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Abstract

In this work the authors propose a new paradigm for the optimum design of variable
angle tow (VAT) composites. They propose a generalisation of a multi-scale two-level
(MS2L) optimisation strategy already employed to solve optimisation problems of
anisotropic structures characterised by a constant sti�ness distribution. In the frame-
work of the MS2L methodology, the design problem is split into two sub-problems. At
the �rst step of the strategy the goal is to determine the optimum distribution of the
laminate sti�ness properties over the structure, while the second step aims at retriev-
ing the optimum �bres-path in each layer meeting all the requirements provided by the
problem at hand. The MS2L strategy relies on: a) the polar formalism for describing
the behaviour of the VAT laminate, b) the iso-geometric surfaces for describing the
spatial variation of the sti�ness properties and c) an hybrid optimisation tool (genetic
and gradient-based algorithms) to perform the solution search. The e�ectiveness of
the MS2L strategy is proven through a numerical example on the maximisation of the
�rst buckling factor of a VAT plate subject to both mechanical and manufacturability
constraints.

Keywords:

Composite materials; Variable Sti�ness; Anisotropy; Variable Angle Tow Laminates; Buck-

ling; Computational modelling; Optimisation.

1 Introduction

Anisotropic materials, such as �bre reinforced composite materials, are extensively used

in many industrial �elds thanks to their mechanical performances: high sti�ness-to-weight

and strength-to-weight ratios that lead to a substantial weight saving when compared to

metallic alloys. In addition, the recent development of new manufacturing techniques of

composite structures, e.g. automated �bre-placement (AFP) machines, allows for going

beyond the classical design rules, thus leading the designer to �nd innovative and more

e�cient solutions than the classical straight �bres con�gurations. The use of the AFP

technology brought to the emergence of a new class of composite materials: the variable

angle tow (VAT) composites, [10, 12]. A modern AFP machine allows the �bre (i.e. the

tow) to be placed along a curvilinear path within the constitutive lamina thus implying

a point-wise variation of the material properties (sti�ness, strength, etc.). Of course, this

technology enables the designer to take advantage of the directional properties of com-

posites in the most e�ective way. The interest of using variable sti�ness (VS) laminates

is considerably increased during the last years: in the meantime some works on the a

posteriori characterisation of the elastic response of such materials have gained a lot of

attention from the scienti�c community of composites materials. For example [7] deals

with the problem of predicting the impact and compression after impact behaviour of VAT

laminates while [33] analyses the pre-buckling and buckling mechanisms in VAT laminated

plates through a proper evaluation of the non-uniform stress variation within the structure
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due to the variable sti�ness distribution. Although the utilisation of VAT laminates con-

siderably increases the complexity of the design process (mainly due to the large number

of design variables involved within the problem), on the other hand it leads the designer

to conceive non-conventional solutions characterised either by a considerable weight saving

or enhanced mechanical properties when compared to classical solutions, [26, 27, 28, 29].

One of the �rst works that tried to explore the advantages that can be achieved in terms of

mechanical performances (sti�ness, buckling behaviour, etc.) by using a VS plate in which

each ply is characterised by a curvilinear path of the tow (i.e. a VAT con�guration) instead

of the conventional straight-line �bre format is presented in [12]. The authors make use of

a sensitivity analysis and a gradient-based search technique to determine the optimal �bre

orientation in a given number of regions of the plate. This work proved that a considerable

increment of the buckling load of the structure can be obtained when employing a VAT

solution for the layered plate.

The complexity of the design process of a VAT laminated structure is mainly due to

two intrinsic properties of VAT composites, i.e. the heterogeneity and the anisotropy that

intervene at di�erent scales of the problem and that vary point-wise over the structure.

Moreover, a further di�culty is due to the fact that the problem of (optimally) designing

a VAT laminate is intrinsically a multi-scale design problem. Indeed, in order to formulate

the problem of designing a VAT composite in the most general way, the designer should take

into account, within the same design process, the full set of design variables (geometrical

and material) governing the behaviour of the structure at each characteristic scale (micro-

meso-macro). Up to now no general rules and methods exist for the optimum design of VAT

laminates. Only few works on this topic can be found in literature, and all of them always

make use of some simplifying hypotheses and rules to get a solution. An exhaustive review

focusing on constant and variable sti�ness design of composite laminates is presented in

[8, 9]. In [1] the �rst natural frequency of VS composite panels is maximised by considering

on the one hand the lamination parameters and the classical laminate theory (CLT) for

the description of the local sti�ness properties of the structure and, on the other hand,

a generalised reciprocal approximation algorithm for the resolution of the optimisation

problem. This approach is limited to the determination of the sti�ness properties of an

equivalent homogenised plate, since the lay-up design phase is not at all considered. In

[30] the least-weight design problem of VAT laminates submitted to constraints including

the strength and the radius of curvature is considered. The design variables are the layers

thickness and �bres angles which are represented by bi-cubic Bezier surfaces and cubic

Bezier curves, respectively. A sequential quadratic programming method is used to solve

the optimisation problem. A two-level strategy was employed in [34] to design a VAT

laminated plate by determining �rstly a discretised optimal distribution of lamination

parameters and secondly an optimum lay-up corresponding to the local distribution of
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lamination parameters. [34] represents the �rst attempt of applying a multi-scale numerical

strategy (i.e. a two-level design procedure) which aims at determining, at the �rst level,

the optimum local (i.e. point-wise) distribution of the sti�ness properties of the structure

(in terms of the lamination parameters of the laminate), while at the second level the

optimum path (in each constitutive layer) corresponding to the optimal distribution of

the lamination parameters resulting from the �rst step. However, the major drawback of

this work actually was in the determination of the curvilinear �bres-path of each layer:

the resulting path was discontinuous because the authors had not foreseen a numerical

strategy able to simultaneously meet on the one hand the continuity of the �bres path

(between adjacent elements) and on the other hand the optimum distribution of lamination

parameters provided by the �rst step of the procedure. A further work on the same

topic can be found in [35] where the problem of designing variable-sti�ness composite

panels for maximum buckling load is addressed by making use of the generalised reciprocal

approximation approach introduced by Abdalla [1]. In [35] the the two-level approach was

abandoned and the authors stated the problem by directly considering the �bre orientation

angles in each ply and for each element of the plate as design variables. However, as in [1],

this approach always leads to a discontinuous �bre path and, unlike the strategy proposed

in [1], it leads also to the emergence of a new issue: the resulting optimisation problem was

highly non-convex since it was formulated directly in the space of the layer orientations

(which vary locally over the plate). Accordingly, in [35] the authors conclude that such an

issue can be potentially remedied by formulating in a proper way the design problem of

VAT laminates in the framework of the two-level strategy and by trying to take into account

the issue of the continuity of the �bres path directly in the �rst level of the strategy where

the design variables are the laminate mechanical properties (i.e. the lamination parameters

in the theoretical framework of [34, 35]).

