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Wind energy is becoming a significant alternative solution
for future energy production. Modern turbines now
benefit from engineering expertise, and
a large variety of different models exists, depending
on the context and needs. However, classical wind
turbines are designed to operate within a narrow
zone centred around their optimal working point.
This limitation prevents the use of sites with variable
wind to harvest energy, involving significant energetic
and economic losses. Here, we present a new type
of bioinspired wind turbine using elastic blades,
which passively deform through the air loading and
centrifugal effects. This work is inspired from recent
studies on insect flight and plant reconfiguration,
which show the ability of elastic wings or leaves to
adapt to the wind conditions and thereby to optimize
performance. We show that in the context of energy
production, the reconfiguration of the elastic blades
significantly extends the range of operating regimes
using only passive, non-consuming mechanisms. The
versatility of the new turbine model leads to a
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large increase of the converted energy rate, up to 35%. The fluid/elasticity mechanisms
involved for the reconfiguration capability of the new blades are analysed in detail, using
experimental observations and modelling.

1. introduction
To a large extent, the global energy demand for the next decades will be based on renewable 
energies. Recent scenarios for 2050 reported by the International Energy Agency (IEA) or the 
Organization for Economic Co-operation and Development (OECD) predict that wind energy 
will represent 12% of the electricity produced on the planet. Today, the total amount produced 
by wind turbines covers less than 4%, meaning that the main effort in developing wind energy 
is still to come. The challenges are of course to reduce the turbine cost and increase the farm 
size; another one, though, is to overcome technological limitations of the turbines themselves and 
provide sustainable technological solutions.

Current wind turbines are efficient at specific working points [1]. This limitation is mainly 
due to the fact that for a given blade design (setting local angles of attack and aerodynamic 
coefficients along the blade), the turbine reaches its best performance over a narrow band of 
oncoming wind speeds and turbine loads [1,2].

As a consequence, the energy conversion is poor when the turbine is working far from its 
operating regime. For current installation, this difficulty is generally overcome either by seeking 
sites with stable and constant head wind or by introducing active motorized controls of blade 
pitch angle [2] or active  trailing edge  flaps [3]. Nevertheless, a large amount of potential 
available wind energy is not converted by the turbines, leading to a significant energetic and 
economic losses. This lack of versatility limits the development of small or middle-sized turbine 
models and the expansion of short supply chains.

This work introduces a solution to this technological limitation, using flexible blades inspired 
by the flapping flight of insects and reconfiguration of plants. Slender elastic structures, such as 
wings or leaves, adjust the torque exerted by the fluid pressure when bending through the action 
of the incoming wind, changing the balance between external mechanical loads [4–6]. Plants 
bend during wind conditions, which reduces drag and avoids damage [7–9]. Insects, on the other 
hand, use this ability to change the direction of the pressure forces to improve thrust production, 
without extra input energy [10–12]. Along the same line of thought, flexible blades can be 
implemented on wind turbines.

Blade flexibility is currently a centre of attention in the turbine community. The principal 
concern has been the structural instability of large size turbines operating at high tip speed 
ratios. The main goal of these works has been to include blade flexibility into models and 
simulations to give accurate predictions of the blade bending and flutter threshold [2,13,14]. On 
the other hand, blade flexibility has also been perceived as a way to improve the performance of 
the rotor. Several numerical studies have addressed chordwise bending of the blade through the 
action of the aerodynamic load and have shown that performance could be increased in specific 
cases [15–21], but did not consider the blade pitch angle as a key parameter. This parameter is, 
however, crucial for flexible blades because the main property of flexibility is to allow the pitch 
angle to dynamically adapt to the wind forcing and extracted power. We propose an 
experimental and theoretical study covering a relevant range of the parameter space.

We show that the most notable feature of the blade reconfiguration capability is to keep the 
mechanical system efficient away from the optimal operating point (in the case of wind 
conditions, which are below or above the nominal speed, for instance). This crucial feature can 
significantly extend the performance range of wind turbines beyond their specific working 
regime. Our experimental results show an increase in potential energy production up to 35%, 
which is obtained using passive, non-consuming mechanisms, from the reservoir of energy 
available at non-nominal wind conditions.



