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Pierre Gilorminia,∗, Paul-Aymé Toulemondea,b, Julie Dianic, Antoine
Garderea

aPIMM, ENSAM, CNRS, CNAM, 151 bd de l’Hôpital, 75013 Paris, France
bAirbus Safran Launchers, Centre de recherche du Bouchet, 9 rue Lavoisier, 91710

Vert-le-Petit, France
cLMS, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France

Abstract

The stress-strain response of a rubbery polymer network highly filled with
micrometric glass beads was measured at low strain rate in uniaxial ten-
sion. The volume change of the glass bead filled material upon stretch-
ing was recorded by video extensometry and X-ray tomography scans were
used to identify the type of damage within the composite material. The
modeling used a cohesive-zone model from the literature depending on the
polymer/glass adhesion energy that was measured by peeling polymer strips
from a glass plate. Nonlinear finite element simulations were performed on
representative three-dimensional microstructures defined by periodic cubic
unit cells containing randomly dispersed spherical particles. Good reproduc-
tions of both the composite response and the volume change were obtained
prior to the appearance of inner cracks.

Keywords: elastomers; glass beads; mechanical behavior; damage;
cohesive zone

1. Introduction

Highly filled elastomers show significant volume changes upon uniaxial
stretching (Lepie and Adicoff, 1975; Özüpek and Becker, 1997) due to sub-
stantial matrix debonding at the filler/rubber interface (Tao et al., 2013).
In order to reproduce the stress-strain response of such materials, which
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depends strongly on damage, one path has been to apply numerical sim-
ulation where cohesive zones describe interfacial debonding. Some stud-
ies accounting for the rubber hyperelasticity of the matrix material apply
preferably to fiber-reinforced composites, with either a periodic (Zhong and
Knauss, 1997, for instance) or random (Moraleda et al. 2009; Yang et al.,
2012, among others) distribution of particles, or are related qualitatively
to particle-reinforced elastomers (Toulemonde et al., 2016). Other studies
handle three-dimensional random microstructures (Matous̆ et al. 2007, for
instance, but for small applied strains only) which are more appropriate for
elastomers filled with particles. In a recent contribution, Spring and Paulino
(2015) run finite element simulations for a rubber matrix moderately filled
with silica nanoparticles. While these authors provide an interesting study
on the role of the bonded interphase displayed in such filled rubbers (as
evidenced by Berriot et al., 2002, for instance), their account for damage at
the rubber/silica interface via a cohesive zone model, involving debonding
and therefore volume change, is questionable. These authors compared their
model to data from the literature that are lacking evidence of volume change
upon stretching: Yatsuyanagi et al. (2002) do not mention any volume
change, while Suzuki et al. (2005) assume matrix debonding at the particles
interface based on Gent and Park (1984) observations made on micrometric
but not nanometric particles. While, as reported by Spring and Paulino
(2015), debonding is evident when particles are of the size of micrometers,
it is not clear that rubbers filled with silica nanoparticles experience signif-
icant volume changes, especially at strains limited to 35%. Starkova and
Aniskevich (2010), for instance, reported against for a similar silica/rubber
system. Therefore, it appears that the cohesive-zone model has not been
confronted yet with adequate applications where both stress and volume
variations with respect to applied strain are compared to experiments. Very
recently, Ilseng et al. (2017) measured the stress-strain response and sig-
nificant volume changes at quite large strains in two elastomers, and they
did observe particle/matrix debonding directly with scanning electron mi-
croscopy, but extremely low volume fractions of micrometric ZnO particles
(about 1%) were considered. Moreover, their very simplified finite element
simulations used an axisymmetric cell containing a single spherical inclusion,
and were limited to qualitative comparison.

In the current contribution, specimens of a rubbery polymer network
filled with 55% of 250 µm glass beads were submitted to uniaxial tension
while recording their volume changes. The composite material was manu-
factured in lab and several experimental tests were conducted in order to
limit the number of unknowns among the parameters needed to run realistic
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simulations, accounting for the behavior of the matrix and the filler/rubber
debonding. Three-dimensional nonlinear finite element simulations were run
on representative random microstructures and included the recent, thermo-
dynamically consistent, cohesive-zone model of Spring et al. (2016). This
reformulation of the original model of Park et al. (2009) prevents some is-
sues that appear when a linear unloading/reloading relationship is applied,
as shown by Spring et al. (2016) and by Gilormini and Diani (2017). There-
fore, the results presented here provide a quantitative comparison of the
mechanical behavior and damage evolution between a numerical model and
an actual rubber matrix highly filled with micrometric particles.

This paper is organized as follows. First, the material preparation and
characterization are described, including the two techniques used to measure
volume changes and the peel test used to access adhesion energy. Then,
the cohesive-zone model considered is briefly recalled and the finite ele-
ment model is detailed. Finally, the stress-strain responses and the volume
changes given by the simulations are compared with the experimental re-
sults.