Another issue often addressed by researches on VAT laminates concerns the tow place-

ment technology which could introduce several di�erences (i.e. imperfections) between

the numerical model of the VAT composite and the real structure tailored with the AFP

process, if the design methodology does not take into account the manufacturability re-

quirements. To this purpose in [3] an issue linked to the AFP technology is addressed: the

overlap of tow-placed courses that increases the ply thickness (the build-up phenomenon)

thus a�ecting the structural response and surface quality of the laminate. The work of

Blom et al. [3] presents a method for designing composite plies with varying �bre angles.

The �bre angle distribution per ply is given while, using a streamline analogy, the optimal

distributions of �bre courses is determined for minimising the maximum ply thickness or

maximising the surface smoothness. An improved research on this topic has been devel-

oped in [31] where an algorithm is presented to optimise the �bre path in order to ensure

manufacturability. A further work focusing on the development and/or improvement of
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manufacturing techniques for tailoring VAT laminates in order to minimise the imperfec-

tions induced by the fabrication process is presented in [14]. The continuous tow shearing

(CTS) technique, utilising the ability to shear dry tows, is proposed as an alternative tech-

nique to the well-known AFP process. Later, the work presented in [14] has been improved

through the introduction of a computer-aided modelling tool [15] which can create accu-

rate �nite element models re�ecting the �bre trajectories and thickness variations of VAT

composites manufactured using the CTS technique.

As a summary of this non-exhaustive review on VAT composites it can be stated that

the main limitations and drawbacks characterising the vast majority of the studies on these

materials are:

• discontinuous distribution of the material parameters (e.g. lamination parameters)

describing the elastic response of the laminate over the structure;

• discontinuous distribution of the local �bres orientation angle within each ply;

• the use of linear/quadratic functions for representing the �bre path (which signi�-

cantly reduces the design domain);

• the lack of a proper and e�cient multi-scale approach for dealing with the (optimal)

design problem of VAT laminates;

• the absence of practical rules for taking into account the manufacturability/ techno-

logical constraints since the early stages of the design process;

• the applications which are limited only to �academic� cases and not extended to

real-world engineering problems.

To overcome the previous restrictions the present work focuses mainly on the generali-

sation and extension of the multi-scale bi-level (MS2L) procedure for the optimum design

of composite structures (initially introduced in [19, 20]) to the case of VAT composites.

The idea of a bi-level (or multi-level) procedure for designing composite structures is not

entirely new and has already been used in the past [11]. Up to now this strategy has been

employed only by few authors for the optimisation of composite structures but in each

study the link between the levels of the procedure and the scales of the problem was never

rigorously stated.

The authors and their co-workers already made use of the MS2L procedure for the

design and optimisation of several classes of hybrid anisotropic structures in the past [4, 5,

6, 17, 18, 19, 20, 25]. The MS2L design strategy employed in the previous works is a very

general methodology for designing composites structures: it is characterised on the one

hand by the refusal of the simplifying hypotheses and classical rules usually employed in

the framework of the design process of laminates, and on the other hand by a proper and
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complete mathematical formalisation of the optimum design problem at each characteristic

scale (micro-meso-macro). The MS2L strategy relies on the use of the polar formalism

(initially introduced by Verchery [39], and later extended to the case of higher-order theories

[22, 23, 24]) for the description of the anisotropic behaviour of the composite. The real

advantage in using the Verchery's polar method within the design process of composite

structures is in the fact that the elastic response of the structure at the macro-scale is

described in terms of tensor invariants, the so-called polar parameters having a precise

physical meaning (which is linked to the elastic symmetries of the material) [37]. On the

other hand the MS2L strategy relies on the use of a particular genetic algorithm (GA) able

to deal with a special class of huge-size optimisation problems (from hundreds to thousands

of design variables) de�ned over a domain of variable dimension, i.e. optimisation problems

involving a �variable number� of design variables [17].

As far as concerns the problem of designing VAT composites, the aim of this paper

is twofold. On the one hand a new paradigm for designing VAT laminates is introduced,

while on the other hand the MS2L optimisation strategy has been generalised in order to

deal with the design problem of VAT composites. Several modi�cations have been intro-

duced in the theoretical and numerical framework of the MS2L design procedure at both

the �rst and second levels. At the �rst level (laminate macroscopic scale) of the proce-

dure, where the VAT laminate is modelled as an equivalent homogeneous anisotropic plate

whose mechanical behaviour is described in terms of polar parameters (which vary locally

over the structure) the major modi�cations are: 1) the utilisation of higher-order theories

(First-order Shear Deformation Theory (FSDT) framework [22, 23]) for taking into account

the in�uence of the transverse shear sti�ness on the overall mechanical response of VAT

composites; 2) the utilisation of B-spline surfaces for obtaining a continuous point-wise

variation of the laminate polar parameters. Regarding the second-level problem (lami-

nate mesoscopic scale, i.e. the ply level) the main modi�cations are: 1) the utilisation of

B-spline surfaces for obtaining a continuous point-wise variation of the �bre orientation

angle within each ply; 2) a proper mathematical formalisation of the manufacturability

constraints linked to the AFP process in the framework of the B-spline representation. All

of these modi�cations imply several advantages for the resolution of the related optimi-

sation problems (both at �rst and second level of the strategy) that will be detailed in

Sections 3 and 4.

The paper is organised as follows: the design problem and the MS2L strategy are

discussed in Section 2. The mathematical formulation of the �rst-level problem is detailed

in Section 3, while the mathematical statement of the second-level problem (the lay-up

design) is presented in Section 4. A concise description of the Finite Element (FE) model

of the VAT layered plate is given in Section 5, while the numerical results of the optimisation

procedure are shown in Section 6. Finally, Section 7 ends the paper with some concluding
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remarks.

2 A new design paradigm for VAT laminates

2.1 Description of the problem

The optimisation strategy presented in this study is applied to a VAT laminated plate

composed of a �xed number of plies, hence the total thickness of the plate is �xed a priori.

The �bre tow is made of carbon-epoxy pre-preg strips whose elastic properties are listed

in Table 1.

