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metal layers
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A B S T R A C T

Prediction of necking limits in thin substrate-supported metal layers, which are typically used as functional
components in electronic devices, represents nowadays an ambitious challenge. The specific purpose of the
current work is, first, to numerically investigate the effect of kinematic hardening on localized necking in a
freestanding metal layer. Second, the impact of adding a substrate layer on the ductility evolution of the
resulting elastomer/metal bilayer will be analyzed. The materials in the metal and substrate layers are assumed
to be isotropic, incompressible and strain-rate independent. The behavior of the metal layer is described by a
rigid–plastic model with mixed (isotropic and kinematic) hardening. The isotropic hardening contribution is
modeled by the Hollomon law, while kinematic hardening is modeled by the Armstrong–Frederick law. The
substrate layer is made of elastomer material whose mechanical behavior is assumed to be hyperelastic and
modeled by a neo-Hookean constitutive law. The Marciniak–Kuczynski imperfection analysis is used to predict
plastic flow localization. Through various numerical simulations, the influence of kinematic hardening on
localized necking as well as the impact of the addition of an elastomer layer are specifically emphasized.
Comparisons with experimental results are also carried out to assess the relevance of incorporating kinematic
hardening in the constitutive modeling of freestanding metal sheets.

1. Introduction

Sheet metal forming processes are often limited by the initiation and
development of localized necking due to the low ductility of the used
materials. Such localized necking sets the maximum allowable straining
that a sheet metal can undergo during metal forming processes, since
this phenomenon is often precursor to material failure. Therefore, the
development of new strategies that allow retarding the occurrence of
necking is of significant practical interest. In the field of modern
technologies, and especially functional components (e.g., flexible
electronic devices), this aim is targeted by bonding ductile substrates
(such as elastomer layers) to metal layers. Indeed, supporting a metal
layer by a ductile substrate has proven to significantly improve the
ductility of the resulting bilayer, as demonstrated by several authors
[1–7]. In an industrial context, substrate-supported metal layers are
being used in a variety of flexible electronic devices such as conductors
and interconnects [8–11]. Despite the increasing industrial use of
elastomer/metal bilayers, there is still a need for further studies for
an in-depth understanding of the corresponding strain localization
conditions. In the current paper, the objective is to numerically predict

the onset of localized necking in a metal layer supported by an
elastomer substrate. This will be illustrated through the concept of
forming limit diagram (FLD), which is probably the most common
representation of necking limits, as initially introduced by Keeler and
Backofen [12] and Goodwin [13]. The mechanical behavior of both
layers is assumed to be isotropic, incompressible and strain-rate
independent. The elastomer layer is modeled by a neo-Hookean
constitutive law, while the metal layer is assumed to follow the rigid–
plastic flow theory. Indeed, because necking occurs at a relatively high
plastic strain level, the elasticity of the metal layer may be neglected.
This choice allows significantly simplifying the modeling and the
numerical resolution of the problem. A mixed (isotropic and kinematic)
hardening model is used to describe the evolution of the yield surface of
the metal layer. The isotropic hardening contribution is modeled by the
Hollomon law, while the Armstrong–Frederick model is used to
describe kinematic hardening. It must be noted that the main novelty
of the current work, compared to a previous contribution by the same
authors [7], is the introduction of kinematic hardening into the
constitutive modeling of the metal layer. The consideration of kine-
matic hardening is essential to the accurate constitutive modeling of a
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number of metallic materials, such as dual phase (DP) steels. Indeed,
without inclusion of kinematic hardening within the constitutive
framework, it would not be possible to account for some important
physical phenomena, such as the Bauschinger effect. The latter may
result from high internal stresses induced by the heterogeneity contrast
between different metallurgical phases (e.g., hard martensitic islands
embedded in a ductile ferritic matrix).