2. Material characterization

2.1. Matrix material

The polymer matrix is an acrylate network obtained by the copolymer-
ization of 98.8 mol% of methylacrylate (MA) and 1.2 mol% of poly(ethylene
clycol) dimethacrylate (PEGDMA) of molar weight 750 g/mol used as cross-
linking agent; 2,2-dimethoxy-2phenylacetophenone (DMPA) was added as
photo-initiator. The mix was cured in a UVP ultraviolet chamber CL-1000
during 55 min. The peak of loss modulus was measured at 8◦C during
a temperature sweep dynamic mechanical test run at 1 Hz, and therefore
the material stress-strain response at room temperature can be assumed
independent of the strain rate if the latter is moderate. The acrylate uniax-
ial stress-strain response measured on standard H3 dogbone samples with
1.5 mm thickness at room temperature and at a low crosshead speed of 1
mm/min is shown in Figure 1, which corresponds to a strain rate of the
order of 10−3 s−1. An isotropic incompressible hyperelastic behavior with a
strain energy given by

U =
2G

γ2
(λγ

1 + λγ
2 + λγ

3 − 3) (1)

which is a simplified version of the general law of Ogden (1982), with the λi

denoting the principal stretches (λ1λ2λ3 = 1), could be fitted very accurately
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Figure 1: Experimental stress-strain response of the acrylate matrix in uniaxial tension
(symbols) and comparison with the fitted incompressible hyperelastic law (solid line).

to these data. An initial shear modulus G of 0.637 MPa and an exponent
γ = 1.377 lead to the curve shown in Figure 1. The incompressibility of the
matrix material has been verified by applying the same video extensometry
technique as described below in Section 2.3.

2.2. Filled composite

Following Cras et al. (1999), glass beads with an average diameter of
250 µm were immersed for 30 min in a 1:1 hydrochloric acid/ethanol mix,
rinsed with distilled water and then dried during four hours in a hood. A
2/3 mass ratio of beads was added gradually to the polymer mix in order to
avoid bead clustering. Then, the beads/polymer paste was poured between
two glass plates which were maintained vertical during the curing in order to
obtain a very highly filled polymer at the bottom. An anti-adhesive had been
sprayed on the plates preliminarily to promote demoulding. The tomogra-
phy observations reported in Section 2.3 below confirm that the material is
free from bubbles at the end of this process, and densimetry measurements
(with a precision of about ± 1%) showed that the final composite contains a
55% volume fraction of glass beads. Such a high volume fraction of particles
was used because the composite was developed initially as a model for solid
propellant-like materials.
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Figure 2: Experimental uniaxial stress-strain response of the composite material with
55% of glass beads (symbols, 3 tests). The fitted response of the acrylate matrix has been
included for comparison (solid line).

The composite was loaded in uniaxial tension at 1 mm/min, and the
results of 3 tests are reported in Figure 2. For small strains, the compos-
ite is clearly stiffer than the matrix, which reflects the expected effect of
rigid reinforcements in a soft matrix. When strain proceeds, the tangent
stiffness of the composite decreases significantly, due to the development of
damage shown in Section 2.3 below. Finally, the softening effect of damage
compensates the stiffening effect of reinforcements, and the response of the
composite continues below that of the acrylate matrix, with a much smaller
tangent stiffness. The slightly rough sides of the dogbone samples punched
in a composite plate that contains a large volume fraction of glass beads are
a likely cause of the data dispersion in Figure 2. In the next section, we
show how damage evolves by measuring and observing void formation upon
stretching.

2.3. Damage

Two damage mechanisms have been commonly observed when elastomers
highly filled with micrometric particles are submitted to mechanical load-
ings: matrix/filler debonding (Oberth and Bruenner, 1965; Cornwell and
Schapery, 1975; Tao et al., 2013) and crack appearance within the matrix
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(Cornwell and Schapery, 1975; Ide and Ho, 1999). Both mechanisms gener-
ate voids and the evolution of damage upon loading can be linked directly
to the macroscopic volume change since the rubber matrix is incompressible
and the elastic glass beads do not deform at the stress levels considered (this
has been checked in the simulations of Section 3.2). In the present study,
two complementary techniques were used to quantify the amount of void
created and to identify the type of damage occurring upon stretching: video
extensometry and X-ray tomography.

