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Proper Orthogonal Decomposition (POD) has been successfully used to reduce the size of linear Finite Element (FE) problems, and 

thus the computational time associated with. When considering a nonlinear behavior law of the ferromagnetic materials, the POD is 

not so efficient due to the high computational cost associated to the nonlinear entries of the full FE model. Then, the POD approach 

must be combined with an interpolation method to efficiently deal with the nonlinear terms, and thus obtaining an efficient reduced 

model. An interpolation method consists in computing a small number of nonlinear entries and interpolating the other terms. Different 

methods have been presented to select the set of nonlinear entries to be calculated. Then, the (Discrete) Empirical Interpolation method 

((D)EIM) and the Best Points Interpolation Method (BPIM) have been developed. In this article, we propose to compare two reduced 

models based on the POD-(D)EIM and on the POD-BPIM in the case of nonlinear magnetostatics coupled with electric equation.  

 
Index Terms— Best Points Interpolation Method, Empirical Interpolation Method, Proper Orthogonal Decomposition. 

 

I. INTRODUCTION 

O reduce the computational time of numerical models 

depending on the time, model order reduction approaches 

can be well suited. In the literature, the Proper Orthogonal 

Decomposition combined with the snapshots approach has 

been widely presented to solve problems in engineering [1][2]. 

The POD method consists in performing a projection of the 

solution of the full FE model onto a reduced basis. Then, the 

size of the matrix equation to solve can be highly reduced. 

With a nonlinear behavior law, the POD is not so efficient due 

to the computation of nonlinear terms. Indeed, at each step of 

the iterative process which allows solving the problem, the 

nonlinear entries of the full FE problem must be calculated. 

The computational cost of this operation penalises the 

computational time of the POD reduced model. Then, to 

reduce the calculation cost of nonlinear entries, interpolation 

methods have been developed. These approaches are based on 

the computation of a small number of nonlinear entries and on 

the interpolation of other terms. In the literature, different 

methods can be found in order to select the set of nonlinear 

entries. Hence, the (Discrete) Empirical Interpolation method 

[3][4] and the Best Points Interpolation Method [5][6] have 

been developed. Both approaches can easily be combined with 

the POD. In electromagnetic modeling, the POD_(D)EIM was 

used to study a three phase transformer and an electric 

machine [7][8], a magneto-quasistatic problem solved by 

boundary element method including a motion of a subdomain 

[9] or a nonlinear magnetodynamic problem with a model 

order reduction of an adaptive subdomain [10].  

In this article, we propose to compare the POD_(D)EIM and 

the POD_BPIM to solve a nonlinear magnetostatic problem 

coupled with electrical circuit using the vector potential 

formulation. Firstly, the full model is presented. Secondly, the 

model order reductions based on the POD, the (D)EIM and the 

BPIM are described. Finally, the POD_(D)EIM and 

POD_BPIM are compared with an academic example. The 

results obtained with the reduced models are also compared in 

terms of accuracy and computational time using the full 

model.     

II. NON-LINEAR MAGNETOSTATIC PROBLEM COUPLED WITH 

ELECTRIC CIRCUITS 

We consider a domain D of boundary Γ (Γ=ΓBΓH and 

ΓB∩ΓH=0) (Fig. 1). The problem is solved on D[0,T] with T 

the length of the time interval. The inductors are supposed to 

be stranded and the eddy current effect is neglected. For the 

ferromagnetic materials, the nonlinear behaviour law is 

considered.  
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Fig. 1. Non-linear magnetostatic problem coupled with electric circuits 
 

In magnetostatics, the problem is described by the following 

equations: 
 





stN

1j

jj (t))i(t),( xNxH curl , 
(1) 

 

 

div B(x,t)  = 0, (2) 
 

where x is the position in D, B is the magnetic flux density, H 

is the magnetic field, Nj and ij are the unit current density and 

the current of the jth stranded inductor respectively. Nst denotes 

T 
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the number of stranded inductors. To impose the uniqueness 

of the solution, boundary conditions must be considered: 

