesh is analysed and classified according
to several mesh quality magnitudes such as the aspect
ratio which measures the stretching of the elements.

Once the rules have been learnt, it is then possible to
estimate a priori the classes of quality that can be
expected for a part on which shape characteristics
would have been extracted. Having such an a priori
estimation, the designers do not spend too much time
on the meshing issues since they can now better un-
derstand the impact of some control parameters on
the final mesh quality, and this without meshing the
CAD model at first. Of course, once the parameters
have been tuned, the meshing is performed one time
without looping.

This framework has been implemented and validated
on academic as well as industrial examples. It uses
CATIA V5 for meshing the CAD model and evaluat-
ing the mesh qualities of the learnt configurations,
Matlab for extracting the CAD model’s shape char-
acteristics and WEKA [8] to discover the rules and
reply them on unknown configurations.

2. RELATED WORKS
The proposed framework uses MLT to identify rela-
tionships between some characteristics of the CAD
models to be meshed on one hand, and the character-
istics of the generated meshes on the other hand.

2.1. Geometric models characterization
Reasoning on low-level geometric entities is not very
easy for designers who are more interested in manip-
ulating high-level description models and entities.
For example, in the CAD context, feature-based ap-
proaches have been set up to manipulate directly a
set of faces through the feature concept [5][6]. To be
more efficient and closer to the way people think, it
is therefore important to focus on more advanced and
structured approaches that use high-level quantities
and models together with their associated semantics
[1]. Thus, extracting shape characteristics from geo-
metric models is an important field of research which
finds numerous applications such as shape matching,
shape retrieval, objects clustering and classification,
design reuse, model comparison [4][7][9][10][11]
[12][13][14]. Most of the time, the idea is to make
the underlying algorithms work on high-level shape
descriptors built on top of low-level geometric mod-
els and data structures.

Many shape descriptors can be defined to character-
ize geometric models. However, to characterize CAD
models, it is important to underline that among the
various shape descriptors, we have been focusing on
those that could be most closely related to the mesh-
ing issue. Effectively, during the learning phase, the

MLT will use those shape descriptors in place of the
geometric models themselves. Therefore, having too
few descriptors or not meaningful descriptors may
generate invalid rules, whereas with too many de-
scriptors the rules identification process can become
more complex. Thus, a good balance has to be found
with the selection of the most important ones which
should also not overlap.

As demonstrated in [16], the so-called distance dis-
tribution, inspired from the work of Osada et al. on
the D2 shape distribution descriptor [15], is a good
mean to characterize the evolution of the thickness of
an object. Osada et al. use the distance distribution to
characterize the overall shape of the object and dis-
criminate objects with different gross shapes. It is
computed by measuring the distance between points
sampled over the surface. As developed in section
4.1, the D2 shape distribution descriptor has been
adapted to our needs. It takes into account weighted
distances between triangles instead of points. Other
shape descriptors are also extracted from the CAD
models: dimension of the Oriented-Bounding Box
(OBB), volume of the object and volume of the
OBB, ratio between those two volumes, overall area
of the object (see section 4.1).

Considering the FE meshes, we have been focusing
on classical descriptors even if there exists a huge
amount of descriptors for estimating the quality of
meshes [3]. Among them we focus on the aspect ratio
as well as on the ratio high-width (see section 4.2).

2.2. MLT and uses in design
Machine learning is a branch of artificial intelligence
which addresses the construction and study of sys-
tems that can learn from data [17]. MLT are widely
used in design activities [18] throughout the product
lifecycle to address optimization problems [19], deci-
sion making problems [20][21], shapes recognition
[22], item recognition and extraction for reuse,
recognition from point cloud and reverse engineering
[2]. Recently, MLT have also been used to find rules
to defeature CAD models for simulation [23].

3. OVERALL APPROACH
Our approach can be decomposed in several succes-
sive steps forming an integrated and modular mesh
quality estimation framework (fig. 2). Each step is
further explained in sections 4 and 5. The approach
being modular, each module can be replaced and/or
optimized at a later development stage.