Video extensometry measurements were carried out by merely painting
four dots on two orthogonal stress-free faces of the central part of the stan-
dard H3 dogbone samples with 4 mm thickness. This procedure provides the
volume change directly from the product of the measured principal stretches,
without any assumption regarding isotropy for instance. Actually, the two
cameras measured very similar transverse strains. On each face, two dots
were aligned with the direction of stretching and two with the transverse
direction. The principal stretches were extracted by postprocessing the im-
ages recorded by conventional cameras using a Matlab (2011) routine that
we developed and which accounts for possible misalignments of the dots
with respect to the principal directions of stretching. In addition, dogbone
samples were submitted to tensile tests up to either 0.05 or 0.1 strain, and
they were exposed to X-ray tomography while maintaining these strain val-
ues. The source parameters were 73 kV and 70 µA, resulting in a spatial
resolution of 5 µm/pixel. The size of the post-treated volumes were at least
1000 × 500 × 400 pixel3 in order to comply with volume independence of
the results. The matrix and the glass beads being incompressible and the
volume fraction of beads being constant, it was possible to extract the void
volume with a mere analysis of image gray levels by adapting the method
of Bruchon et al. (2013), where a peak is chosen for each phase in the
gray level histogram rather than threshold values. The main source of er-
ror in this procedure, leading to the error bar in Figure 3, is the precision
of the required preliminary evaluation of the volume fraction of beads by
densimetry.

Figure 3 displays the experimental volume variations obtained for an
increasing applied strain. The volume changes very early and increases
constantly. The tomography image of Figure 4a shows that no void is present
in the unstrained sample, whereas matrix debonding has occurred around
the particles throughout the microstructure after a macroscopic strain of
5% has been applied (Figure 4b). Due to a too low void volume leading
to a hardly discernible peak of gray level, it was not possible to obtain a
reliable value by X-ray tomography for the 5% strained specimen, but the
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Figure 3: Relative volume changes upon uniaxial tension measured by video extensometry
(3 tests) and by X-ray tomography (at 0.1 strain).

two techniques for measuring volume changes are in very good agreement
at 10% strain (see Figure 3), where void growth is evident (Figure 4c).
Moreover, some coalescence between voids can also be observed at 10%
strain, which led to cracks in the composite. It may be noted that these
observations are made in the volume of the material, and not merely at its
free surface like in the works of Tao et al. (2013) and Ilseng et al. (2017).
A given tomographic slice intersects beads at various distances from their
centers, hence a large dispersion of the apparent size of bead sections.

2.4. Adhesion

In the modeling section, we intend to account for the observed matrix
debonding at the filler interface, and therefore the adhesion properties of
the polymer on glass must be evaluated. The studied composite is made
of spherical glass beads embedded in the rubbery acrylate matrix, and it is
assumed that the matrix/beads adhesion is similar to the adhesion between
the matrix and a glass plate, provided that both the glass fillers and the
glass plate have analogous chemical compositions and were submitted to
the same surface preparation. Mixed-mode fracture occurs when the elas-
tomer matrix debonds from a filler particle in the composite. However, an
accurate characterization of the differences between the tangential and nor-
mal adhesions is very difficult (no mixed-mode bending test can be applied,
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Figure 4: Typical tomographic slices through the volumes of the unstrained and strained
samples, where voids appear in black. Examples of debonding (at 5% strain), cavity
growth and coalescence (at 10% strain) are shown with arrows.

for instance), and the adhesion energy is assumed here independent of the
fracture mode.

Glass plates were cleaned like the glass beads, and 110 × 20 × 0.3 mm3

strips of the acrylate matrix were cast and crosslinked on the treated glass
plates. Following Gent and Petrich (1969), a woven cloth was glued on the
back of the elastomer strip in order to make it inextensible. The peel test was
conducted on a free-rolling bench at a velocity of 0.1 mm/s and a peel angle
of 90◦. The low peel rate used limits a viscous dissipation that may be due
to a possibly viscoelastic behavior of the matrix and favors the assumption
of an elastic behavior. Figure 5 presents the force recorded during a peel
test. After the acrylate strip is put under tension, a steady peel process
is established and the force stabilizes at 0.7±0.05 N. In these conditions,
the peel separation work per unit area Γ can be related to the measured
steady peel force F and to the width b of the inextensible peeled strip as
Γ = F/b (Rivlin, 1944; Lindley, 1971). It is very likely that some mode
mixity develops in the process zone of the peel test, which is not known a
priori, but the above assumption of mode independence allows to equate Γ
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Figure 5: Force recorded during a peel test. The mean value and standard deviation of
the stabilized force over 5 tests are also shown.

and the mode-independent elastomer/glass adhesion energy φ. This leads
to an adhesion energy of 35±3 J/m2 that is consistent with results available
in the literature (Ahagon and Gent, 1975).

3. Modeling

3.1. Cohesive-zone model

Consider a separation vector
−→
∆ in a cohesive zone, with a normal compo-

nent ∆n =
−→
∆ .−→n and a tangential component ∆t =

√

−→
∆ .