B(x,t)n=0 on B  and  H(x,t)n=0 on  H with n the outward 

unit normal vector. In order to impose the voltage at the 

terminals of the stranded inductors, the following relations 

must be considered:  
 

stjjj

j
N .., 1,j  with (t)v(t)iR

dt

(t)dΦ
  (3) 

where Rj is the resistance, j is the magnetic linkage flux and 

vj is the voltage of the jth stranded inductor. To solve the 

previous problem, the vector potential formulation can be 

used. From (2), the vector potential A is defined such that 

B(x,t)=curlA(x,t) with A(x,t)n=0 on B. To take into account 

the nonlinear behavior of the ferromagnetic materials, the 

magnetic field H(x,t) can be expressed by 

H(x,t)=fpB(x,t)+Hfp(B(x,t)) with fp a constant and  

Hfp(B(x,t))=((B)(x) - fp)B(x,t) a virtual magnetization vector 

depending on the nonlinear reluctivity (B)(x) and on the 

magnetic flux density. According to (1) and (3), the equations 

to solve are: 
 

t))),(((-(t))i(t)),(( fp

N

1j

jjfp

st

xcurlAHcurlxNxcurlAcurl 


  
(4) 

stjjj

D

j N .., 1,j  with (t) v (t)iR)dD(t).,(
dt

d
 xNxA  

(5) 

The A(x,t) field is discretised using edge elements in 3D and 

nodal elements in 2D (curl is replaced by grad) , while Nj(x) 

is computed using facet elements [11]. Ai(t) denotes the line 

integral of A along the ith edge in 3D or the value of A on the 

ith node in 2D. Then, applying the FE method to (4), a system 

of differential algebraic equations is obtained under the form: 
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(6) 

with XA(t) a vector such that (XAi(t))1iNe=(Ai(t))1iNe and Ne 

the number of Degrees of Freedom. Mfp is a NeNe square 

matrix, F(t) and Mfp(XA(t)) are Ne1 vectors. Equation (6) can 

be rewritten in the condensed form:  
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(7) 

 

 

with X(t) the vector of unknowns of size Nun=Ne+Nst and 

(Ij(t))1jNst =(ij(t))1jNst. To solve (7), an implicit Euler scheme 

combined with a fixed point approach or the Newton method 

can be used. In 3D, when A is not gauged, conjugate gradient 

methods are used to solve the matrix system. In 2D, due to 

Dirichlet boundary conditions, direct solvers can be used. 

III. MODEL ORDER REDUCTION 

In order to reduce the computational time required to solve 

the previous problem (7), the POD technique combined with 

an interpolation method of the nonlinear terms can be applied. 

The POD and the interpolation method enable to reduce the 

size of the matrix system and the computational cost of 

nonlinear terms.  

A. Proper Orthogonal Decomposition 

In practice, the number of stranded inductors is very small 

compared to the size of the vector XA(t). Then, the POD is 

used in order to approximate XA(t) in a reduced basis by a 

vector XAr(t) of size NX (NX<<Ne) such that XA(t) = AXAr(t). 

To determine the matrix A, the Snapshot approach is applied. 

The full model (7) is solved for Ns time steps (snapshots). The 

choice of the snapshots can be based on the first time steps, on 

the knowledge of the studied device [7][8] or on a greedy 

algorithm [9]. Then, the snapshot matrix Ms is defined by 

Ms=(XA(tj))1jNs with XA(tj) the solution at the jth time step. 

Using a singular value decomposition form, the matrix Ms is 

equal to VWt with VNeNe and WNsNs orthogonal matrices of 

singular vectors and NeNs the diagonal matrix of the singular 

values. The matrix A corresponds to the NX first most 

representative columns of V. To determine NX, we can 

compare the singular value j for j=1,...,Ns with an user-

defined threshold. In order to preserve the structure of (7), we 

define a vector Xr(t) composed of XAr(t) and of I(t) such that:  
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with  a block diagonal matrix composed of A and of Id, the 

identity matrix of size Nst. Then, by combining (8) with (7) 

and by performing a Ritz-Galerkin projection with t, the 

reduced model is:  
 

)(
dt

d
(t)(t)

(t)
(t) rrr

r
rrr XGF

X
KXM   (9) 

with Mr=tM, Kr=tK, Fr=tFs and 

Gr(Xr(t)=tGfp(Xr(t)). 