Because a wind turbine design is a multiple entry problem (number of blades, profiles, 
orientation, inclination, type of rotor, size, wind regimes, etc.), the present analysis is intentionally 
conducted on a reduced mechanical system. The model is three-bladed and the blade profiles
consist of non-twisted flat membranes of constant thickness, of length L = 10 cm and chord 
W = 4.5 cm, clamped to a rigid rod. Membranes are able to deform in the chordwise direction as 
shown in figure 1. The rotor stands  H = 20 cm above the ground; the radius of the rotor, measured 
from centre to blade tip, is R = 14.6 cm.

The flexible part of the blade (of width w = 3.5 cm) is made from PET (polyethylene
terephthalate) sheets, with a specific rigidity B that can be varied using different thicknesses. We
focused on two characteristic flexible cases: the first, referred to as semi-flexible F1 and a second,
referred to as very flexible F2, corresponding to bending modulus B1 and B2, respectively (details
can be found in the Methods section). For the very soft case F2, blades may flutter at high wind
velocities. However, the working ranges of the turbine are far from the fluttering threshold. Both
elastic cases must be compared with rigid blades (referred to as RB), printed in synthetic resin.

For the three configurations (RB, F1 and F2), we measured the angular frequency Ω as a
function of the headwind velocity U, the resistive torque C (mimicking the extraction of energy
converted to electricity, see [1]), along with the pitch angle of the blade θ0.

The power coefficient CP of the turbine can be estimated comparing the power absorbed by the
resistive torque CΩ , to the total available wind power, defined as the unperturbed wind kinetic
energy flux through the surface swept by the turbine 1

2 ρU3πR2

CP = CΩ

(1/2)ρU3πR2 = C∗λ. (2.1)

The second expression of CP introduces the characteristic speed ratio λ = RΩ/U between
the turbine and the wind velocities, and the expression of the dimensionless torque
C∗ = C/(0.5ρU2πR3). The ratio λ intrinsically depends on the local apparent angle of attack β

through the following geometrical relation (figure 1)

β = arctan
(

1
λ

)
− θ0. (2.2)

For a given set of parameters (θ0, B), an efficiency map of CP can be constructed, varying U
and C independently. Figure 2 shows maps for the three different sets of blades (RB, F1, F2)
obtained for a value of the pitch angle θ0 = 30◦, close to the optimum pitch angle θ

opt
0 for which

the efficiency CP is maximum over the experimental ranges of U and C. These maps show typical
responses of the turbine to imposed parameters, showing an optimal zone of performance. For
a given U (resp. a given C), one can observe that the efficiency goes through a maximum when
varying C (resp. U). Indeed, when looking at a CP(C) profile taken at a fixed U, CP will take its
value between two limiting cases of CP = 0, corresponding to no load (C = 0) and a strong load
preventing the rotor from running (Ω = 0). We observe the same behaviour for a CP(U) profile
taken at a fixed C. The lower limit CP = 0 is directly set by U = 0. The second, though, is caused
by the alignment of the apparent angle of attack β with the blade due to an excessive rotation rate,
setting the aerodynamic torque applied on the blade close to zero [1].

Comparing the three cases of rigidity, we see a strong effect of the blade stiffness. The working
range obtained for blades F1 appears wider than that obtained for the rigid and F2 blades. This
suggests an optimum depending on blade deformation, which increases the versatility of the
turbine. To quantify this observation, we extract from these measurements three representative
quantities related to the turbine efficiency. For a fixed wind velocity, varying both the resistive
torque C and pitch angle θ0, we determined Cmax

P , the maximum efficiency, I50, the integral of
CP above 50 % of Cmax

P and I100, the total integrated efficiency. I50 is probably the most relevant
quantity for energy purposes, as it gives weight to the vicinity of the optimum working point.



magnetic powder
brake

W

R
L

U

mc

ma

fL fD

fC

b

h

W

ey

ez ex

+
V

U
f

q

q0

s b

q

V

V
U

–r W

q0

r W

–r W

q

(b)

(a)

(c)