−→
∆ − ∆2

n. The case
of negative ∆n values, for which an elastic response applies, is not considered
here to keep things simple, and therefore ∆n is assumed positive in what
follows. The reformulation by Spring et al. (2016) of the original model of
Park et al. (2009) can be stated simply from the following dimensionless
functions

ϕn(∆n) =
( α

m

)m
(

1 −
∆n

δn

)α (

m

α
+

∆n

δn

)m

and ϕt(∆t) =

(

β

n

)n (

1 −
∆t

δt

)β (

n

β
+

∆t

δt

)n

(2)
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when both mode I and mode II fracture energies are equal, as assumed
here. These functions are such that their product, changed signed, times the
adhesion energy φ defines a potential whose first derivatives with respect to
∆n and ∆t give the normal (Tn) and tangential (Tt) traction components for
continuous loading, respectively. In addition to φ, six material parameters
are involved in the model: the normal and tangential cohesive strengths
(σmax and τmax), the shape exponents α ≥ 1 and β ≥ 1, and the ratios λn

and λt between 0 and 1. The following quantities can be deduced from these
parameters, which are used in (2):

m =
α(α − 1)λ2

n

1 − αλ2
n

and n =
β(β − 1)λ2

t

1 − βλ2
t

(3)

as well as the normal (δn) and tangential (δt) separation lengths for mode I
and mode II fractures, respectively:

δn =
φα λn

σmax

(1 − λn)
α−1

(

1 +
α

m

) (

1 + λn

α

m

)m−1

and

δt =
φβ λt

τmax

(1 − λt)
β−1

(

1 +
β

n

)(

1 + λt

β

n

)n−1

. (4)

With ϕ′

n(∆n) and ϕ′

t(∆t) denoting the first derivatives of ϕn(∆n) and ϕt(∆t),
respectively, and with ∆max

n and ∆max
t being two state variables defined as

the largest values of ∆n and ∆t reached so far, the normal and tangent
traction components write as follows:

Tn = −φϕ′

n(∆
max
n )ϕt(∆

max
t )

∆n

∆max
n

and Tt = −φϕ′

t(∆
max
t )ϕn(∆

max
n )

∆t

∆max
t

(5)

provided that no fracture has occurred yet, where the ratio ∆n/∆max
n (resp.

∆t/∆max
t ) should be omitted as long as ∆max

n = 0 (resp. ∆max
t = 0). Fracture

occurs when either ∆n = δn or ∆t = δt, which corresponds to Tn and
Tt reaching zero values simultaneously for a non-zero separation. For a
purely normal (resp. tangential) and continuously increasing separation,
this confirms the physical interpretation of δn (resp. δt) as the separation
length for mode I (resp. mode II) fracture. When fracture has occurred, Tn

and Tt keep zero values during further loading history. It can be checked by
integration of (5) that φ is the energy that is dissipated up to fracture along
any loading path where ∆n and ∆t never decrease. This applies especially,
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Figure 6: Example of the normal traction Tn induced in the cohesive zone when mode
I separation ∆n increases continuously (solid line) or during unloading/reloading after a
separation of 5 µm has been applied (dashed line). The following parameter values were
used: φ = 10 J/m2, σmax = 2 MPa, α = 3 and λn = 0.2, hence δn = 9.9 µm.

but not only, to proportional loadings, and makes the evaluation of φ from
the peel test described in Section 2.4 quite plausible.

It can be checked easily that unloading and reloading, defined by ∆n <
∆max

n and ∆t < ∆max
t , perform linearly to the origin according to (5). This

is true not only for pure mode I (as illustrated in Figure 6) or mode II, but
for any mixed mode. As shown recently by Spring et al. (2016) and by
Gilormini and Diani (2017), this contrasts with what is obtained when the
original cohesive-zone model of Park et al. (2009) is combined with a linear
unloading/reloading relationship like in the numerical implementation given
by Spring and Paulino (2014) for 3D finite element simulations.

3.2. Finite element modeling

Computing time is a major concern when nonlinear finite element simu-
lations are performed on three-dimensional microstructures, because of the
number of particles to consider, the number of elements required, the number
of successive load increments, and the number of iterations per increment.
A typical simulation described below for an applied engineering strain of
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0.10, involving both finite strain and material nonlinearities, lasted about
22 h when using 4 nodes of a cluster computer where each node consists of
two 6-core processors. Because of the number of simulations required by this
study, which included some parameter fitting, this is the upper limit that
we could afford. This corresponds to using about 270,000 elements with a
total of about 1,300,000 unknowns. One computation has been run with a
doubled number of elements and unknowns, which multiplied the comput-
ing time by more than 7 with no significant change noticed in the results.
With the number of elements given, a good compromise for the number of
spherical particles to consider was found at about 50, which is comparable
to what is used in other studies on similar topics and corresponds to an av-
erage of about 4,700 solid elements (and 700 cohesive elements) per particle,
including both the particle itself and the surrounding matrix.