Technical constants Polar parameters of [Q] a Polar parameters of
[
Q̂
]
b

E1 [MPa] 161000.0 T0 [MPa] 23793.3868 T [MPa] 5095.4545
E2 [MPa] 9000.0 T1 [MPa] 21917.8249 R [MPa] 1004.5454
G12 [MPa] 6100.0 R0 [MPa] 17693.3868 Φ [deg] 90.0
ν12 0.26 R1 [MPa] 19072.0711
ν23 0.10 Φ0 [deg] 0.0

Φ1 [deg] 0.0
Density and thickness
ρ [Kg/mm3] 1.58× 10−6

hply [mm] 0.125

a In-plane reduced sti�ness matrix of the pre-preg strip.
b Out-of-plane shear sti�ness matrix of the pre-preg strip.

Table 1: Material properties of the carbon-epoxy pre-preg strip, see [22, 23].

Concerning the mechanical behaviour of the VAT plate, further details have to be added

in order to clearly de�ne the theoretical framework of this work:

• the geometry of the laminated structure and the applied Boundary Conditions (BCs)

are known and �xed;

• the VAT plate is composed of identical plies (i.e. same material and thickness);

• the material behaviour is linear elastic;

• the VAT plate is quasi-homogeneous and fully orthotropic [4, 5, 25] point-wise, i.e.

these properties apply locally in each point of the structure;

• at the macro-scale (i.e. the scale of the structure) the elastic response of the VAT

plate is described in the theoretical framework of the FSDT and the sti�ness matrices

of the plate (whose components vary point-wise over the structure) are expressed in

terms of the laminate polar parameters [22, 23] which constitute also the design

variables of the VAT plate at the macroscopic scale.
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As far as concerns the mesoscopic scale of the VAT laminate (i.e. that of the constitu-

tive ply) no simplifying hypotheses are made on the rest of the design parameters of the

laminated plate, i.e. the design variables of the stack, namely the layer position and ori-

entation angle (which varies point-wise for each layer). Only avoiding the utilisation of a

priori assumptions that extremely shrink the solution space (e.g. the utilisation of sym-

metric balanced stacks to attain membrane/bending uncoupling and membrane orthotropy,

respectively) one can hope to obtain the true global optimum for a given problem: this is

a key-point in the proposed approach.

2.2 Description of the multi-scale two-level optimisation strategy

The main goal of the design strategy is the maximisation of the �rst buckling load of a

VAT plate subject to

• feasibility constraints on the material parameters (i.e. the laminate polar parameters)

governing the behaviour of the structure at the macroscopic scale;

• manufacturability constraints on the local radius of the tow (i.e. the local steering)

due to the considered AFP technology.

The optimisation procedure is articulated into the following two distinct (but linked) op-

timisation problems.

1. First-level problem. The aim of this phase is the determination of the optimum

distribution of the material properties of the VAT structure in order to minimise the

considered objective function and to meet, simultaneously, the full set of optimisa-

tion constraints provided by the problem at hand. At this level the VAT plate is

modelled as an equivalent homogeneous anisotropic continuum whose behaviour at

the macro-scale is described in terms of laminate polar parameters, in the theoretical

background of the FSDT [22, 23], which vary point-wise over the structure. Indeed

the distributions of the laminate polar parameters over the laminated plate constitute

the design variables of the �rst-level problem.

2. Second-level problem. The purpose of this design phase is the determination of the

optimum lay-up of the laminate composing the structure (the laminate mesoscale)

meeting the optimum combination of the polar parameters provided by the �rst

level of the strategy. At this stage, the design variables are the layer orientation

angles which vary point-wise in each ply (namely the �bre path) and, if needed, at

this stage the designer can add some additional requirements, e.g. constraints on

the elastic behaviour of the laminate, manufacturability constraints, strength and

damage criteria, etc.
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To the best of the authors knowledge only few research activities have been carried out

on the application of the bi-level optimisation procedure to the design problem of VAT

laminates [6, 30, 36]. Although these works focus only on �academic� cases and benchmarks,

they prove that, for a given geometry of the considered structure, the utilisation of a

VAT solution allows for obtaining superior mechanical characteristics when compared to a

classical multilayer solution composed of unidirectional laminae. This result is due to the

elastic behaviour of VAT laminates which �t point-wise the equivalent material properties

to the stress and strain �elds engendered within the structure. Despite some relevant

advances illustrated in [6], the bi-level approach presented in that work for dealing with

the problem of the optimum design of VAT composites su�er of the following drawbacks:

• the optimum solution resulting from the �rst step of the procedure often consists

in a discontinuous distribution of the laminate polar parameters which results in a

discontinuous �bres path (for each constitutive layer) for the second-level problem;

• the lack of practical rules and of a very general mathematical formulation for deter-

mining a proper �bres path;

• the manufacturability constraints linked to the AFP process are not taken into ac-

count within the design process (i.e. within the problem formulation in the context

of the bi-level optimisation procedure).

Accordingly, the optimum solutions illustrated in [6] cannot be manufactured. In order

to overcome the di�culties listed above, some major modi�cations have been introduced

within the mathematical formulation of the design/optimisation problem of VAT compos-

ites (for each level of the MS2L strategy), especially for taking into account within the

design process the manufacturability constraints related to the AFP process. These modi-

�cations are detailed for each level of the numerical optimisation strategy in Section 3 and

4, respectively.

3 Mathematical formulation of the �rst-level problem

In order to apply the MS2L numerical optimisation strategy presented in [5, 25] to the

case of VAT composites some major modi�cations have been introduced. Regarding the

�rst-level problem these modi�cations focus on:

• the utilisation of higher-order theories (in this case the FSDT framework) for taking

into account the in�uence of the transverse shear sti�ness on the overall mechanical

response of the VAT laminate;

• the utilisation of B-spline surfaces for expressing the variation of the laminate polar

parameters over the structure.
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The �rst point represents a very important step forward in the MS2L strategy when applied

to every kind of composite structure (classical or VAT) as it allows to properly design thin

as well as moderately thick plates.

The second modi�cation leads to important consequences, too. Such consequences

constitute just as many advantages for the resolution of the related optimisation problem.

Firstly, the utilisation of iso-geometric surfaces leads to a considerable reduction in the

number of material design variables (at the macro-scale), i.e. the polar parameters de�ned

in each point of the control net of the B-spline surface. Secondly, thanks to the strong

convex hull property of the B-spline blending functions the optimisation constraints of the

problem, related to the speci�cations of the considered application, can be imposed only

on the control points of the net: if they are satis�ed on such points they are automatically

met over the whole domain.

As previously stated the goal of the �rst level of the strategy is the maximisation of the

buckling load of the VAT laminate by simultaneously satisfying the feasibility constraints

on the distribution of the laminate polar parameters over the plate. All of these aspects

are detailed in the following subsection.