Figure 1. (a) Three-bladed turbine model used in this work. (b) Sketch of a blade section in the rotating frame of reference,
showing symbols and notation. During the operating regime, the blade is subjected to the aerodynamic force (decomposed
into lift fL and drag fD), which tends to fold the blade through the action of the torquema, and the centrifugal force fC, which
conversely tends to align the blade with the rotation plane due to the torquemc exerted in the opposite direction. As a result,
the blade bends, which modifies the angle of attackβ between the apparent wind V and the blade and θ , the angle between
the blade and the plane of rotation. (c) Bent elastic blades for three characteristic values of the speed ratio λmeasured at the
tip blade. The red profile shows the reference configuration (λ = 0, θ0 = 28◦). The two white profiles show the bent blades
for (λ = 0.25, θ = 30.8◦) and (λ = 2.35, θ = 25.3◦).

Figure 3 shows these three quantities as functions of the blade pitch angle and compares rigid
(RB, black circles), semi-flexible (F1, red squares) and very flexible blades (F2, green triangles) for
three different wind speeds. Whatever the value of the pitch angle θ0 or wind speed, the elastic
case F1 always gives better results than its rigid counterpart. This is true when considering Cmax

P ,
I50 or I100. Cmax

P increases by 2 to 5% over the whole range of the parameters space. However, the
most significant effect is observed on the integrated quantities. The increase over the full working
range (I100) goes from 10 to 20% and I50, the integrated efficiency in the vicinity of the optimum
working point, increases significantly by 15 to 35%. One can also note the presence of optima
with respect to the pitch angle θ0. We see that this optimum is sharper for rigid blades than for
F1 blades, suggesting that the performance of the wind turbine is less dependent on an accurate
tuning of the pitch angle when the blades are allowed to bend. In addition, the value of θ

opt
0

appears to depend on the wind velocity. More generally, the optimum value of the pitch angle
depends on the turbine working regime [1]. We shall see that this angle plays an important role
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Figure 2. Efficiencymaps CP as a function of the headwind velocity U and the resistive torque C for a pitch angle θ0 = 30◦, for,
(a) the case RB (reference), (b) F1 and (c) F2. The efficiency CP is expressed as a percentage of the maximum efficiency reached
at θ0 = 30◦ for the rigid case (CmaxP = 0.0936). Resolutions for both U and C are respectively 1m s−1 and 8mNm. As can be
observed, the case F1 shows an extension of the working domain of the turbine and of its high-efficiency range (above 50% of
CmaxP ). Case F2, though, shows a strong decrease of the performance compared with its rigid counterpart.
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Figure 3. Representative quantities of the turbine efficiency from the experimental curves CP(C) as a function of the pitch
angle θ0, at different headwind speeds U for the three cases of rigidity studied above (rigid, black circles, F1, red squares and
F2, green triangles). (a–c) CmaxP , (d–f ) I50 (the integral of CP above 50% of CmaxP ) and (g–i) I100 (integral of the curve CP(C) over
the full working range). Each integral is normalized by the maximum integral obtained with the rigid blade turbine at a given
velocity U.
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Figure 4. Efficiency curves CP as a function of (a) λ and (b) C∗ measured at the best pitch angle (θ0 = 28◦) for the F1 blade,
which should be compared to efficiency curves of rigid blades (RB) measured at different pitch angles (θ0 = 20◦, 24◦, 28◦ and
32◦). Measurements are carried out varying C for a fixed headwind speed U = 13m s−1. Uncertainties are due to the precision
of the measuring devices and are of the order of magnitude of the markers. (c) Efficiency curves as a function of the headwind
speed U, for a pitch angle θ0 = 30◦, for systems RB, F1 and F2. The resistive torque is set to a constant value: C = 90.9mNm.
A moderate blade flexibility allows an early start of the wind turbine rotation.

for the performance of the whole mechanical system. This point is addressed in detail further in
the text.