The finite element simulations used a unit cell to which periodic bound-
ary conditions were applied. The cubic unit cell contained 54 identical
spheres that were initially distributed on a body-centered cubic (BCC) lat-
tice and were moved randomly according to a three-dimensional adaptation
of the two-dimensional algorithm MCDISKS of Torquato (2002). More pre-
cisely, three million iterations were applied after a random number generator
had been initialized to a value that could be changed in order to get differ-
ent final distributions of the spheres in the cell. Large numbers of iterations
are required at high volume fractions because of the small space left be-
tween the spheres, so that each random displacement is restrained severely.
Figure 7 shows an example of a unit cell that has been generated by this
procedure, where periodicity of the microstructure has been obtained by
suitably replicating any sphere that intercepted the limits of the cell. In the
case of Figure 7, this resulted in a total of 115 complete or partial spheres
in the cubic cell (Figure 7b). The spheres diameter was 250 µm and the
sides of the cubic cell were 930 µm long, which corresponds to an inclusion
volume fraction of 55%. In order to avoid mesh distortion induced by too
small matrix bridges between particles, which are not excluded by the ap-
plied random displacements, the volume fraction used when generating the
microstructure was 56%, and all spheres were subsequently shrunk by the
same amount to reach the volume fraction of 55%. This guaranteed that
the surfaces of any pair of particles were at least 1.6 µm apart, which cor-
responds to 0.6% of the sphere diameter. This is a reasonable compromise
according to the systematic study of Gusev (2016) in small strain elasticity,
where this value leads to the shear modulus of a composite with 55% of
SiO2 spheres in a rubber matrix being 8.5% lower than the limit for allowed
contact between spheres.
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(a) (b)

Figure 7: An example of a periodic unit cell used to simulate a random distribution of
spheres (55% volume fraction) in a matrix. Mesh of the unit cell (a) and detail of the
mesh of the inclusions only (b).

Using a periodic cell also requires adequate boundary conditions to en-
sure that the displacements on opposite cell faces differ by the same values,
so that a unit cell remains perfectly bonded to all its neighbor, identical,
cells. This also requires that the meshes of opposite faces are the same,
so that each node has an exact opposite. These two requirements could
be managed easily by generating the mesh of the unit cell with Netgen
(Schöberl, 1997), which provided both a periodic mesh and the set of linear
constraints between node displacements that could be used directly with the
Abaqus (2012) finite element code. In the example of Figure 7, the mesh
involved 102,433 elements in the elastomeric matrix and 135,427 elements
in the inclusions. All elements were 10-node quadratic tetrahedra with full
integration, using a hybrid formulation in the elastomeric phase (i.e., using
both the displacements and the pressure as unknowns) because of the in-
compressible behavior considered, whereas a usual displacement formulation
was employed in the glass inclusions, where a Young’s modulus of 69 GPa
and a Poisson’s ratio of 0.25 were used. In addition, cohesive elements
with an initial zero thickness have been inserted at the interfaces between
the inclusions and the matrix phase. Each 6-node triangular face shared
by one tetrahedral element in the inclusion and one tetrahedral element in
the matrix has been duplicated in order to define a 12-node cohesive ele-
ment. Therefore, additional nodes and additional constraints for periodicity
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conditions had to be introduced. In the example of Figure 7, this process
generated 36,252 cohesive elements, leading to a total of 505,080 nodes and
1,315,498 unknowns. Similar values have been obtained with the two other
microstructures that had been generated by varying the initialization of the
random process.

It must be mentioned that using the cohesive interface or the cohesive
elements available in Abaqus has been rejected in this study. First, the cohe-
sive interface was found questionable by Gilormini and Diani (2015) in their
analysis of various implementations of a cohesive-zone model in plane strain.
Yet, this would have allowed representing the spherical particles as rigid bod-
ies (the strain in the inclusions is found 4 orders of magnitude smaller than
the applied strain in the simulations below), thus meshing the matrix phase
only. Since the Netgen mesh generator uses tetrahedral elements only and
does not include rigid solids, using the Abaqus cohesive elements has been
rejected too because only 6-node elements were available that required using
4-node tetrahedra as solid elements. In the simple case of a periodic distri-
bution of spheres, the latter solid elements required a very fine mesh with a
number of unknowns that would be prohibitive for random microstructures
to get the same precision as with 10-node tetrahedra. In addition, Park
et al. (2016) have shown recently that the traction-separation relationship
used in the cohesive elements of Abaqus can lead to non-physical responses.
Therefore, a 12-node user-defined cohesive element was used here, which
provided smooth convergence in all cases considered. This element has been
presented by Spring and Paulino (2014) and is available from the website of
the latter author. In its original form, this element uses the cohesive-zone
model of Park et al. (2009) that we replaced by the thermodynamically con-
sistent model of Spring et al. (2016). The expression of the tangent matrix
given in the latter paper was used.