Fig. 2. Overview of the learning and estimation phases.

During the learning phase (dot rectangle at the top of
fig. 2), the different steps are organized as follows:

1) Compute RAW data from a set of B-Rep mod-
els stored in .step files. The intrinsic characteris-
tics of the CAD models (thickness distributions,
ratios between the volume of the OBB and vol-
ume of the object, etc.) as well as the intrinsic
characteristics of the newly generated FE tetra-
hedral meshes (aspect ratios, ratios high-width,
etc.) are extracted and aggregated in a set of .txt
files forming the RAW data. This step is further
developed in section 4.

2) Adapt RAW data to the needs of the classifica-
tion algorithms. It consists in transforming the
RAW data in data which will be effectively used
as inputs of the learning step. It is also during
this step that a class of quality is assigned to
each configuration. The adapted information are
written in a .arff file which contains all the
known configurations on which the learning will
apply. This adaptation step is further developed
in section 5.

3) Learn the rules from the known configurations
so that the quality classes can be estimated from
the CAD model intrinsic characteristics.

Then, the estimation phase (dot rectangle at the bot-
tom of fig. 2) can start for a CAD model which has
not been used during the learning phase and for
which the mesh quality is unknown:

4) Compute and adapt CAD data only with the
algorithms and criteria of steps 1) and 2), except
that here the CAD model is not meshed and the
mesh quality is not computed.

5) Estimate the class of quality while reapplying
the rules found in step 3) to the data computed
in step 4). This corresponds to the a priori esti-
mation step which is further explained in section
6. The class of quality is estimated without hav-
ing to mesh the CAD model.

The implementation details are developed in section
6 which also gathers together the results.

4. COMPUTE INTRINSIC CHARACTER-
ISTICS OF GEOMETRIC MODELS

This section details the models, methods and tools
that have been developed to compute the so-called
RAW data from a B-Rep model and aggregate the
results in a .txt files. Figure 3 zoom in the sub-steps
of the “Compute RAW data” module first introduced
on figure 2. As depicted, the idea is to separate the
extraction of data from the CAD model from the
ones related to the quality of FE meshes generated
from the B-Rep model. To this aim, two pre-
processing steps are run. On one hand, the B-Rep
model is tessellated face by face and the resulting
soup of triangles is stored in a .stl file. Shape de-
scriptors are then computed. The adopted shape de-
scriptors are further developed in section 4.1. On the
other hand, the CAD model is meshed three times to
generate different LOD (Levels Of Details) tetrahe-
dral meshes stored in three .dat files. The .dat files
are then analyzed to extract the corresponding mesh
quality evaluations as explained in section 4.2. Both
the extracted shape descriptors and mesh quality
evaluations of the input B-Rep model are then aggre-
gated in a unique .txt file whose entries form a so-
called raw attributes vector (see section 4.3).

Fig. 3. Zoom in the “raw data computation” step.

4.1. CAD models’ shape descriptors
The shape descriptors extraction step works on a
soup of triangles stored in a .stl file. The diagonal of
the Oriented Bounding Box (OBB), its volume, the
object volume, the ratio between the object volume
and the OBB one, the object area, and the object

distance distribution are so many shape descriptors
extracted from the .stl file.

Computing the minimal OBB of an object consists in
finding a rectangular parallelepiped of minimal vol-
ume enclosing a set of vertices distributed on the
object surface. In our approach, those vertices are
directly extracted from the .stl file. To get this mini-
mal OBB, we use a famous and basic but efficient
method which is the Principal Components Analysis
(PCA). The PCA method computes the covariance
matrix of the set of vertices. Then, the three axes of
inertia are obtained by computing the eigenvectors of
the covariance matrix, and the OBB can be easily
defined in this local reference frame centred at the
object barycentre. The three DBBi dimensions of the
bounding box are computed as the difference be-
tween the maximum and the minimum coordinates of
the object points on the three axes. These dimensions
are ordered so that DBB1 ≥ DBB2 ≥ DBB3. The diagonal
of the OBB as well as its volume can be easily com-
puted as follows:

 diag୆୆ ൌ 	ට∑ D୆୆୧ଶଷ௜ୀଵ (1) 			V୆୆ ൌ D୆୆ଵ ൈ D୆୆ଶ ൈ D୆୆ଷ (2)