Figure 4a shows the classical efficiency curve CP plotted as a function of the speed ratio λ

for F1 blades at the optimum pitch angle θ0 = 28◦. It is compared to the efficiency curves of the
rigid blades obtained at different pitch angles θ0 = 32◦, 28◦, 24◦ and 20◦. As already noted in
figure 3, the efficiency of the flexible system F1 overcomes all the represented rigid counterparts.
This is especially notable in the nearness and beyond the maximum efficiency CPmax . However,
depending on the range of λ, the performance of the F1 case can always be compared locally to
one of the RB efficiency curves displayed on figure 4a. For instance, the maximum efficiency of
the F1 case is accurately reproduced by the RB case at pitch angle θ0 = 28◦. The upper range of λ

(2.1 ! λ ! 2.5), though, is close to the RB case at pitch angle θ0 = 24◦. Although less obvious, this
property holds for the lower range of λ observed in figure 4 where the Cp(λ) curves of the different
blade systems tend to overlap. For this specific range (0 ! λ ! 0.9), which corresponds to small
wind velocities U and/or large resistive torques C, the effect of the pitch angle on the efficiency is
better illustrated when plotting CP as a function of C∗ for a fixed U, as displayed in figure 4b. For
large C∗ (i.e. λ ! 0.9), we see that the F1 efficiency curve is this time better reproduced by the RB
case at a pitch angle θ0 = 32◦. F1 flexible blades at θ0 = 28◦ improve the efficiency of the optimal
rigid case (which is also obtained for θ0 about 28◦) over the whole working range of the turbine
(i.e. CP is increased in both high and low λ regions).



Thus, over the whole range of λ, the flexible blade system F1 with θ0 = 28◦ enables efficiency
values of rigid systems with θ0 ranging from 32◦ (small λ) to 24◦ (large λ) to be obtained. Indeed,
the flexible blade passively adapts the apparent pitch angle to the functioning regime, improving
the efficiency. The range of pitch angles 24 ≤ θ0 < 32◦, for which rigid blade systems sweep the
efficiency of F1 system with θ0 = 28◦ is consistent with the blade deformation when the turbine
is operating. At the blade tip, we measured a modified pitch angle θ = 30.8◦ when λ = 0.25 and
θ = 25.3◦ when λ = 2.35 (figure 1). It is worth noting that small deformations produce large effects
on the performance. It can also be observed that rigid blades at pitch angle θ0 = 20◦ (filled purple
triangles) are always surpassed by the F1 case at θ0 = 28◦ or by the RB case when 24◦ ≤ θ0 ≤ 32◦.
An excessively flexible blade could give apparent pitch angles beyond the range 24◦ ≤ θ0 ≤ 32◦,
leading to poor performances (see again figure 3).

Moreover, it should be noted that the increase of the pitch angle for small values of λ also
favours the starting of the turbine (i.e. plays on the critical wind speed at which the turbine starts
operating). This point is illustrated in figure 4c where CP is plotted as a function of the headwind
speed U, at pitch angle θ0 = 30◦. Initially at rest, the turbine with F1 blades starts rotating before
the two other cases RB and F2.

3. Discussion
The following discussion aims at understanding the fluid/elasticity mechanisms governing the
performance enhancement. As seen, the efficiency curve is extremely sensitive to the tuning of
the pitch angle. For our experiment, figure 5a shows the evolution of the measured optimal pitch
angle θ

opt
0 as a function of the speed ratio λ for the rigid blades model. This optimal angle θ

opt
0 (λ)

is evaluated by maximizing CP for each value of λ included in the range of pitch angle [0, π/2]. As
can be noted, θ

opt
0 (λ) is a decreasing function of λ, meaning that the turbine should continuously

adapt its pitch angle to any changing wind condition in order to maintain an optimal operating
regime. This problem is already known by manufacturers and taken into account in some current
turbine models using an active pitch control [2,22]. This feature may be understood by means of
a simple mechanical model of a rigid bladed turbine. In the stationary regime, the equilibrium
is defined as the balance between the total aerodynamical torque exerted on the blades Ma and
the resistive torque Cez. Ma is calculated using a two-dimensional approach, integrating the local
pressure load on the blade section over the chord length. The pressure force f is decomposed
into lift and drag forces as f = fL + fD with |fL| = (ρ/2)CLV2W and |fD| = (ρ/2)CDV2W, where V
is the apparent local wind speed defined as V(r, s) = Uey + rΩex, i.e. V(r, s) = U

√
1 + λ(r, s)2 (see

figure 1 and Methods for details). Taking into account the projections of the lift and drag forces
onto the rotation plane of the turbine that depend on the apparent velocity, the pitch angle θ0, the
headwind speed U and the resistive torque C (see again figure 1), Ma writes

Ma = 3
2
ρU2

∫W

0

√
1 + λ2r(CL(β) − λCD(β))ds ez. (3.1)

The specific values of lift and drag coefficients were measured separately on a single non-
rotating blade. We found the following laws for the coefficients CL = 1.49 cos(β) sin(β) and CD =
0.23 + 1.02 sin2(β) (see Methods). The value of CP is then obtained by solving numerically the
system Ma = C for each set of parameters.