After the mesh has been defined, uniaxial tension could be applied along
any of the coordinate axes by prescribing the displacement of a node located
at a corner of the cubic cell and by applying the standard periodic boundary
conditions defined by Segurado and Llorca (2002), for instance, which are
used in all similar studies. In these conditions, the nodes on the faces of
the unit cell parallel to the tensile axis are allowed to translate so that the
corresponding total force on each face is zero and periodicity is ensured.

As explained above, 54 spherical particles seemed a good compromise
between the number of elements allowed and the representativity of the
unit cell. We note first this leads to a ratio of 3.72 for the edge of the unit
cell divided by a sphere diameter, which is close to the value of 3.74 obtained
by Segurado and Llorca (2002) for a representative volume element in small
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strain elasticity, in agreement with the analytical study of Drugan and Willis
(1996). In addition, we note that the coordinates of the centroids of the three
microstructures considered here are found very close to the center of the unit
cell (to less than 0.3% of the cube edge length) when mass densities of 1
and 0 are assigned to the spheres and to the matrix phase, respectively.
Moreover, the moments of inertia with respect to the three coordinate axes
are within 1% or less of the corresponding value for a homogeneous cube of
equivalent mass, which was suggested by Segurado and Llorca (2002) as a
criterion for no preferential direction to exist in the unit cell. Unfortunately,
such directions do exist if no random displacement is applied to the initial
BCC network of spheres, and the moments of inertia are 0.18% close to the
values for the homogeneous cube. Therefore, the moment of inertia is not a
reliable criterion for the isotropy of the spheres distribution.

A more direct approach was used instead, where both phases were consid-
ered as incompressible and in small strain elasticity (whereas finite strains
are considered in Section 4) with perfect adhesion (no cohesive elements
added), i.e., the behaviors of the spheres and the matrix were defined by the
shear modulus only (23 GPa and 0.6 MPa, respectively). In these conditions,
a ratio of 3 between the Young’s modulus and the shear modulus is expected
for an isotropic composite, and an average value of 3.4 was obtained with the
three microstructures (three loadings in uniaxial tension and three loadings
in simple shear for each). This allows to appreciate the effect of the ran-
dom displacements applied during the preparation of the microstructures,
since simulations performed on a finely meshed minimal unit cell for a BCC
network led to a ratio of 1.3, clearly far from isotropy. The average shear
modulus obtained with the random microstructures is 6.13±0.44 MPa and
the Young’s modulus is 20.84±2.09 MPa, with a larger standard deviation
consequently. The shear modulus is very close to the limit value of about
6.2 that can be deduced from the results of Gusev (2016) on a SiO2/rubber
system, where we notice similar standard deviations. The relatively ap-
proximate isotropy obtained here with random microstructures can be due
to the large volume fraction of identical spheres: as noted by Rintoul and
Torquato (1998), a system of identical spheres tends to order locally and
to form crystallites above the volume fraction of 49.4%. As a consequence,
the size of an isotropic representative volume element is likely to increase
rapidly in order to average off the orientations of such crystallites, and it
may exceed our computing capabilities. Nevertheless, we anticipate on the
results obtained below, which show a mechanical response in uniaxial ten-
sion that is remarkably equal whatever the coordinate axis chosen and the
microstructure considered when all nonlinearities are included.
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Figure 8: Comparison between finite element simulations when uniaxial tension is ap-
plied either along each coordinate axis of the microstructure shown in Figure 7 (green
line, circular and square symbols) or along the same coordinate axis in two other ran-
dom microstructures (blue and red square symbols). Symbols are used to sample the
corresponding curves for easier comparisons.

4. Results

The effects of changing the tensile direction and the random microstruc-
ture considered in the finite element simulations is analyzed first. Figure 8
shows the results obtained in 5 cases, where uniaxial tension was applied
along each coordinate axis in turn (3 cases) on the microstructure shown in
Figure 7, or where uniaxial tension was applied along a given tensile axis
on two additional random microstructures generated with the procedure de-
scribed in the previous section (2 cases). The results are so close to each
other that a sampling of the results has been used in four cases to allow
comparison between curves that would not be distinguishable otherwise.
This confirms the assessment made above that the microstructures consid-
ered, despite their relatively small number of particles and slight anisotropy
for a linear behavior, are representative enough for the nonlinear behav-
iors considered in this study. The concordance of results in Figure 8 when
three different microstructures are considered conveys also that no defect is
present, in contrast to the rough lateral sides of the experimental samples
mentioned in Section 2.2. A simulation was also run with a 0.54 volume
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Figure 9: Comparison between the finite element model (solid line) and experimental data
for the composite: stress-strain response in uniaxial tension. The perfect adhesion (dashed
line) and no-adhesion (dotted line) cases are also shown.

fraction of fillers, in order to evaluate the effect of uncertainty on this pa-
rameter, and the results were found extremely close to (slightly below) the
curve shown in Figure 8.