To predict the ductility limit of metallic materials, various strain
localization criteria have been proposed in the literature. In this regard,
we can quote the bifurcation analysis [14–16] and the imperfection
approach [17,18]. Within the current constitutive framework for the
metal layer (flow theory of plasticity), which does not involve essential
destabilizing mechanisms such as yield-surface vertex effects, the
bifurcation theory would predict unrealistically high limit strains in
the right-hand side of the FLD (see, e.g. [7,18,19]). In contrast to the
bifurcation analysis, the imperfection approach allows predicting
ductility limits at realistic strain levels, due to the assumed geometric
or material imperfection that plays a major destabilizing role, which
systematically precipitates early localization of plastic strain. For these
reasons, the latter approach, which has been often shown to be an
interesting alternative to the bifurcation theory (see, e.g. [7]), is
followed in the present paper. It postulates the preexistence of a small
initial imperfection in the form of a narrow band across the studied
metal layer. This imperfection may be assumed as local variations in
thickness (geometric imperfection) or in plastic properties (material
imperfection), which will affect the plastic flow and therefore influence
the occurrence of strain localization. This approach, which was initially
introduced by Marciniak and Kuczynski [17], will be referred to
hereafter as the M–K analysis. Note that in its original version, it was
developed within a simple constitutive framework, namely an isotropic
rigid–plastic model with isotropic hardening (i.e., Hollomon law). In
spite of the over-sensitivity of its predictions to the initial imperfection
value (see, e.g. [20]), the M–K analysis has attracted a great deal of
attention, due to its pragmatic character and its versatility. Indeed, to
improve the accuracy of the FLD predictions, this approach has been
combined with various behavior models, including strain-rate sensitiv-
ity [18,21], plastic anisotropy [22–24], and damage-induced softening
[25–27]. It was also extended to kinematic hardening (see [19]) in
order to predict localized necking in biaxially stretched sheets.
However, in that earlier study, the biaxial loading ratio was restricted
to the range of positive biaxial stretching. Despite this limitation, it was
shown in that former investigation that the FLDs predicted by kinematic
hardening are in far better agreement with experimental results than
their counterparts yielded by standard flow theory with isotropic
hardening. Subsequently, the imperfection approach has been coupled
by Hutchinson and Tvergaard [28] with a constitutive model that
accounts for kinematic hardening for a detailed analysis of shear band
formation, although restricted to plane-strain tension. Note that the
impact of kinematic hardening on the shape and level of FLDs predicted
by M–K analysis has also been investigated in the literature. In this
regard, we can quote the contributions of Chu [29], Lu and Lee [30]
and Butuc et al. [31]. Except for very few papers, it is generally shown
that kinematic hardening leads to a decrease in the limit strains,
especially for strain paths in the neighborhood of equibiaxial tension
[19,30,32]. In the present paper, the effect of kinematic hardening on
the ductility of both freestanding and substrate-supported metal layers
is investigated. As will be revealed by various numerical simulations,
kinematic hardening is shown to generally decrease the limit strains.
This result, which is obviously dependent on the parameters associated
with the kinematic hardening model, is in reasonable agreement with
previously reported works. To investigate the influence of an elastomer
substrate, the M–K analysis is extended to the prediction of FLDs for
substrate-supported metal layers. The two layers (metal and elastomer)
are assumed to be perfectly adhered (i.e., no delamination is allowed).
Consistent with the results of a previous study [7], which was carried
out for metal layers with only isotropic hardening, it is found that the

presence of an elastomer substrate substantially enhances the necking
limit of the resulting metal/elastomer bilayer.

The reminder of the paper is organized as follows:

• Section 2 outlines the constitutive equations that model the
behavior of the metal and elastomer layers.

• Section 3 details the imperfection approach adopted to predict
localized necking in the bilayer.

• Section 4 deals with the algorithm used to predict the forming limit
diagrams.

• The various numerical predictions are presented in Section 5, where
the effects on localized necking of kinematic hardening and of the
addition of an elastomer layer are discussed in details. Comparisons
with experimental results are also carried out to assess the relevance
of incorporating kinematic hardening in the constitutive modeling
of freestanding metal sheets.

Notations, conventions and abbreviations
The derivations presented in this paper are carried out using classic

conventions. Note that the assorted notations can be combined, while
additional notations will be clarified as needed following related
equations.

Vectorial and tensorial fields are designated by bold letters and
symbols.

Scalar variables and parameters are represented by thin italic letters
and symbols.

Einstein's convention of summation over repeated indices is
adopted. The range of the free (resp. dummy) index is given before
(resp. after) the corresponding equation.
•̇ time derivative of •
•T transpose of tensor •
•→ ⊗ •→ tensor product of two vectors ( = • • )i j
•I value of quantity • at the initial time.
Tr (•) trace of second-order tensor •
•t value of quantity • at time t (for convenience, the dependence on time
is most often omitted when the variable is expressed in the current
instant).
•(*) quantity • associated with behavior in layer *
•B quantity • associated with behavior in the band.
•S quantity • associated with behavior in the safe zone.