As for experiments, the optimum CP(λ) is a function of the pitch angle θ0 in the model.
Figure 5b shows the ideal efficiency curve Copt

p (λ) (black line) obtained when adapting the pitch
angle, following the evolution given in the inset of figure 5b. In addition, we plotted three other
standard efficiency curves CP evaluated at three different constant pitch angles θ0 = 13.8◦, 21.6◦

and 35.7◦. This last result recalls the observation made previously on figure 4, comparing the
flexible blades with other rigid cases at different pitch angles. The values of the pitch angle have
been chosen such that: (a) the CP curve matches the optimal distribution for low λ (orange line,
θ0 = 35.7◦), (b) the maximum of the CP curve matches the maximum of the optimal distribution
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Figure 5. (a) Evolution of the experimental optimal pitch angle θ
opt
0 as function of the speed ratio λ, showing a decreasing

trend over the full working range of the turbine. This trend is confirmed both by commercial wind turbine data [23] (insert) and
predictions derived from the modelMa = C (see the text) (insert, figure 5b). (b) Ideal efficiency curve Coptp (λ) obtained in the
model when adapting continually the pitch angle following the evolution given in the insert. In addition, we have plotted three
other classic efficiency curves CP with three different constant pitch angles θ0 = 13.8◦, 21.6◦, 35.7◦ for comparison. We believe
that the quantitative discrepancy between the model and experiments lies in a dependency of drag and lift coefficients with
the rotation speed.

(blue line, θ0 = 21.6◦) and (c) the CP curve matches the optimal distribution for high λ (green line,
θ0 = 13.8◦).

Thus, the right strategy to optimize the efficiency curve to changing wind conditions is to
adapt the pitch angle from large to small values with increasing λ. Starting from the maximum
efficiency Cmax

P obtained for θ0 = 21.6◦ (blue curve), the pitch angle should decrease to θ0 = 13.8◦

(green curve) for the upper range of λ and increase to θ0 = 35.7◦ (orange curve) for the lower range
of λ. This observed decreasing trend of the optimal pitch angle is a general observation for wind
turbines: the same trend is confirmed by numerical simulations performed on commercial blade
design [23] (displayed in the insert of figure 5a), and by numerical studies [24].

Note that the ranges of θ
opt
0 (λ) and λ involved differ between the three representations;

reported data for commercial models, for instance, clearly show lower values of optimal pitch
angle for higher tip speed ratios λ. As an example the inset of figure 5a shows a turbine model
working at λopt approx. 3.5. This difference lies in the size of the blade and the values of
aerodynamic coefficients that differ from one blade design to the other [25–29]. This point has
no direct consequence on the discussion, which is essentially based on the decreasing trend of the
optimal pitch angle, shared by turbines in general and independent of the blade geometry.

Introducing flexibility to the blades is a way to passively change the pitch angle with working
conditions. We shall now address the basis of the reconfiguration mechanisms involved in the
enhancement of the production curve CP. As discussed, θ∗

0 must be a decreasing function of λ, or,
seen from the maximum working point, must increase if λ decreases and vice versa. For simplicity
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and clarity, this point is addressed here considering a reduced fluid/structure model. In two-
dimensional geometry, the elastic blade section may be described using a Euler–Bernoulli beam
model [30]. The local forces acting on a section element are (i) the aerodynamic load fL + fD,
which tends to fold the blade through the action of the torque ma and (ii) the centrifugal force
fC due to the high rotation rates involved during turbine operation. The component of fc locally
normal to the blade exerts a torque mc in the opposite direction of ma, which tends to align the
flexible blade with the rotation plane. For a quasisteady approach, the system in dimensionless
mathematical form where lengths are normalized by the chord length W writes (see figure 1 and
Methods)