In addition to a Young’s modulus of 69 GPa and a Poisson’s ratio of 0.25
for the glass beads, an initial shear modulus G of 0.637 MPa and an exponent
γ = 1.377 for the acrylate matrix, the simulations shown in Figure 8 used
the following set of parameters for the cohesive-zone model: φ = 35 J/m2,
σmax = 45 kPa, τmax = 70 kPa, α = β = 3, λn = 9×10−4 and λt = 6×10−3,
which are also the values used in Figures 9, 10 and 11. The φ value is the one
obtained from the peel test, λn and λt have been tuned so that the initial
slope of the stress-strain curve is very close to the case of a perfect adhesion
(with no relative displacement allowed at the particles/matrix interfaces),
while preserving convergence and reasonable computing time. We note in
passing that the good agreement in Figure 9 between a perfect adhesion and
the experimental results at very low strains is a further validation of the finite
element simulations, which are representative of a polymer matrix reinforced
by a 55% volume fraction of randomly dispersed spheres without damage.
A very large space is left in Figure 9 between the responses induced by the
two extreme interface behaviors, namely the case of a perfect adhesion and
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Figure 10: Comparison between the finite element model (solid line) and experimental
data for the composite: relative volume change recorded during uniaxial tension.

the case of no adhesion at all (merely preventing interpenetration between
the matrix and the particles, without friction). This large span can be
covered by varying the parameters of the cohesive zone, and therefore a
careful adjustment procedure is required. Among the four parameters left to
determine, σmax and τmax had the largest influence on the computed stress-
strain response of the composite. They allowed to adjust the curvature of
the response so as to reproduce well the experimental results, and taking
σmax different from τmax has been fruitful in this respect. The exponents
α and β had a minor effect and it has not been found useful to give them
different values.

As shown in Figure 9, the softening effect of a damaging interface is
reproduced quite well up to an applied strain of about 0.06. Beyond this
value, the stress predicted by the finite element simulation exceeds the ex-
perimental results, and the ongoing tangent stiffness, which is similar to
what is obtained without adhesion, is too large. This may be due to the
occurrence of void coalescence, which could be observed by tomography at
0.10 strain (Figure 4c) but not at 0.05 (Figure 4b), and which cannot be
modeled without including a rupture of the matrix material that is beyond
the simulations presented here.

Figure 10, which has not been used to fit any parameter, shows that
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Figure 11: Maps of the maximal principal logarithmic strain (a) and of the density of
elastic strain energy in the matrix (b) obtained after a uniaxial tension (10% elongation)
has been applied to the microstructure shown in Figure 7.

the model slightly underestimates the experimental volume changes. This is
consistent with an additional void volume that may be induced by defects
along the sides of the dogbone samples. Noticeably, the agreement applies
beyond the one found for the applied force, i.e., in the strain range where
coalescence occurs and induces microcracks. This may result from a balance
between two opposite effects: a direct increase of void volume due to the
microcracks opening and an indirect decrease of void volume at debonded
particles in the vicinity of microcracks because of the elastic strain relaxation
that their appearance induces. The results of Figure 10 beyond a strain of
0.06 suggest that merely growing the voids at debonded particles without
creating microcracks in the simulations leads to a void volume of the right
order in the present case.

Figure 11a illustrates the void openings obtained after 10% elongation
and can be compared with Figure 4c. Of course, no coalescence is observed
in the simulations, where debonding is evident, but large strain hetero-
geneities are located in interparticle bridges, especially where they are very
thin. Consistently, the density of elastic strain energy in the matrix, which
would be of 8.9 kPa if the material were 100% acrylate, is rather uniformly
distributed except in particle bridges (Figure 11b), where more than ten
times this value can be reached, suggesting that matrix rupture is likely to
occur. This would be consistent with the coalescence of voids between very
close particles.

In the literature, quantitative comparisons of experimental results and
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finite element simulations of the stress-strain response of damaging rein-
forced elastomers are very scarce, although several numerical analyses can
be found. The satisfactory stress-strain responses obtained by Spring and
Paulino (2015) up to a large applied strain of 0.35 for a rubber matrix
reinforced with 26% of silica particles have already been discussed in the
Introduction in relation with no volume change being reported. In the dif-
ferent context of an elastic-plastic matrix (aluminum) reinforced by rigid
particles (tungsten carbide) with damageable interfaces, Segurado (2004)
compared finite element simulations using the formulation of Segurado and
Lorca (2004) and experimental stress-strain curves. A bilinear cohesive-
zone model was used with parameter values taken from the literature. The
agreement is pretty good for a 10% volume fraction of particles up to an
elongation of 0.06, but is less satisfactory for a 30% volume fraction at
the very small strain reached before specimen rupture. A strong difference
with the elastomeric matrix of the present study must be noted, however:
the span between perfect adhesion and no adhesion is very narrow in the
elastic-plastic case considered, which may favor an easier concordance be-
tween simulations and experiments.