2. Constitutive equations

2.1. Metal layer

The mechanical behavior of the metal layer is assumed to follow the
flow theory of plasticity. Because strain localization occurs at relatively
large strains, elasticity may be neglected and, hence, the behavior is
taken rigid–plastic. The flow rule is defined by the normality relation-
ship

λ
F

ε
σ

̇ = ̇ ∂
∂

,p

(1)

where λ ̇ is the plastic multiplier (equal to the equivalent strain rate εėq)
and Fp is the yield function.

Plasticity is assumed to be isotropic following the von Mises
criterion. Furthermore, the evolution of the radius of the yield surface
is described by an isotropic hardening law, while its translation is
governed by a kinematic hardening law. This leads to the following
expression for the yield function Fp:

F σσ X σ X= (3/2) ( − ): ( − ) − = 0,p d d Y (2)

where
σd denotes the deviatoric part of the Cauchy stress tensor σ,
X is the back-stress tensor, which describes the yield surface transla-
tion,



σY is the yield stress, which measures the evolution of the size of the
yield surface.

With the Hollomon isotropic hardening model, the yield stress σY is
related to the equivalent strain εeq by the following power law:

σ Κ ε= .Y eq
n

(3)

The evolution law of the back-stress X is defined by the Armstrong–
Frederick kinematic hardening model [33]

C X εX ε Ẋ = ( ̇ − ̇ ).x sat eq (4)

In Eqs. (3) and (4) above, Κ , n, Cx, and Xsat are material parameters.
By substituting Eq. (2) into Eq. (1), the normality rule can be

rewritten as

ε
σ

ε
σ X

̇ = ̇
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2
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d

Y (5)

From Eq. (5), it is easy to determine the expression of σd

σ
ε

σ X ε= +
2
3 ̇

̇.d
Y

eq (6)

2.2. Elastomer layer

The neo-Hookean model adopted in this paper to describe the
mechanical behavior of the elastomer substrate is defined by the
following constitutive equation [34,35]:

μB V= ,2 (7)

where B is a stress tensor (related to the Cauchy stress tensor σ by Eq.
(9)), μ is the shear modulus and V is the left Cauchy-Green tensor
defined by the following relation:

V F F= ,T2 (8)

with F being the deformation gradient tensor.
The constitutive law (7) is selected among other models [36–38],

because it furnishes a valid description for the finite elastic behavior of
many real rubber-like materials, provided that the deformations are not
too extreme.

2.3. Plane-stress condition

The Cauchy stress tensor σ corresponding to the metal (resp.
elastomer) layer is expressed as a function of σd (resp. B) given in Eq.
(6) (resp. (7)) and the hydrostatic pressure p Tr σ= (1/3) ( ) (resp. an
unknown pressure q) as follows:

p
q

σ σ Id
σ B Id

metal layer: = +
elastomer layer: = + ,

d

(9)

where Id is the second-order identity tensor.
Consistent with several literature works and because the bilayer is

assumed to be thin, the assumption of generalized plane stress will be
adopted in the M–K analyses. Hutchinson et al. [39] have proven the
validity of such an assumption in the case of thin media. Under this
condition, the stress components normal to the bilayer σ i; = 1, 2, 3i3
are always zero. Thus, pressures p and q can be eliminated from Eq. (9)
by means of relation σ = 033 , which gives after straightforward calcula-
tion

p σ σ
q B

metal layer: = +
elastomer layer: = − .

.d d11 22

33 (10)

3. Imperfection approach

3.1. Governing equations for the imperfection approach

The prediction of localized necking in substrate-supported metal
layers is carried out using the M–K approach. The initial imperfection
(in the form of a groove), required for the M–K analysis, is assumed to
initiate within the metal layer.

Fig. 1 depicts the bilayer in its initial reference configuration (i.e.,
the state before application of loading). In the sequel, the following
notations will be employed:

• hI
B: initial thickness of the metal layer M inside the band B.

• hI
S: initial thickness of the metal layer M in the safe zone S (outside

the band).
• HI

B: initial thickness of the elastomer layer E inside the band B.

• HI
S: initial thickness of the elastomer layer E in the safe zone S

(outside the band).