3.1 Mechanical design variables

In the framework of the FSDT theory [13] the constitutive law of the laminated plate

(expressed within the global frame of the laminate R = {0;x, y, z}) can be stated as: {N}{M}
 =

 [A] [B]

[B] [D]

  {ε0}{χ0}

 , (1)

{F} = [H] {γ0} , (2)

where [A], [B] and [D] are the membrane, membrane/bending coupling and bending sti�-

ness matrices of the laminate, while [H] is the out-of-plane shear sti�ness matrix. {N},
{M} and {F} are the vectors of membrane forces, bending moments and shear forces per

unit length, respectively, whilst {ε0}, {χ0} and {γ0} are the vectors of in-plane strains,

curvatures and out-of-plane shear strains of the laminate middle plane, respectively, [13].

In order to analyse the elastic response of the multilayer plate the best practice consists

10



in introducing the laminate homogenised sti�ness matrices de�ned as:

[A∗] =
1

h
[A] ,

[B∗] =
2

h2
[B] ,

[D∗] =
12

h3
[D] ,

[H∗] =


1

h
[H] (basic) ,

12

5h
[H] (modified) .

(3)

where h is the total thickness of the laminated plate.

In the framework of the polar formalism it is possible to express the Cartesian compo-

nents of these matrices in terms of their material invariants. To the best of the authors

knowledge, in [22, 23] an invariant representation of the laminate sti�ness matrices in the

framework of the FSDT has been given for the �rst time.

These works make use of the polar formalism [39] that gives a representation of any

planar elasticity-like tensor by means of a complete set of independent invariants, i.e. the

polar parameters. It can be proven that, also in the FSDT theoretical framework, in the

case of a fully orthotropic, quasi-homogeneous laminate the overall number of independent

mechanical design variables describing the elastic response of the laminate reduces to only

three [22, 23]: the anisotropic polar parameters RA
∗

0K and RA
∗

1 and the polar angle ΦA∗
1

(this last representing the orientation of the main orthotropy axis) of the homogenised

membrane sti�ness matrix [A∗]. In fact, as explained in [22, 23], once the material of the

constitutive ply is �xed, the number of polar parameters to be designed remains unchanged

when passing from the theoretical framework of the CLT to that of the FSDT; this result

is quite surprising and represents a further advantage coming from the utilisation of the

polar method. For more details on the polar formalism and its application in the context

of the FSDT the reader is addressed to [22, 23, 37].

For a VAT composite the three independent polar parameters (which completely de-

scribe the mechanical behaviour of the VAT laminate at the macroscopic scale) must vary

point-wise over the structure. As stated beforehand, such a variation is expressed by means

of B-spline surfaces. In particular, in the mathematical framework of the B-spline surfaces

the variation of the laminate polar parameters can be expressed as:

RA
∗

0K (ξ, γ) =
np∑
i=0

mp∑
j=0

Ni,p (ξ)Nj,q (γ)RA
∗

0K
(i,j)

,

RA
∗

1 (ξ, γ) =
np∑
i=0

mp∑
j=0

Ni,p (ξ)Nj,q (γ)RA
∗

1
(i,j)

,

ΦA∗
1 (ξ, γ) =

np∑
i=0

mp∑
j=0

Ni,p (ξ)Nj,q (γ) ΦA∗
1

(i,j)
.

(4)
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Eq. (4) fully describes a B-spline surface (in the space of the laminate polar parameters)

of degrees p and q along the parametric coordinates ξ and γ, respectively, as depicted in

Fig. 1.

Control net 

B-spline surface 
𝑹𝟎𝑲
𝑨∗  

𝑹𝟏
𝑨∗ 

𝚽𝟏
𝑨∗ 

Figure 1: Example of B-spline surfaces in the space of the laminate polar parameters.

The dimensionless coordinates ξ and γ can be arbitrarily de�ned: a natural choice

consists in linking them with the Cartesian coordinates of the laminated plate,

ξ =
x

a
, γ =

y

b
, (5)

where a and b are the lengths of the plate edges along x and y axes, respectively. In

Eq. (4) {RA∗
0K

(i,j)
, RA

∗
1

(i,j)
,ΦA∗

1
(i,j)} (i = 0, · · · , np, j = 0, · · · ,mp) are the values of the

laminate polar parameters at the generic control point (the set of (np+1)×(mp+1) control

points forms the so-called control network), while Ni,p(ξ) and Nj,q(γ) are the pth-degree

and qth-degree B-spline basis functions (along ξ and γ directions, respectively) de�ned on

the non-periodic, non-uniform knot vectors:

Ξ =

0, · · · , 0︸ ︷︷ ︸
p+1

,Ξp+1, · · · ,Ξr−p−1, 1, · · · , 1︸ ︷︷ ︸
p+1

 ,

Γ =

0, · · · , 0︸ ︷︷ ︸
q+1

,Γq+1, · · · ,Γs−q−1, 1, · · · , 1︸ ︷︷ ︸
q+1

 .

(6)

It is noteworthy that the dimensions of the knot-vectors Ξ and Γ are r + 1 and s + 1,
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respectively, with:
r = np + p+ 1 ,
s = mp + q + 1 .

(7)

For a deeper insight in the matter the reader is addressed to [32].

As previously stated, the use of iso-geometric surfaces for describing the variation of the

mechanical design variables over the structure, implies that the three independent polar

parameters ΦA∗
1 , RA

∗
0K and RA

∗
1 have no discontinuity over the plate. Moreover, thanks

to the B-spline representation the mechanical design variables (i.e. the laminate polar

parameters) must be determined solely on each point of the control net, implying in this

way a signi�cant reduction in the number of design variables involved within the �rst-level

problem.

Therefore, the optimisation variables of the problem can be grouped into the following

vector:

x =
{

ΦA∗
1

(0,0)
, · · · ,ΦA∗

1
(np,mp)

, RA
∗

0K
(0,0)

, · · · , RA∗
0K

(np,mp)
, RA

∗
1

(0,0)
, · · · , RA∗

1
(np,mp)

}
. (8)

The total number of design variables is hence equal to 3× (np + 1)× (mp + 1).

In addition, in the formulation of the optimisation problem for the �rst level of the

strategy, the geometric and feasibility constraints on the polar parameters (which arise

from the combination of the layer orientations and positions within the stack) must also be

considered. These constraints ensure that the optimum values of the polar parameters re-

sulting from the �rst step correspond to a feasible laminate that will be designed during the

second step of the optimisation strategy, see [38]. Since the laminate is quasi-homogeneous,

such constraints can be written only for matrix [A∗] as follows:
−R0 ≤ RA

∗
0K ≤ R0 ,

0 ≤ RA∗
1 ≤ R1 ,

2

(
RA

∗
1

R1

)2

− 1−
RA

∗
0K

R0
≤ 0 .