∂3θ

∂s3 = CY(1 + λ2)[CL(β(s)) cos(β(s)) + CD(β(s)) sin(β(s)]

− CCλ2 sin(θ (s))
∫ s

0
cos(θ(s′)) ds′, (3.2)

which must satisfy clamped-free boundary conditions θ (0) = θs(1) = θss(1) = 0. CY and CC are
respectively referred to as the Cauchy and centrifugal numbers

CY = ρU2W3

2B
(3.3)

and

CCλ2 = ρbladeΩ
2hW4

B
. (3.4)

CY and CCλ2 respectively compare the pressure and centrifugal effects to the elastic restoring force
of the bent blade. The pressure load tends to bend the blade towards the headwind and therefore
increases the apparent pitch angle (θ > θ0), while the role of the centrifugal force is to unfold
the blade in the opposite direction (θ < θ0). Solutions of equation (3.2) may be easily computed
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using classical numerical shooting methods. As evoked above, we are interested here in the elastic
response of the blade in the vicinity of the optimal working point (defined at Copt

p (λopt), (figure 5)).
Figure 6a shows the evolution of the average apparent pitch angle θ∗

0 =< θ (s) >s as a function
of λ. For each set of parameters CY and CC, the pitch angle θ0 is chosen such that the apparent pitch
angle θ∗

0 (λopt) at the working point corresponds actually to the optimum pitch angle (θopt). The
red curve represents the case for CY = 0.54 and CC = 0.51, estimated from experimental values.
For the discussion, it is compared to the evolution of θ (λ) for the rigid case (constant angle, black
line), a case using a material which is twice as soft (i.e. multiplying CY and CC by a factor of 2,
CY = 1.08, CC = 1.02), and a case only amplifying the centrifugal effect (CY = 0.54, CC = 2.04). As
can be seen, equation (3.2) leads to a decreasing apparent pitch angle in the vicinity of the working
point, which corresponds to the desired effect for performance improvement as discussed above.

The results also pinpoint the importance of both CY and CC in tuning the elastic response of
the flexible blades. For instance, decreasing the blade stiffness and/or increasing the centrifugal
effects sharpen the evolution of θ∗

0 in the vicinity of the optimal working point, which allows the
flexible blade to explore a larger range of angle of attack. This represents an interesting deciding
point for turbine blades design: the response of the elastic blade can be finely tuned with flexibility
and centrifugal contributions by changing blade parameters such as density, Young modulus, or
thickness. Such key parameters should be chosen carefully to impose the elastic law as close as
possible to the optimal curve θ

opt
0 (λ). Hence, an elastic law covering an insufficient range of θ∗

0 will
not be efficient. Reciprocally, covering an excessively large range (choosing a excessively flexible
material, as in the case F2 for instance), will cause the performance to collapse.

Finally, we observe that this beneficial evolution of the elastic behaviour of the blades still
holds if the form of the aerodynamical laws are changed. Figure 6b shows the same results
as figure 6a when considering aerodynamic coefficients derived, this time, from foil potential
flow theory at small angle of attack: CL = π sin(β) [25]. This theory is often used for large and
profiled wind turbine blades operating at high λ [1], then involving small angles β and pre-stall
(potential) flows. Again, the apparent pitch angle decreases with λ in the vicinity of the optimum,
strengthening the benefit of using flexible blades in general.

4. Conclusion
Our experiments showed significant energy gain (approx. 35%) compared with its rigid
counterpart. With self-adaptation to wind conditions, this system enlarges the range of
wind speeds for which the machine works properly, feature obtained with non-consuming
mechanisms. Moreover, the small magnitudes of the deformations involved may also be
worthwhile for manufacturing issues.



The mechanisms described here do not depend, a priori, on the blade design and only require
that the optimal pitch angle is a decreasing function of λ. As seen, the full reconfiguration
mechanisms require both fluid pressure and centrifugal forces for a proper evolution of the
apparent pitch angle θ∗

0 with λ. This can be achieved by tuning carefully the terms CC and CY,
with the density, flexibility and geometry of the blade. Finally, we believe that the advantages of
using flexible blades may extend beyond the scope of this paper. This work mainly focused on
steady, time-independent regimes. However, the blades capability to redirect the torque via the
chordwise bending may certainly be beneficial for the dynamical response, and helps the rotor
to adapt to intermittency and optimizes energy conversion. We anticipate that propellers as used
for helicopters or drones would also benefit from using flexible blades through the mechanisms
exposed in this article.