• nI
→
: initial unit normal to the band.

• θI : initial orientation of the band.

According to the notations above, the initial imperfection may be
measured by a factor ξI , defined as

ξ
h
h

= 1 − ,I
I
B

I
S (11)

which will be used in what follows.
Another assumption, adopted in the subsequent M–K analysis, is

that the two layers remain perfectly adhered (i.e., delamination is not
considered in the current study). This condition can be expressed by the
equality of the velocity gradient tensors (denoted G in what follows),
during loading, between the metal and the elastomer layers (both in the
band and in the safe zone)

M E M EG G G G G G( ) = ( ) = ; ( ) = ( ) = .B B B S S S (12)

In addition to condition (12), the M–K analysis is defined by the
following relations and considerations:

• As illustrated in Fig. 1, strain localization is interpreted here as a
jump in the velocity gradient over a planar band in the plane of the
sheet. The initial imperfection approach is based on the condition
that kinematic compatibility between the band and the safe zone
must be satisfied. This compatibility condition requires the jump in
the velocity gradient to be in the form
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− ∂
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,
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(13)

where x is the current position of a material point, c→̇ denotes a jump
vector, and n

→
designates the current unit vector normal to the band

Fig. 1. Illustration of the M–K analysis for a bilayer (initial geometry and band
orientation).



(its counterpart nI
→

in the initial configuration is shown in Fig. 1).
By adopting again the above tensor notation G for the velocity

gradient, Eq. (13) can be equivalently rewritten as follows:

G G c n= + ˙ ⊗ .B S
→ →

(14)

• The equilibrium of the normal and shear forces across the imperfec-
tion band is also maintained throughout the deformation. This
equilibrium can be expressed in terms of Cauchy stress tensors by
the following relation:

h M H E h M H Eσ σ n σ σ n( ( ) + ( )). = ( ( ) + ( )). .B B B B S S S S→ →
(15)

• The evolution of the band orientation, which is given by Nanson's
relation

Tan θ e Tan θ( ) = ( ).ε ε
I

( − )S S
11 22 (16)

• The evolution of the current measure of imperfection, which is given
by factor ξ

ξ h
h

= 1 − .
B

S (17)

Making use of the following relations

h h e h h e= ; = ,B
I
B ε S

I
S εB S33 33 (18)

factor ξ can then be expressed as

ξ ξ e= 1 − (1 − ) .I
ε ε( − )B S33 33 (19)

• The constitutive Eqs. (1)–(5) for the metal layer, and (7)–(8) for the
elastomer layer.

3.2. Velocity gradient tensors in the band and in the safe zone

For the FLD prediction, proportional strain paths are prescribed to
the safe zone of the bilayer as follows:

G
G

ε
ε

ρ constant=
̇
̇

= = .
S

S

S

S
22

11

22

11 (20)

The strain ratio ρ is varied in the range ρ−1/2 ≤ ≤ 1 to span the
complete FLD.

Exploiting the incompressibility condition of the metal and elasto-
mer layers along with the plane-stress conditions, and making use of Eq.
(20), the velocity gradient in the safe zone can be expressed as a
function of ρ and ε ̇S11

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

ε
ρ ε

ρ ε

G =
̇ 0 0

0 ̇ 0
0 0 −(1 + ) ̇

.S

S

S

S

11

11

11 (21)

Then, from Eq. (14), the components of the velocity gradient in the
band can be expressed in the following form:

G ε c n G ρ ε c n
G ρ ε c n c n
G c n G c n
G G G G

= ˙ + ˙ ; = ˙ + ˙ ;
= −(1 + ) ˙ −˙ −˙ ;
= ˙ ; = ˙ ;
= = = = 0.

B S B S

B S

B B

B B B B

11 11 1 1 22 11 2 2

33 11 1 1 2 2

12 1 2 21 2 1

13 23 31 32 (22)

We can notice, from Eq. (22), that GB only depends on ε ̇S11, ρ, ċ
→
and

n
→
.

4. Algorithm for the FLD prediction

The general algorithm used to predict the FLD of the elastomer/
metal bilayer is based on the following three nested loops:

• For ρ = − 1/2 to ρ = 1 at user-defined intervals (here, we take
intervals of 0.1).