B. Interpolation of nonlinear terms 

1) General framework 

To compute the nonlinear entries of Gr, the vector XAr(t) is 

projected on the original space by XA(t) = AXAr(t). Then, the 

entries of Mfp(XA(t)) can be computed and this vector is 

projected in the reduced space as Gr=A
tMfp(XA(t)). The 

computational cost of this operation penalises the 

computational time of the reduced model. Then, one way to 

reduce the computational cost of Gr is to use an interpolation 

method. In the literature, the BPIM and the (D)EIM have been 

proposed [3-6]. These approaches are based on the selection of 

a small number of entries of Mfp and on the interpolation of 

the other terms. Firstly, the POD is applied with the snapshots 

matrix of the nonlinear term Msfp= (Mfp(XA(tj))1jNs. Then, 

Mfp is approximated by Mfp=fpMfp-r. Secondly, a masked 
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projection P, composed of Nx columns of the identity matrix 

of size NeNe, is performed on Mfp to select a small number of 

entries of Mfp such that 
r-fpfp

t

fp

t ~
MΨPMP  with 

r-fp

~
M the 

approximation of Mfp-r due to the interpolation. Then, 
r-fp

~
M  

can be computed by: 
 

m-fp

-1

fp

t

fp

t-1

fp

t

r-fp )()(
~

MΨPMPΨPM   (10) 

with Mfp-m the vector of selected entries of Mfp and Ptfp a 

square matrix of size Nx. Finally, the vector Mfp can be 

interpolated from Mfp-m such that Mfp=fp(Ptfp)-1Mfp-m. 

Then, the nonlinear term A
tMfp(XA(t)) of the reduced model 

(9) is approximated by:  
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(11) 

We can note that the matrix -1

fp

t

fp

t

A )( ΨPΨΨ is computed only 

once. The difference between the BPIM and the (D)EIM is the 

approach to determine the matrix P. 

 

2) Best points Interpolation Method (BPIM) 

The idea of the BPIM is to minimize the difference between 

r-fpM and its approximation 
r-fp

~
M [5][6]. Then, the matrix P is 

determined by   
 





Ns

1k

2

ksfp,

1

fpksfp,

t

fp )M)(-M(minarg tt

P

PΨPΨP  
(12) 

with Msfp,k the kth column of the snapshots matrix Msfp.  The 

previous equation (12) defines a least squares minimization 

problem. This kind of problem can be solved by a discrete 

optimization process based on a Genetic Algorithm (GA). The 

accuracy of the reduced model depends on the choice of the 

matrix P. Indeed, the conditioning of the matrix Ptfp depends 

on P. Then, Ptfp can be singular or ill-conditioned. The 

conditioning of Ptfp is added as a constraint to the 

optimization process.  
 

3) (Discrete) Empirical Interpolation Method (DEIM)  

With the (D)EIM, the matrix P is built using a greedy 

algorithm [3][4]. At each step, the k+1th column of Pt is 

defined by the ik+1
th column of the identity matrix Ie of size Ne. 

The index ik+1 is the index for which the error between the 

vector fp,k+1 and its approximation using the k first column of 

P is maximum: 
 

1kfp,

1

fpfp1kfp,1k1ke )(-maxargiwith)](i,[ 



  tt
PΨPΨIPP

 
(13) 

The matrix Ptfp obtained from the (D)EIM is by construction 

invertible. 