The calculation of the object area is straightforward
and can be obtained by summing up the area of each
triangle forming the object outer skin. Being Tk an
oriented triangle defined by its three ordered vertices
Pk, Pk+1 and Pk+2, the overall object area can be com-
puted as follows: 	Area ൌ ∑ AreaሺT୩ሻ୩ (3)

 with 		AreaሺT୩ሻ ൌ ሺ۾୩۾୩ାଵ^۾୩۾୩ାଶሻ. ܢ 2⁄ (4)

Similarly, the object volume V୫୭ୢୣ୪ is obtained by
summing up the signed volumes of the oriented tet-
rahedra whose bases are the oriented triangles Tk
forming the object outer skin, and with the object
barycenter as a common summit [16].

However, it would not be meaningful to build classi-
fication criteria on top of shape descriptors that
would use absolute basic quantities like area or vol-
ume. Hence, the computation of the minimal OBB is
used as a mean to evaluate how much the object is
filled or rather empty with respect to its bounding
box. As a consequence, the following ratio ݇୚ is
introduced as a shape descriptor: ݇୚ ൌ ୚ౣ౥ౚ౛ౢ୚ాా (5)

Finally, one of the main descriptors used in our work
is the so-called distance distribution, inspired from
the work of Osada et al. on the D2 shape distribution
descriptor [15]. It helps understanding the evolution
of the object thickness by summing up the occur-
rences of characteristic distances over the entire ob-
ject. It is computed from the soup of triangles stored
in the .stl file. To this aim, pairs of triangles facing
each other have to be identified using the following
functions:

ሻۻ௜ሺݒ	 ൌ ൞ 1		if	 ቂቀπ୅౟୆౟ሺۻሻ ൒ 0ቁ andቀπ୆౟େ౟ ሺۻሻ ൒ 0ቁ and ቀπେ౟୅౟ሺۻሻ ൒ 0ቁቃ0		otherwise (6)

with π୅౟୆౟ሺۻሻ ൌ detሺۯ୧۰୧, ,ۻ୧ۯ ୧ሻ (7)ܖ

wherein ۯ୧, ۰୧ and ۱୧ are the three summits of the
triangle T୧, and ܖ୧ the normal to the triangle comput-
ed with : 		ܖ୧ ൌ 	 ሺۯ୧۰୧^ۯ୧۱୧ሻ ⁄‖୧۱୧ۯ^୧۰୧ۯ‖ (8)

In other words, when ݒ௜ሺۻሻ ൌ 	1 the projection of ۻ
in the plane defined by T୧ lies inside the triangle.
Therefore, for each couple of triangle T୧ and T୨, the
following criterion is used to identify triangles facing
each other:

.௜൫۵୨൯ݒ ௝ሺ۵୧ሻݒ ൌ 	1 (9)

with ۵୧ and ۵୨ the barycenters of respectively T୧ and T୨. When two triangles are considered as facing each
other, the following distance is tagged as being a
characteristic distance and the corresponding value d୧୨ is put in a list of distances Lୢ :

 ݀୧୨ ൌ ฮ۵୧ െ ۵୨ฮ (10)

The list of Nୢ characteristic distances is then normal-
ized according to the diagonal of the OBB to get a
normalized list L୬: L୬ ൌ ୐ౚୢ୧ୟ୥ాా with ∀k ∈ ሼ1. . Nୢሽ, L୬ሾkሿ ∈ ሾ0,1ሿ (11)

Being OୡୡሺL, ,୩ݔ	 ୩ାଵሻ the function that computesݔ	
the number of elements of a list L which occur in the
range ሾݔ୩, ୩ାଵሿ, and N the number of slots used toݔ
split the interval [0, 1], the final normalized distance
distribution list 	L୮ is filled as follows:

 ∀k ∈ ሼ1, Nሽ, 	L୮ሾkሿ ൌ OୡୡሺL୬, ,୩ݔ	 ୩ାଵሻ/Nୢ (12)ݔ	

with ݔ୩ ൌ ሺk െ 1ሻ/N

Figure 4 shows the result of this algorithm on a half-
carter with N ൌ 50 slots. One can notice that 33% of

the characteristic distances refer to areas character-
ized by a thickness that is in between 2% and 4% of
the OBB diagonal. It reveals that the half-carter has a
main thickness.
Distance (%)

Tessellation

Thickness (%)

33%
OBB

4% 2%
Fig. 4. Normalized distance distribution on a half-carter.

4.2. Mesh quality descriptors
As introduced in section 3, for each B-Rep model,
three FE tetrahedral meshes are generated (fig. 3) and
analysed according to several descriptors:

- The aspect ratio of each element, the minimal,
maximal and mean values of those aspect ratio
as well as the percentage of good elements, i.e.
elements having an aspect ratio Qୟ ൒ 0.3 in the
present case. The aspect ratio of a tetrahedron is
computed according to the method presented in
[2];

- The ratio high-width Q୦ ൌ maxሺℓ୧ሻ/minሺℓ୧ሻ
of each element, being ℓ୧, ݅ ∈ ሼ1. .6ሽ the lengths
of the six edges of a tetrahedron.

Clearly, this set of quality descriptors could be ex-
tended in the future.

4.3. Raw vector data
All the data extracted from the B-Rep models and
corresponding tessellated and FE models can be con-
sidered as RAW data that should be adapted in a later
stage.

For example, the distance distribution is too complex
to be inserted as it in a Machine Learning algorithm.
Thus, the data need to be filtered and adapted so as to
get less independent values but still representing
accurately the distance distribution.

5. RAW DATA ADAPTATION AND PART
CLASSIFICATION

Before starting the learning process, the raw data
have to be adapted and the parts classified.

Distance (%)

Thickness (%)

p1

p2

x2 x1
Fig. 5. Extraction of key points on a normalized distance
distribution.

As explained in section 4.3, the normalized distance
distribution needs to be adapted to avoid inserting
several tens of distance values into the learning algo-
rithm. Among the various descriptors that have been
tested, some help understanding the shapes of the
parts and thus better evaluate the potential meshing
difficulties. Those descriptors are based on the identi-
fication of the two couples ሺxଵ, pଵሻ and ሺxଶ, pଶሻ. pଵ
is the greatest percentage of the normalized distance
distribution histogram and xଵ the corresponding rela-
tive distance. pଶ is the second greatest percentage
and xଶ the corresponding relative distance. Based on
those values, four descriptors are computed:

- DAଵ ൌ Nୡ N⁄ ∈ ሾ0, 1ሿ, being Nୡ the number of
characteristic distances displayed in the histo-
gram (Nୡ ൌ 15 on the histogram of fig. 5) and N
the number of slots (N ൌ 50 on the histogram of
fig. 5). The more this descriptor is important, the
more the part has an important number of char-
acteristic distances, the more the shapes are
complex (fillets, chamfers, …) and the more the
part will be difficult to mesh;

- DAଶ ൌ xଵ െ xଶ ∈ ሾെ1, 1ሿ. The more |DAଶ| is
close to 1, the more the two relative distances xଵ
and xଶ are distinct which means which may lead
to meshing problems. If DAଶ ൏ 0, it means that
the greatest relative distance is smaller than the

second one which can generate more meshing
issues than if this descriptor is positive;

- DAଷ ൌ pଶ pଵ⁄ ∈ ሾ0, 1ሿ. If this descriptor is close
to 1, it means that the two main relative distanc-
es coexist in the same proportions. Thus, if at
the same time |DAଶ| is important, this may also
lead to meshing issues;

- DAସ ൌ minሺxଵ, xଶሻ. The more this descriptor is
close to 0, the more it will be difficult to mesh
this part thus characterized by a small character-
istic distance.