(9)

As explained beforehand, thanks to the strong convex-hull property these constraints have

to be checked only on the points of the control network. If they are met on these points

they will be satis�ed on the whole domain of the B-spline surface. This aspect repre-

sents a further advantage when using the B-spline representation for the mechanical design

variables. Moreover, �rst and second constraints of Eq. (9) can be taken into account as

admissible intervals for the relevant optimisation variables, i.e. on RA
∗

0K
(i,j)

and RA
∗

1
(i,j)

.

Hence, the resulting feasibility constraint on the laminate polar parameters of the generic

control point is:

gij(x) = 2

(
RA

∗
1

(i,j)

R1

)2

− 1−
RA

∗
0K

(i,j)

R0
≤ 0 . (10)
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with i = 0, · · · , np and j = 0, · · · ,mp. The total number of feasibility constraints to be

imposed is thus equal to (np + 1)× (mp + 1).

For a wide discussion upon the laminate feasibility and geometrical bounds as well as

on the importance of the quasi-homogeneity assumption the reader is addressed to [38].

3.2 Mathematical statement of the problem

The �rst-level problem focuses on the de�nition of the optimal distribution of the laminate

polar parameters [6]. In this background, the solution of the structural optimisation prob-

lem is searched for an orthotropic uncoupled homogenised (locally, i.e. point-wise) plate

subject to given BCs.

Therefore the optimisation problem can be formulated as follows:

min
x
− λ (x)

subject to:

gij(x) ≤ 0 , (i = 0, · · · , np, j = 0, · · · ,mp)

(11)

where λ is the �rst buckling factor of the laminated structure.

3.3 Numerical strategy

Problem (11) is a non-linear, non-convex problem in terms of the mechanical design vari-

ables. Its non-linearity and non-convexity is due to the nature of the objective function, the

�rst buckling factor, that is a non-convex function in terms of the orthotropy orientation.

In addition, the complexity of such a problem is also due to the feasibility constraints im-

posed on the polar parameters of the plate, see Eq. (10). We recall that the overall number

of design variables and optimisation constraints for problem (11) is 3× (np + 1)× (mp + 1)

and (np + 1)× (mp + 1), respectively.

For the resolution of problem (11) a hybrid optimisation tool, composed of the GA

BIANCA [17] interfaced with the MATLAB fmincon algorithm [16], coupled with a FE

model of the plate (used for numerical calculation of the �rst buckling load) has been

developed, see Fig. 2.

The GA BIANCA was already successfully applied to solve di�erent kinds of real-

world engineering problems, see for example [5, 25]. As shown in Fig. 2, the optimisation

procedure for the �rst-level problem is split in two phases. During the �rst phase the

GA BIANCA is interfaced with the FE model of the VAT plate: for each individual at

each generation, a FE-based buckling analysis is carried out for the evaluation of the

�rst buckling load of the structure. The FE model makes use of the mechanical design

variables, given by BIANCA and elaborated by an ANSYS Parametric Design Language

(APDL) macro which generates the B-spline surface representing the distribution of the

polar parameters over the VAT plate, in order to calculate the �rst buckling load of the

14
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Figure 2: Logical �ow of the numerical procedure for the solution search of the �rst-level
problem.

structure. Therefore, for these purposes the GA (coded in Fortran environment) has been

interfaced with the commercial FE code ANSYS. At the end of the FE analysis, the GA

elaborates the results provided by the FE model (in terms of objective and constraint

functions) in order to execute the genetic operations. These operations are repeated until

the GA meets the user-de�ned convergence criterion. The generic individual of the GA

represents a potential solution for the problem at hand. The genotype of the individual for

problem (11) is characterised by (np + 1) × (mp + 1) chromosomes composed of 3 genes,

each one coding a component of the vector of the design variables. Due to the strong non-

convex nature of problem (11), the aim of the genetic calculation is to provide a potential

sub-optimal point in the design space which constitutes the initial guess for the subsequent

phase, i.e. the local optimisation, where the fmincon gradient-based algorithm is interfaced

with the same FE model of the VAT plate.

4 Mathematical formulation of the second-level problem

The second-level problem concerns the lay-up design of the VAT laminated plate. The

goal of this problem is the determination of at least one stacking sequence satisfying the
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optimum values of the distribution of the polar parameters over the structure resulting from

the �rst level of the strategy and having the elastic symmetries imposed to the laminate

within the formulation of the �rst-level problem, i.e. quasi-homogeneity and orthotropy.

In the case of a VAT solution the �bres orientation angle varies point-wise in every

ply composing the laminate. Hence a proper description of the �bres path is necessary to

formulate and solve the second-level problem of the MS2L strategy. To this purpose, the

following modi�cations have been brought to the second step of the MS2L optimisation

procedure:

• the point-wise variation of the �bre orientation (in each ply) is described through the

use of a B-spline surface;

• the technological constraint on the minimum radius of curvature of the pre-preg strips

is taken into account.

These improvements to the second step of the strategy lead to important advantages

in solving the related optimisation problem. In fact, the use of B-spline surfaces allows,

as in the case of the �rst-level problem, to reduce the total number of design variables: in

this case it is su�cient to calculate the �bre orientation solely at each point of the B-spline

control network. In addition, thanks to the use of iso-geometric blending functions the

local steering (i.e. the local radius of curvature of the tow) can be determined easily and

introduced in the problem formulation as an optimisation constraint. This last aspect is

of paramount importance to obtain a proper formulation of the technological constraints

regarding the layout of pre-preg strips in each ply which cannot exceed a given curvature.

Concerning the representation of the �bres path, the relative B-spline surface for each

ply is de�ned as:

δk (ξ, γ) =
np∑
i=0

mp∑
j=0

Ni,p (ξ)Nj,q (γ) δk
(i,j) with k = 1, · · · , n. (12)

In this case δk
(i,j) is the orientation angle at the generic control point for the k-th layer,

i.e. the design variables of the second-level problem of the MS2L strategy whose overall

number is equal to n× (np + 1)× (mp + 1).

In the framework of the polar formalism, the problem of the lay-up design of the VAT

laminate can be stated in the form of a constrained minimisation problem:

min
δk

(i,j)
I
(
δk

(i,j)
)

k = 1, · · · , n ,

i = 0, · · · , np ,
j = 0, · · · ,mp ,

radm − rmin ≤ 0 .