IV. APPLICATION 

A 2D magnetostatic example made of a single phase EI 

transformer at no load supplied at 50Hz with a sinusoidal 

voltage is studied (Fig. 2(a)). The nonlinear behavior of the 

ferromagnetic core is considered (Fig. 2(b)). The simulation 

time is composed of three periods with 32 time steps for each 

period. We compare the currents obtained from two reduced 

models, POD_(D)EIM  and  POD_BPIM, with the one 

obtained using the full model. Fig. 3 presents the evolution of 

the primary current obtained from the full model for the two 

first periods of the voltage. In order to construct the reduced 

models, we consider Ns equidistributed snapshots extracted to 

the solving of the full model on the first half period of the 

voltage. Then, the POD_(D)EIM and POD_BPIM models are 

solved for all time steps. Fig. 4 present the evolutions of the 

primary current obtained from both reduced models, and for a 

different number of snapshots. We can observe that the 

waveform of the primary current obtained from the 

POD_BPIM is close to the reference with a low number of 

snapshots (Ns=2). With the POD_(D)EIM, a physical 

evolution of the current is obtained when Ns is larger than 12. 

To estimate the convergence versus the number of snapshots, 

an error estimator is defined by 
 

2FM

2MORFM

MORε
I

II 


 
(14) 

where IFM and IMOR are the vectors of primary current values 

at each time step obtained from the full and the one of reduced 

models. Fig. 5 presents the evolutions of the error versus the 

number of snapshots. When the number of snapshot is low, the 

error of the POD_BPIM is weaker than the one from the 

POD_(D)EIM. When the number of snapshots increases, both 

reduced models converge toward the same error. The selected 

entries from the (D)EIM and from the BPIM are presented on 

the mesh for Ns=16 in Fig. 6. The localization of the selected 

entries are different. Nevertheless, the errors of the primary 

current from both reduced models share the same order of 

magnitude. In term of local quantity, Fig. 7 presents the 

distribution of the magnetic flux density computed from the 

full model for t=0.01s. The modulus of the errors between the 

full model and both reduced models are presented in Fig. 8. 

The errors from the POD_(D)EIM and the POD_BPIM are 

located where the direction of B changes. The maximal values 

of the error from both reduced models are the same order. In 

term of computational time, the full and reduced models 

require 173s and 20s. Then, the speed up is 9 for Ns=16. To 

compute the POD_(D)EIM and POD_BPIM models, the time 

is 29s and 72s. These times hold the snapshots computation 

and the determination of the reduced basis and of the entries of 

Mfp to be evaluated. The computational cost with the BPIM is 

much higher than the one of the (D)EIM, due to the 

optimization process. The interpolation error introduced by the 

BPIM depends on the parameters of the optimization process 

such that the size of population or the number of generations.  

V. CONCLUSION 

The POD combined with the (D)EIM and the BPIM have been 

developed with a vector potential formulation used to solve a 

nonlinear magnetostatic problem coupled with electric 

equations. Two reduced models, based on the POD_(D)EIM 

and on the POD_BPIM, have been compared on an academic 

example. With a weak number of snapshots, the error of the 

POD_BPIM is smaller than the POD_(D)EIM. When the 

number of snapshots increases, both reduced models converge 
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toward the same order of error. Nevertheless, the 

computational cost of the BPIM is very high compared to the 

(D)EIM due to the optimization process.  
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of the ferromagnetic core (b). 
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Fig. 3. Evolution of the primary current obtained from the full model. 
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Fig. 4. Evolutions of the primary current obtained from the POD_(D)EIM 

model (a) and from the POD_BPIM model (b) for different numbers of 
snapshots. 

 

0.0001

0.001

0.01

0.1

1

10

2 4 6 8 10 12 14 16

 

N
S

 

POD_(D)EIMεPOD_BPIMε


X
  

 
Fig. 5. Error versus the number of snapshots. 

 

 
Fig. 6. Selected components by the (D)EIM (black) and the BPIM (blue) with 

NS=16.  
 

  
Fig. 7. Distribution of B from the full model (t=0.01s, Bmax=1.68T).  
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Fig. 8. Error modulus of B from the POD_(D)EIM (a) and the POD_BPIM (b) 

(Bmax=18µT for the POD_(D)EIM and Bmax=24µT for the  POD_BPIM).  
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