5. Summary and concluding remarks

A composite material was prepared, where a polymer network in the
rubbery state was filled with a large volume fraction of micrometric spher-
ical glass beads. The composite stress-strain response in uniaxial tension
was recorded at a low strain rate. Two techniques were combined to mea-
sure volume changes, including X-ray tomography analysis which allowed to
assess that damage inside the composite develops as an early filler/rubber
debonding followed by the growth and coalescence of voids. Several mate-
rial parameters were determined: the hyperelastic behavior of the polymer
network in uniaxial tension was characterized, the volume fraction of glass
beads contained in the composite was measured, and the adhesion energy
between the polymer and glass was obtained from a peel test.

For finite element simulations, three cubic cells containing 54 randomly
dispersed spheres were created for finite element simulations, where periodic
boundary conditions were prescribed. The incompressible polymer matrix
behavior was accurately reproduced by a hyperelastic strain energy, the
glass beads were elastic with standard glass moduli, and the debonding at
the filler/rubber interface was described by using cohesive elements that
applied a thermodynamically consistent cohesive-zone model.
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The comparisons between the simulations and the experimental results
showed that it was possible to replicate the composite stress-strain response
up to void coalescence by adjusting the missing parameters of the cohesive-
zone model. Once this was done, the volume changes were predicted quite
well.

In order to further challenge the model, additional types of loadings
might be applied to the composite specimens, such as biaxial tension or
shearing. It would also be interesting to explore the impact of a change in
the particles size, since a cohesive zone introduces a characteristic length.
Finally, including a fracture criterion in the matrix material throughout the
composite would probably allow the simulations to reproduce the experi-
mental observations at larger applied strains.
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Schöberl, J., 1997. NETGEN an advancing front 2D/3D-mesh generator
based on abstract rules. Comput. Visual. Sci. 1, 41-52.

Segurado, J., 2004. Micromecánica computational de materiales com-
puestos reforzados con part́ıculas. PhD thesis, Technical University of
Madrid, Spain.

Segurado, J., Llorca, J., 2002. A numerical approximation to the elastic
properties of sphere-reinforced composites. J. Mech. Phys. Solids 50,
2107-2121.

Segurado, J., Llorca, J., 2004. A new three-dimensional interface finite ele-
ment to simulate fracture in composites. Int. J. Solids Struct. 41, 2977-
2993.

Spring, D.W., Giraldo-Londoño, O., Paulino, G.H., 2016 A Study on the
Thermodynamic Consistency of the Park-Paulino-Roesler (PPR) co-
hesive fracture model. Mech. Res. Comm. 78, 100-109.

23



Spring, D.W., Paulino, G.H., 2014. A growing library of three-dimensional
cohesive elements for use in ABAQUS. Engng. Fract. Mech. 126, 190-
216.

Spring, D.W., Paulino, G.H., 2015. Computational homogenization of the
debonding of particle reinforced composites; the role of interphases in
interfaces. Comput. Mater. Sci. 109, 209-224.

Starkova, O., Aniskevich, A., 2010. Poisson’s ratio and the incompressibil-
ity relation for various strain measures with the example of a silica-filled
SBR rubber in uniaxial tension tests. Polym. Testing 29, 310-318.

Suzuki, N., Ito, M., Yatsuyanagi, F., 2005 Effects of rubber/filler interac-
tions on deformation behavior of silica filled SBR systems. Polymer
46, 193-201.

Tao, Z.J., Ping, S.D., Mei, Z., Cheng, Z.P., 2013. Microstructure deforma-
tion and fracture mechanism of highly filled polymer composites under
large tensile deformation. J. Phys. Conf. Ser. 419, 12014-12020.

Torquato, S., 2002. Random Heterogeneous Materials – Microstructure and
Macroscopic Properties. Springer-Verlag Inc., New York.

Toulemonde, P.A., Diani, J., Gilormini, P., 2016. On the account of a co-
hesive interface for modeling the behavior until break of highly filled
elastomers. Mech. Mater. 93, 124-133.

Yang, L., Yan, Y., Liu, Y., Ran, Z., 2012. Microscopic failure mechanisms
of fiber-reinforced polymer composites under transverse tension and
compression. Compos. Sci. Technol. 72, 1818-1825.

Yatsuyanagi, F., Suzuki, N., Ito, M., Kaidou, H., 2002. Effects of surface
chemistry of silica particles on the mechanical properties of silica filled
styrene-butadiene rubber systems. Polym. J. 34, 332-339.

Zhong, X.A., Knauss, W.G., 1997. Analysis of interfacial failure in particle-
filled elastomers. J. Engng. Mater. Technol. 119, 198-204.

24