(13)

In Eq. (13) radm is the minimum admissible radius of curvature of the tow whose value

depends upon the AFP process, while rmin is the local least radius of curvature among all
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the plies. rmin is de�ned as:

rmin = min
k

[
min
(x,y)

rk(x, y)

]
,

rk(x, y) = (tk · ∇δk)−1 , k = 1, · · · , n ,
x ∈ [0, a] ,
y ∈ [0, b] .

(14)

In Eq. (14) tk is the local tangent vector of the angular �eld δk(x, y) of the k-th ply, while

∇δk is the gradient of the �bre path with respect to coordinates (x, y), namely

tk = {cos δk , sin δk} ,

∇δk =

{
1

a

∂δk
∂ξ

,
1

b

∂δk
∂γ

}
.

(15)

In Eq. (13) I(δk
(i,j)) is the overall objective function which is de�ned as:

I
(
δk

(i,j)
)

=

6∑
i=1

fi

(
δ
(i,j)
k

)
. (16)

where fi(δ
(i,j)
k ) are quadratic functions in the space of polar parameters, each one represent-

ing a requirement to be satis�ed. For the problem at hand the partial objective functions

write:

f1(δ
(i,j)
k ) =

∫
0

1∫
0

1
[

ΦA∗

0 (δk(ξ, γ))− ΦA∗

1 (δk(ξ, γ))

π/4
−KA∗(opt)(ξ, γ)

]2
dξ dγ ,

f2(δ
(i,j)
k ) =

∫
0

1∫
0

1

[
RA∗

0 (δk(ξ, γ))−RA∗(opt)
0 (ξ, γ)

R0

]2
dξ dγ ,

f3(δ
(i,j)
k ) =

∫
0

1∫
0

1

[
RA∗

1 (δk(ξ, γ))−RA∗(opt)
1 (ξ, γ)

R1

]2
dξ dγ ,

f4(δ
(i,j)
k ) =

∫
0

1∫
0

1

[
ΦA∗

1 (δk(ξ, γ))− Φ
A∗(opt)
1 (ξ, γ)

π/4

]2
dξ dγ ,

f5(δ
(i,j)
k ) =

∫
0

1∫
0

1
[
|| [C] (δk(ξ, γ))||
|| [Q] ||

]2
dξ dγ ,

f6(δ
(i,j)
k ) =

∫
0

1∫
0

1
[
|| [B∗] (δk(ξ, γ))||

|| [Q] ||

]2
dξ dγ ,

(17)

where

KA∗(opt)(ξ, γ) =

{
1 if R

A∗(opt)
0K (ξ, γ) < 0 ,

0 otherwise .
(18)

In Eq. (17) f1(δ
(i,j)
k ) represents the elastic requirement on the orthotropy of the laminate

having the prescribed shape, f2(δ
(i,j)
k ), f3(δ

(i,j)
k ) and f4(δ

(i,j)
k ) are the requirements related

to the prescribed values of the optimal polar parameters resulting from the �rst-level prob-

lem, while f5(δ
(i,j)
k ) and f6(δ

(i,j)
k ) are linked to the quasi-homogeneity condition. For more

details on the meaning of the partial objective functions, on the elastic symmetries of the
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laminate in the framework of the FSDT and on the symbols appearing in Eq. (17), the

reader is addressed to [22, 23].

I(δ
(i,j)
k ) is a positive semi-de�nite convex function in the space of laminate polar pa-

rameters, since it is de�ned as a sum of convex functions, see Eqs. (16)-(17). Nevertheless,

such a function is highly non-convex in the space of plies orientations because the lami-

nate polar parameters depend upon circular functions of the layers orientation angles, see

[22, 23]. Moreover, one of the advantages of such a formulation consists in the fact that the

absolute minima of I(δ
(i,j)
k ) are known a priori since they are the zeroes of this function.

For more details about the nature of the second-level problem see [17, 18, 20]. Concerning

the numerical strategy for solving problem (13) the GA BIANCA has been employed to

�nd a solution also for the second-level problem. In this case, each individual is composed

of n chromosomes (one for each ply), each one characterised by (np + 1)× (mp + 1) genes

coding the layer orientation angle for each control point of the chromosome-ply.

5 Finite element model of the VAT laminate

In order to determine the current value of the objective function (the �rst buckling factor)

and that of the optimisation constraints of problem (11) a linear buckling analysis must

be achieved for the VAT composite. The need to analyse, within the same calculation,

di�erent con�gurations of the VAT plate requires the creation of an ad-hoc input �le for

the FE model that has to be interfaced with the hybrid (GA + gradient-based algorithms)

optimisation tool.

The FE model of the VAT laminated plate (see Fig. 3) employed during the �rst step

of the MS2L strategy, is built within the ANSYS environment and is made of SHELL281

elements based on the Reissner-Mindlin kinematic model, having 8 nodes and six Degrees

Of Freedom (DOFs) per node. The mesh size is chosen after preliminary mesh sensitivity

analyses on the convergence of the value of the �rst buckling load for a given set of BCs.

It was observed that a mesh having 2482 DOFs is su�cient to properly evaluate the �rst

buckling load of the structure.

It is noteworthy that the B-Spline mathematical formalism has been implemented by

the authors into the ANSYS environment by using the ANSYS APDL [2] for creating a set

of appropriate macros that were integrated within the FE model of the VAT plate. At this

stage, the plate is modelled as an equivalent homogeneous anisotropic plate whose sti�ness

matrices ( [A∗], [B∗], [D∗] and [H∗]) vary point-wise, i.e. for each element discretising the

real structure. In particular, in order to properly de�ne, for every element of the VAT

plate, the correct value of its sti�ness properties the following strategy has been employed:

1. for a given set of the laminate polar parameters de�ned in each control point (the

design variables passed from the optimisation tool to the FE model of the VAT plate,
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Figure 3: Geometry of the VAT plate and applied BCs (a) and FE model of the structure
(b).

see Fig. 3), build the corresponding B-spline surfaces;

2. discretise the plate into Ne elements;

3. �x the element index i: for the i-th element retrieve the Cartesian coordinates of

its centroid, i.e. (xie, y
i
e) and calculate the corresponding dimensionless coordinates

(ξie, γ
i
e) according to Eq. (5);

4. calculate the laminate polar parameters (and hence the Cartesian components of the

sti�ness matrices of the laminate) for (ξie, γ
i
e) and assign the material properties to

the element i;

5. repeat points 3 and 4 for each element of the plate.

Finally, the linear buckling analysis is performed using the BCs depicted in Fig. 3 and

listed in Table 2.