At the end, the normalized distance distribution is not
used as it in the learning phase. It is adapted and
transformed into four DA୧ meaningful descriptors.

Now that all the descriptors have been extracted and
adapted, it is important to focus on the classification
of the parts. Effectively, since the idea is to use a
classification algorithm based on MLT, it is neces-
sary to provide a class for each configuration (i.e.
part in the present case) that will be analysed. In this
work, the classification is directly based on the quali-
ty of the three FE meshes generated for each part.

For the i୲୦ part, three FE meshes ୧ࣧ,୨, j ∈ ሼ1. .3ሽ are
generated and analyzed. It is supposed that there are
less elements in ୧ࣧ,ଵ than in ୧ࣧ,ଶ, and there are less
elements in ୧ࣧ,ଶ than in ୧ࣧ,ଷ. In the proposed im-
plementation, ୧ࣧ,ଵ has about 100 tetrahedra, ୧ࣧ,ଶ
about 1000 and ୧ࣧ,ଷ about 5000. For each mesh, the
percentage of good element PQ୧,୨ୟ is extracted, i.e. the
percentage of elements having an aspect ratio greater
than 0.3. Based on this, three classifiers are evaluated
as follows:

If PQ୧,୨ୟ ൒ 80% then CL୧,୨ ൌ 1,
Else If PQ୧,୨ୟ ∈ ሾ60%, 80%ሾ then CL୧,୨ ൌ 2
Else If PQ୧,୨ୟ ൏ 60% then CL୧,୨ ൌ 3.

Based on top of those classifiers, four classes are
distinguished:

If ൣ൫CL୧,ଵ ൐ CL୧,ଶ൯	OR	൫CL୧,ଶ ൐ CL୧,ଷ൯൧ then
The i୲୦ part is tagged as unlogical since there
is no reason why to have a mesh quality de-
creasing when the number of elements increas-
es;

Else If ൫CL୧,ଵ ൌ 1൯ then
The part is classed as “A” meaning that its
meshing is not difficult since we obtain good
results with few elements;

Else If ൣ൫CL୧,ଵ ് 1൯	AND	൫CL୧,ଶ ൌ 1൯൧ then
The part is classed as “B” meaning that its
meshing is more difficult than in the case of a
class “A” part.

Else If ൣ൫CL୧,ଵ ് 1൯	and	൫CL୧,ଶ ് 1൯	and
 CL୧,ଷ ൌ 1൧ then

The part is classed as “C” meaning that its
meshing is more difficult than in the case of a
class “B” part.

Else The part is classed as “D”.

In the proposed implementation, the number of clas-
ses has been reduced to decrease the complexity of
the learning phase. This is also due to the fact that
with few classes, we need to have fewer parts as in-
puts of the learning algorithm. One can also notice
that this classification has no upper limit in the sense
that the last class may contain parts difficultly mesh-
able as well as parts very very very difficulty mesha-
ble. Figure 6 shows examples of parts classified ac-
cording to the four above described classes.

A B

C D

Fig. 6. Examples of parts classified in four classes
according to meshing issues.

6. RESULTS & DISCUSSION
The proposed approach uses CATIA V5 and VBA
macros to tessellate the parts and export the triangu-
lation in a .stl file, Matlab to extract all the shape
descriptors from the soups of triangles and adapt
them to WEKA that is used in the last stage for learn-
ing and testing the rules.

The experimentation has been performed on a set of
industrial and academic parts including 28 parts of
each class A, B, C and D. Thus, the initial database is
made of 112 instances. For these parts, all the previ-
ously introduced shape descriptors have been ex-
tracted and adapted (sections 4 and 5). In addition,
the number of features (holes, ribs, etc.) is also ex-
tracted. To better evaluate the influence of the vari-
ous attributes during the experimentations, several
groups of attributes have been defined: Gଵ ൌ ሼbodies, shapes, pads, pockets, holes,		shafts, ribs,mirrors, chamfers, slots,constradedgefillets, groovesሽ ଶܩ ൌ ሼ݇୚ሽ ܩଷ ൌ ሼDAଷ, DAସሽ and ܩସ ൌ ሼDAଵ, DAଶሽ ܩହ ൌ ሼdiag୆୆, V୫୭ୢୣ୪, V୆୆, Areaሽ
The group of attributes are then combined in 5 exper-
imental lists as follows:

 ∀k ∈ ሼ1. .5ሽ, E୩ ൌ 	⋃ G୧௞௜ୀଵ (13)

For each experimental list, three classification algo-
rithms are tested: Naïve Bayes, Multilayer Percep-
tron and J48 Tree [17]. For each algorithm, the eval-
uation is performed in three different ways: using the
Training Set (TS) so that all the instances are used to
learn as well as to test, using Cross-Validation (CV)
with decompositions in sets of 10%, and using Per-
centage Split (PS) to learn on 66% and test on 34%.

Test E1 E2 E3 E4 E5

Naïve
Bayes

TS 41.1 46.4 47.3 63.4 67.9
CV 34.8 40.2 40.2 52.7 56.3
PS 36.8 42.1 44.7 60.5 55.3

Multilayer
Perceptron

TS 67.8 77.7 81.3 83.0 86.6
CV 50.0 52.7 55.3 50.9 53.6
PS 47.4 52.6 50.0 47.4 52.6

J48 Tree
TS 63.4 73.2 84.8 86.6 88.4
CV 47.3 53.6 46.4 53.6 56.3
PS 47.3 47.4 47.4 55.3 55.3

Table 2. Percentage of correctly classified instances de-
pending on the algorithm (Naïve Bayes, Multilayer Per-
ceptron, J48 Tree), the type of test (FS, CV, PS) and the
type of attributes (E1 to E5).

The results of the various experimentations are gath-
ered together in Table 2. Generally speaking, one can
notice that the use of the Training Set (TS) gives
better results than the use of the Cross-Validation
(CV) which gives better results than the Percentage
Split (PS). This is due to the fact that for TS, all the
instances are used to learn and to test. Therefore, the
test is performed on instances on which the system
has been trained. One can also notice that the per-
centage of well-classified instances is getting better
when the number of attributes increases. This cannot
become a general rule. However, it clearly demon-
strates that the selection of the attributes has a strong
impact on the classification results. More experimen-
tations Ek have to be performed to clearly identify a
restricted set of attributes.

Among the various experimentations, one can zoom
on E5 using the J48 tree with the CV testing option.
In this case, we get 56.3% of well classified instanc-
es. The confusion matrix is as follows:

 C୑ ൌ ൦17 9 2 06 17 4 10 6 13 91 5 6 16൪ (14)

The lines of the matrix gather together the infor-
mation relative to the classes. Line 1 corresponds to
class A and so on for the other lines. The rows corre-
spond to classes in which the tested instances have
been put when using the classification rules that have
been learnt. For example, 13 instances of class C
have been well classified as class C instances during
the testing phase. However, 5 instances of class D
have been classed as class B instances. Ideally, this
matrix should be diagonal. In our case, having num-
bers in the upper part of the matrix is not a real prob-
lem since the badly classified instances would be
somehow over-classed. Effectively, over-classing an
instance will generate over-quality which is accepta-
ble. However, having numbers under the diagonal
may generate badly meshed parts.

The output of the J48 algorithm is a decision tree as
depicted on figure 7. This tree has been obtained in
less than 0.1s on an Intel Core Duo 2.66GHz. Using
this tree, unknown examples can be classified easily
in any environment and there is no need to use WE-
KA afterwards. For example, if a part is classed B, it
means that about 1000 elements are enough to have a
good quality of the mesh. Said differently, if classi-
fied B, 100 elements won’t be enough to have a good
quality. Using such an approach, the mesh quality
can be estimated a priori, i.e. without having to mesh

the part. This is also verified by the fact that no at-
tributes used in the tree refer to the meshes.