5. Methods
(a) Experimental set-up
Blades are rectangular Mylar plates of length L = 10 cm and chord W = 4.5 cm, clamped along
their length to a 1 cm diameter rigid cylinder attached to the rotor. The part of the blade’s chord
that can deform is thus 3.5 cm wide. The tip of the blade is 14.6 cm far from the centre of the rotor.
The blades flexural rigidity B per unit length is varied using different plate thicknesses h. For each
blade, the pitch angle θ0 is known with an uncertainty of one degree. Finally, particular attention
was paid to the mechanical friction of the rotor, using precision machine work and high-quality
bearings.

The value of B is measured via the first resonant mode frequency of each blade using a high
precision shaker. Following simple beam vibration theory [31], the relation between flexural
rigidity and resonant frequency is written

f1 = 1
2π

(
1.8751

W

)2
√

B
ρh

, (5.1)

where ρ is the density of the Mylar (1380 kg m−3) and 1.8751 is a characteristic coefficient of
the first resonant mode. The bending modulus of F1 and F2 are B1 = 8.41 10−3 N m and B2 =
1.52 10−3 N m.

Experiments were carried out in a large wind tunnel of 1.65 × 1.35 m rectangular cross section.
The wind speeds range from 0 to 20 m s−1 with a turbulence rate of 0.5%. A magnetic powder
brake generates a resisting torque C on the rotor, which ranges from 7 to 175 mN m. The (U, C)
plane has been fully explored experimentally, as shown in figure 2.

Both lift and drag forces FL and FD for Ω = 0 were measured on a single blade using a
mechanical two-component force gauge sensor, varying the angle of attack β with respect to
the oncoming wind from 0 to 90◦ for three different wind speeds. Macroscopic lift and drag
coefficients CL and CD are calculated using the relation

CL/D(β) =
2FL/D(β)
ρairU2S

, (5.2)

where ρair is the density of air, U the velocity of the oncoming wind, measured with a Pitot tube
probe ahead of the turbine, and S the total area of the blade L × W.

(b) Model
(i) Expression of the aerodynamic torque
The total aerodynamic torque Ma exerted on a blade section dr by the fluid is estimated by
integrating local contributions dMa on a surface element d2S = ds dr. For a three-bladed model,
this expression, per unit length, is written (for r ≫ s) Ma = 3

∫W
0 dMa, which gives the following



expression for Ma (figure 1)

3ρ

2

∫W

0
V2r(CL(β, r) sin(φ) − CD(β, r) cos(φ)) dsez, (5.3)

where CL(β, r) and CD(β, r) are local expressions of force coefficients that we assume to be equal to
the measured macroscopic coefficients. Following figure 1, it is easy to show that V2 = U2(1 + λ2)
and cos(φ) = λ/(1 + λ2); sin(φ) = 1/(1 + λ2), which gives the expression of equation (3.1), taking
into account local expression of λ = rΩ/U.

(ii) Expression of the centrifugal term
The centrifugal force applied on a surface element d2S = ds dr is

fc = ρbladehΩ2 HM(s, r), (5.4)

where M indicates the blade element on which the centrifugal force applies, and H the orthogonal
projection of M on the rotor axis. As the pitch angle is non-zero, vector HM has a component
normal to the blade. For the blade deformation, bending chordwise, we are only interested in the
normal projection, which is at M(r, s)

fc⊥ = ρbladehWΩ2 sin(θ∗
0 (s))

∫ s

0
cos(θ∗

0 (s′)) ds′. (5.5)

(iii) Solution of the Euler–Bernoulli beam equation
Solutions of equation (3.2), involving the bent shape of the flexible blades for each set of
parameters (λ, B, θ0, CD, CL), were obtained numerically using classic numerical routines. The
exact shape is calculated by solving the nonlinear clamped/free Euler–Bernoulli equation using
a shooting method routine. The blade is discretized with 5000 points along the chord giving a
sufficient precision for convergence of the efficiency CP(B, θ0, λ).
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