Sides BCs

AB, CD Ux = 0
Uz = 0

BC, DA Uy = 0
Uz = 0

Table 2: BCs of the FE model of the VAT laminated plate.
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6 Numerical example

In this section a meaningful numerical example is considered in order to prove the e�ec-

tiveness of the MS2L strategy for the optimum design of VAT laminates. As depicted in

Fig. 3, a bi-axial compressive load per unit length is applied on the plate edges with a

ratio
Ny

Nx
= 0.5. The plate has a square geometry with side length a = b = 254 mm and

is made of n = 24 plies whose material properties are those listed in Table 1. Concerning

the �rst-level problem, the parameters de�ning the B-spline surfaces which describe the

polar parameters distribution over the VAT plate are set as: np = mp = 4 (hence �ve

control points along each direction), p = q = 2 (degrees of the blending functions along

each direction). Moreover, each B-spline is de�ned over the following uniform knot-vectors:

Ξ =
{

0, 0, 0, 13 ,
2
3 , 1, 1, 1

}
,

Γ =
{

0, 0, 0, 13 ,
2
3 , 1, 1, 1

}
.

(19)

Accordingly, for the �rst-level problem the overall number of design variables and opti-

misation constraints is 75 and 25, respectively. The mechanical design variables together

with their nature and bounds for the �rst-level problem are listed in Table 3.

Design vari-
able

Type Lower bound Upper bound

RA∗0K
(i,j)

[MPa] continuous −17693.3868 17693.3868

RA∗1
(i,j)

[MPa] continuous 0.0 19072.0711

ΦA∗
1

(i,j)
[deg] continuous −90.0 90.0

Table 3: Design space of the �rst-level problem.

Concerning the second-level problem, the parameters de�ning the B-spline surface

which describes the point-wise variation of the �bre orientation angle (for each ply) are

the same as those employed during the �rst step of the strategy. This means that the

overall number of design variables for the second-level problem is signi�cant and equal to

600 (i.e. 25 orientation angles de�ned in each control point per layer), while there is only

one optimisation constraint, see Eq. (13). In addition, the reference value for the minimum

admissible radius of curvature of the tow, i.e. radm is set equal to 30 mm.

It must be highlighted the fact that δ
(i,j)
k are continuous variables in the range [-90◦,

90◦].

Regarding the setting of the genetic parameters for the GA BIANCA utilised for

both �rst and second-level problems they are listed in Table 4. Moreover, concerning

the constraint-handling technique for both levels of the strategy the Automatic Dynamic

Penalization (ADP) method has been employed, see [21]. For more details on the numerical

techniques developed within the new version of BIANCA and the meaning of the values of

the di�erent parameters tuning the GA the reader is addressed to [17, 20].
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Genetic parameters

1st level prob-
lem

2nd level prob-
lem

N. of populations 1 1
N. of individuals 500 2000
N. of generations 200 1000
Crossover proba-
bility

0.85 0.85

Mutation proba-
bility

0.002 0.0005

Selection operator roulette-wheel roulette-wheel
Elitism operator active active

Table 4: Genetic parameters of the GA BIANCA for both �rst and second-level problems.

As far as concerns the fmincon optimisation tool employed for the local solution search

at the end of the �rst step, the numerical algorithm chosen to carry out the calculations is

the active-set method with non-linear constraints. For more details on the gradient-based

approaches implemented into MATLAB, the reader is addressed to [16].

Before starting the multi-scale optimisation process a reference structure must be de-

�ned in order to establish a reference value for the �rst buckling factor of the plate. The

reference structure is still a square plate of side a = b = 254 mm composed of 24 unidirec-

tional �bre-reinforced laminae whose material properties are those listed in Table 1. The

stacking sequence of the reference solution is [0/−45/0/45/90/45/0/−45/90/45/90/−45]s.

The choice of the reference solution has been oriented towards a symmetric quasi-isotropic

stack, of common use in real-world engineering applications, which constitutes a �good�

compromise between weight and sti�ness requirements (in terms of buckling load): such a

con�guration is characterised by a buckling factor λref = 81.525 when Nx = 1 N/mm and

Ny = 0.5 N/mm.

Concerning the �rst-level problem, the optimum distribution of the laminate polar

parameters over the VAT plate is illustrated in Fig. 4, while the optimum value of the

mechanical design variables for each control point are listed in Tables 5 - 7. On the other

hand, concerning the solution of the second-level problem, an illustration of the optimum

�bres-path for the �rsts four layers (for sake of synthesis) is depicted in Fig. 5. It is

noteworthy that the optimal solution found at the end of the MS2L design procedure is

characterised by a buckling factor of 173.94 which is about 114% higher than the reference

counterpart and, in the meantime, satis�es the technological constraint on the minimum

(local) radius of curvature of the tow imposed by the AFP process.

From a careful analysis of the optimum con�guration of the VAT laminated plate

provided by the MS2L procedure, it is possible to deduce the following facts.
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Figure 4: Optimal distribution of the polar parameters R0K
A∗

(a), R1
A∗

(b) and Φ1
A∗

(c)
over the VAT plate resulting from the �rst-level optimisation problem.

• The polar parameters distribution resulting from the �rst step of the strategy is

totally asymmetric. Symmetric solutions are, of course, possible: it is su�cient to

impose the symmetry condition directly on the values of the laminate polar param-

eters in the points of the control network of the B-spline surfaces. However, in order

to state and solve the optimisation problem in the most general case, in this study

we prefer of not imposing such a condition. Indeed, when problem (11) is formulated

and solved in the most general case, it is possible to �nd non-conventional asym-

metric distributions of the mechanical design variables characterised by signi�cantly

superior performances when compared to classical symmetric, quasi-isotropic stacks

often employed in the aeronautical �eld.

• When looking at the optimum distribution of the laminate polar parameters (Fig. 4),

one can notice that the laminate is always characterised by an ordinary orthotropy

shape with KA∗
= 0 because RA

∗
0K(ξ, γ) is strictly positive over the laminated plate.

• Unlike the vast majority of works reported in literature [40], the optimum �bres-path

for each ply is very general. In the framework of the proposed approach, the point-

wise variation of the �bre orientation angle in every lamina does not follow simple
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HH
HHHHnp

mp 0 1 2 3 4

0 3591.3747 3668.8094 9592.3869 4497.2954 975.9237
1 4004.9094 8579.8092 7560.9021 9286.1572 17011.3438
2 6579.9750 805.5577 3036.0234 5777.9895 6901.0129
3 16467.7981 16448.7345 15040.6238 16596.7375 16926.6619
4 8529.0554 15762.0163 4406.7537 14321.3969 2829.6760

Table 5: Optimum value of R0K
A∗

[MPa] for each control point of the B-spline surface.