DA1 ≤ 0.86
| VBB ≤ 1048480.29
| | Vmodel ≤ 520.92: B
| | Vmodel > 520.92
| | | shapes ≤ 1
| | | | pads ≤ 0
| | | | | shafts ≤ 0
| | | | | | DA2 ≤ -14: B
| | | | | | DA2 > -14
| | | | | | | DA2 ≤ 2
| | | | | | | | DA4 ≤ 2:
| | | | | | | | DA4 > 2: C
| | | | | | | DA2 > 2: D
| | | | | shafts > 0: C
| | | | pads > 0: B
| | | shapes > 1: C
| VBB > 1048480.29: D
DA1 > 0.86
| constradedgefillets ≤ 1
| | constradedgefillets ≤ 0
| | | DA4 ≤ 2
| | | | DA4 ≤ 1: D
| | | | DA4 > 1: B
| | | DA4 > 2
| | | | kv ≤ 0.24: B
| | | | kv > 0.24
| | | | | DA2 ≤ 26
| | | | | | pads ≤ 0
| | | | | | | DA4 ≤ 11: A
| | | | | | | DA4 > 11
| | | | | | | | DA1 ≤ 0.92: B
| | | | | | | | DA1 > 0.92: A
| | | | | | pads > 0: A
| | | | | DA2 > 26: B
| | constradedgefillets > 0: B
| constradedgefillets > 1: C
Fig. 7. Decision tree with 19 leaves obtained using the J48
algorithm on E5 and Cross-Validation for testing.

Finally, it is important to understand that the quality
of the learning step strongly relies on the number of
instances, the attributes that are selected, the adopted
classification algorithm and its parameters. Now that
the overall framework is set up, next steps include a
deeper analysis of those aspects. But clearly, the J48
tree algorithm already gives interesting results. The
rules are simple and can easily be implemented in
any CAD environment to help designers better esti-
mating the quality of their future meshes.

7. CONCLUSION
In this paper, a new framework has been set up to
help engineers understanding FE meshing issues a
priori, i.e. before meshing the parts. This is a first
step towards the definition of an a priori mesh quality
estimator. The process starts from a set of parts on
which we can extract characteristics relative to their
shapes, as well as characteristics relative to several
generated FE meshes. Based on those extracted quan-
tities/attributes, the parts can be classified. From this
classification, we use MLT to find interesting classi-
fication rules so that those rules can be reapply on
unknown data for which the class will be estimated a
priori. In the present implementation, four classes are
used to classify the parts according to the meshing
complexity while keeping in mind the following rule:
part difficultly meshable will generate bad quality
meshes if the number of Finite Elements is not great
enough.

The approach is modular and the different modules
can be optimized. It gives interesting and promising
results. We now have to concentrate on the way the
percentage of good classification can be optimized
and thus increased. Three directions are envisaged.
The first consists in reworking on the attributes used
to characterise the parts and the meshes. The second
concerns the adaptation phase where RAW data are
transformed in data adapted for the leaning phase.
The third is relative to the adopted MLT algorithms
and associated control parameters. In this last case,
the use of numeric classifiers will help us finding
rules to estimate a priori and numerically the mean
aspect ratio of the future not yet generated meshes. In
the future, the training set will also be enlarged to
host additional classified parts.

The proposed framework can also be foreseen for
other applications like the a priori estimation of stress
errors.

REFERENCES
[1] Aim@Shape, (2004), European NoE, Key Action

2.3.1.7 on Semantic-based Knowledge Systems, VI
Framework, URL: http://www.aimatshape.net.

[2] Bern, M. and Plassman, P., (2000), Mesh generation,
in Sack J.-R. and Urrutia J. (Eds), Handbook of Com-
putational Geometry, Elsevier Science Publishers, B.
V. North-Holland, Amsterdam, The Netherlands, pp.
291-332.

[3] Frey, P-J., George, P-L., (2008), Mesh generation:
Application to finite elements, second edition, Wiley,
London, 848 pages.

[4] Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y. and
Ramani, K., (2005), Three-dimensional shape
searching: state-of-the-art review and future trends,
Computer-Aided Design, Vol. 37, No. 5, pp. 509-
530.