HH
HHHHnp

mp 0 1 2 3 4

0 5205.1699 12784.5159 16065.5107 5068.0708 1932.6002
1 3447.8699 16298.3907 16011.8612 16593.1744 17332.2704
2 13511.7905 13789.0773 14452.1311 15045.4781 15809.2434
3 14966.4897 18733.6564 18342.5388 18722.0860 18735.1483
4 10265.5066 17842.4603 14882.8151 16217.0759 10244.8019

Table 6: Optimum value of R1
A∗

[MPa] for each control point of the B-spline surface.

linear or parabolic variations (with respect to laminate global frame) as in [40], rather

it is described by a general B-spline surface, see Eq. (12). This fact, together with

the very general formulation of problem (13), allows the designer to �nd (at the cost

of a considerable computation e�ort) an optimum stack meeting all the requirements

(i.e. elastic and manufacturability constraints) provided by problem (13), without

the need of a further post-processing treatment to simplify the trajectory of the tows

in order to comply with the constraints imposed by the AFP process.

• Finally, the optimum �bres-path (for each layer) found at the end of the second step

of the MS2L procedure does not need of a further step for the reconstruction of the

CAD model because the variation of the �bres-path is described by a B-spline surface

which is fully compatible with several standard �le formats (IGES, STL and STEP),

H
HHH

HHnp

mp 0 1 2 3 4

0 −20.9816 −84.5402 11.1669 38.4351 −0.9851
1 −30.7624 −80.1076 56.6921 86.1616 53.2841
2 79.6062 82.6653 89.9998 88.5717 −26.4919
3 −3.9816 60.5155 89.3887 −88.5577 −28.6826
4 45.3655 57.9974 30.2596 −84.8941 −26.7837

Table 7: Optimum value of Φ1
A∗

[deg] for each control point of the B-spline surface.
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Figure 5: Optimum �bres path for the �rsts four layers of the VAT plate resulting from
the second-level optimisation problem, 1st ply (a), 2nd ply (b), 3rd ply (c) and 4th ply (d).

allows in this way a rapid exchange of information among the CAD tool and the

software of the AFP process.

7 Conclusions and perspectives

In this work a new paradigm for the design and optimisation of VAT composite structures

is presented. This paradigm essentially relies on the utilisation of a MS2L optimisation

procedure characterised by several features that make it an original, e�ective and general

method for the multi-scale design of complex VAT structures. In the present work this

strategy has been employed to deal with the problem of the maximisation of the buckling

factor of a VAT plate subject to both mechanical and manufacturability constraints. On the

one hand, the design process is not submitted to restrictions: any parameter characterising

the VAT composite (at each scale) is an optimisation variable. This allows the designer

to look for a true global minimum, hard to be obtained otherwise. On the other hand,

both the formulation of the design problem and the MS2L optimisation strategy have

been generalised and improved in order to be applied to the problem of designing a VS

composite.
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In the framework of the MS2L design methodology several modi�cations have been

introduced for both �rst and second level problems.

Concerning the �rst-level problem the main modi�cations are: 1) the use of higher-

order theories (introduced as result of [22, 23, 24]) for taking into account the in�uence of

the transverse shear sti�ness on the overall mechanical response of VAT composites and

2) the utilisation of B-spline surfaces for describing the distribution of the laminate polar

parameters over the structure which allow for a continuous point-wise variation of the

laminate sti�ness matrices. This last aspect leads to some important advantages for the

resolution of the related optimisation problem. Firstly, the utilisation of B-spline surfaces

leads to a considerable reduction in the number of design variables (the polar parameters

have to be de�ned solely in each point of the control network of the B-spline surface).

Secondly, thanks to the strong convex-hull property of the B-spline blending functions the

optimisation constraints of the problem (related to the speci�cations of the considered

application) can be imposed only on the control points of the network: if they are satis�ed

on such points they are automatically met over the whole domain.

For the second-level problem the major modi�cations are: 1) the utilisation of B-spline

basis functions for obtaining a continuous point-wise variation of the �bre orientation an-

gle within each ply; 2) a proper mathematical formalisation of the manufacturability con-

straints linked to the AFP process in the framework of the B-spline representation. Also in

the second step of the procedure, these modi�cations imply some important consequences.

On the one hand the utilisation of B-spline surfaces leads to an important reduction of

the number of design variables (the orientation angles de�ned in each control point of the

layer), while on the other hand the B-spline mathematical formalism allows to express in

a closed analytical form the manufacturability constraints linked to the AFP process. All

of these modi�cations allow to go beyond the main restrictions characterising the design

activities and research studies on VAT composites that one can �nd in literature.

Finally, the improved version of the MS2L strategy has been tested through a mean-

ingful numerical example which proved its e�ectiveness. The optimisation tool gives an

optimum VAT laminate characterised by a signi�cant increment of the �rst buckling factor

(about the 114%) when compared to a reference classical solution (composed of unidirec-

tional plies).

Concerning the perspectives of this work, there are still some theoretical, numerical and

technical aspects and features that need to be deeply investigated and developed in order

to make the proposed approach a very general and comprehensive strategy able to pro-

vide solutions that are both e�cient (true optimal con�gurations) and manufacturable. Of

course, this action passes through a real understanding of the potential and the technolog-

ical restrictions linked to the AFP process. Currently, only the technological constraint on

the tow steering has been integrated in the MS2L strategy. A step forward can be realised
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by properly formalising and including into the design problem other kinds of manufactura-

bility constraints: tow gap and overlapping, the variation of the �bre volume fraction due

to imperfections, etc. Moreover, in the framework of the MS2L optimisation procedure

proposed in this work the manufacturability constraint linked to the minimum admissi-

ble radius of curvature of the tow has been integrated only within the second step of the

design procedure. Actually, when using such an approach, there is no warranty that the

optimisation algorithm could �nd an optimum �bres-path able to meet on the one hand the

optimum distribution of the laminate polar parameters resulting from the �rst step of the

strategy and on the other hand the manufacturability constraint related to the tow steering

condition. To overcome such an issue, the formulation of the �rst-level problem should be

modi�ed accordingly, i.e. by integrating the manufacturability constraints since the �rst

stage of the MS2L strategy. In addition, from a numerical point of view, the designer

could be interested in optimising also the number of design variables (i.e. the number of

the parameters tuning the shape of the B-spline surfaces) involved into both levels of the

MS2L procedure: this point can be easily taken into account by exploiting the original

features of the GA BIANCA. Finally, further modi�cations may also be considered in the

formulation of the design problem depending on the nature of the considered application,

e.g. by including constraints on inter- and intra-laminar damage, variability e�ects linked

to the fabrication process, costs, etc.

Research is ongoing on all of the previous aspects.
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