[5] Pernot, J-P., Falcidieno, B., Giannini, F., Léon, J-C.,
Incorporating free-form features in aesthetic and en-
gineering product design: State-of-the-art report,
Computers in Industry, vol. 59(6), pp. 626-637, 2008.

[6] Shah, J. J. and Mäntylä, M., (1995), Parametric and
Feature-based CAD/CAM, John Wiley & Sons, Inc.,
New York.

[7] Tangelder, J. and Veltkamp, R., (2008), A survey of
content based 3D shape retrieval methods, Multime-
dia Tools and Applications, Vol. 39, No. 3, pp. 441-
471.

[8] http://www.cs.waikato.ac.nz/ml/weka/

[9] Li, M., Zhang, Y.F. and Fuh, J.Y.H., (2010), Retriev-
ing reusable 3D CAD models using knowledge-
driven dependency graph partitioning, Computer-
Aided Design and Applications, Vol. 7, No. 3,
pp.417-430.

[10] Demirci, M.F., van Leuken, R.H. and Veltkamp,
R.C., (2008), Indexing through Laplacian spectra,
Computer Vision and Image Understanding, Vol.
110, No. 3, pp. 312-325.

[11] Zhu, K., San Wong, Y., Tong Loh, H. and Feng Lu,
W., (2012), 3D CAD model retrieval with perturbed
Laplacian spectra, Computers in Industry, Vol. 63,
No. 1, pp. 1-11.

[12] Brière-Côté, A., Rivest, L. and Maranzana, R.,
(2012), Comparing 3D CAD Models: Uses, Methods,
Tools and Perspectives, Computer-Aided Design and
Applications, Vol. 9, No. 6, pp. 771-794.

[13] Bai, J., Gao, S., Tang, W., Liu, Y. and Guo, S.,
(2010), Design reuse oriented partial retrieval of
CAD models, Computer-Aided Design, Vol. 42, No.
12, pp. 1069-1084.

[14] Jayanti, S., Kalyanaraman, Y. and Ramani, K.,
(2009) Shape-based clustering for 3D CAD objects:
A comparative study of effectiveness, Computer-
Aided Design, Vol. 41, No. 12., pp. 999-1007.

[15] Osada, R., Funkhouser, T., Chazelle, B. and Dobkin,
D., (2002), Shape distributions, ACM Transactions
on Graphics, Vol. 21, No. 4, pp. 807-832.

[16] Pernot, J.-P. , Giannini, F. and Petton, C., (2012),
Categorization of CAD models based on thin part
identification, in proceedings of TMCE’12, Karls-
ruhe, Germany.

[17] Mitchell, T., (1997), Machine Learning, McGraw
Hill.

[18] Renner, G., (2004), Genetic algorithms in computer
aided design, Computer-Aided Design and Applica-
tions, Vol. 1, No. 1-4, pp. 691-700.

[19] Shi, B.-Q., Liang, J., Liu, Q., (2011), Adaptive sim-
plification of point cloud using k-means clustering,
Computer-Aided Design, Vol. 43, No. 8, pp. 910-
922.

[20] Lee, S.H., (2005), A CAD-CAE integration approach
using feature-based multi-resolution and multi-
abstraction modelling techniques, Computer-Aided
Design, Vol. 37, No. 9, pp. 941-955.

[21] Sun, R., Gao, S., Zhao, W., (2010), An approach to
B-Rep model simplification based on region suppres-
sion, Computers & Graphics, Vol. 34, No. 5, pp. 556-
564.

[22] Jayanti, S., Kalyanaraman, Y., Ramani, K., (2009),
Shape-based clustering for 3D CAD objects: A com-
parative study of effectiveness, Computer-Aided De-
sign, Vol. 41, No. 12, pp. 999-1007.

[23] Gujarathi, G.P., Ma, Y.-S., (2011), Parametric
CAD/CAE integration using a common data model,
Jou. of Manufacturing Systems, Vol. 30, No. 3, pp.
118-132.