• For θI spanning the admissible range of inclination angle (i.e.,
between 0° and 90°), at user-defined intervals (here, we take
intervals of 1°).
– For each time increment t t[ , ]n n+1 (with t t Δt= +n n+1 ), apply the
implicit incremental algorithm described in Appendix A to
integrate the governing equations of the metal and elastomer
layers both in the safe zone and in the band. The application of
this incremental integration scheme is stopped when the following
criterion is reached:

G G/ ≥ 10.B S
33 33 (23)

The strain component ε S
11, thus obtained once the criterion (23) is

satisfied, is considered to be the critical strain ε*11 corresponding to the
current band inclination θ and strain path ρ.

The smallest critical strain ε*11, solution of the above algorithm, over
all initial angles θI and the corresponding current angle define,
respectively, the necking limit strain ε L

11 and the necking band orienta-
tion for the current strain ratio ρ.

5. Results and discussions

This section is divided into three main sections:

• Section 5.1, which corresponds to the numerical results relating to
the freestanding metal layer.

• Section 5.2, which provides comparisons between the current
numerical predictions and some experimental results taken from
the literature. The main objective of these comparisons is to analyze
the relevance of incorporating kinematic hardening in the constitu-
tive modeling of freestanding metal sheets.

• Section 5.3, which contains the numerical results pertaining to the
elastomer/metal bilayer.

5.1. Freestanding metal layer

The material parameters relating to the metal layer that are used in
Sections 5.1 and 5.3 are those of a DC06 steel [31]. These parameters
have been identified according to the procedure detailed in 3DS Report
[40]. The values corresponding to these material parameters are
reported in Table 1.

Note that the parameters of Table 1 have been fitted in order to
obtain the same stress–strain response for both isotropic and mixed
hardening models, as shown in Fig. 2.

In order to emphasize the effect of the hardening modeling on
localized necking, we plot in Fig. 3 the evolution of the ratio ε ε/B S

11 11 as a
function of ε S

11, for three representative in-plane loading paths: uniaxial
tension (ρ = − 0. 5), plane-strain tension (ρ = 0), and equibiaxial
tension (ρ = 1). This evolution can be used as a reliable indicator for
the onset of localized necking. The different curves are stopped when
the necking criterion (23) is satisfied. From these curves, the following

Table 1
Material parameters for the DC06 steel.

K (MPa) n Cx Xsat (MPa)

Isotropic hardening 522 0.257
Mixed hardening 447 0.221 1.87 58.1



conclusions can be drawn:

• Although the uniaxial stress–strain curves are the same for both
hardening models (isotropic and mixed), as displayed in Fig. 2, the
evolution of the ratio ε ε/B S

11 11 as a function of ε S
11 differs from one

hardening model to another, as shown in Fig. 3. This difference is
due to the fact that the strain path inside the band is non-
proportional during the deformation. Indeed, at the beginning of
the loading, the scalar components of the jump vector c→̇ are very
close to zero. Hence, the strain field (and consequently the strain
path) inside the band is very close to its counterpart outside the
band (see Eq. (14)). As deformation proceeds, the strain path inside
the band gradually deviates from proportionality and ultimately
switches to a plane-strain tensile state at the onset of localized
necking (regardless the value of ρ). Therefore, although both
hardening models provide the same uniaxial stress–strain response,
they yield different mechanical responses inside the band (due to
the complexity in the loading path). These differences clearly
explain why the predicted limit strains are influenced by the
hardening model considered.

• In the particular case of plane-strain tension (ρ=0), both hardening
models should predict the same limit strain, as the strain path
remains proportional both in the safe zone and in the band. The
slight differences between the limit strains for plane-strain tension
(ρ=0) predicted by the isotropic and the mixed hardening models,
as observed in Fig. 3(c) and Fig. 3(d), are due to the inaccuracy in
the identification of the hardening parameters for the isotropic
model.

• The critical strain ε*11 can be defined as the maximum value of ε S
11

reached during loading. The kinematic hardening has an influence
on the evolution of the strain component ε S

11, and thus on the critical
strain ε*11, as demonstrated in Fig. 3. Indeed, for the uniaxial tensile
state and the plane-strain state, the kinematic hardening leads to a
relative increase in ε*11, as shown in Fig. 3(a), (b), (c) and (d). For the
equibiaxial loading path (ρ = 1), the kinematic hardening decreases
the predicted value of the critical strain ε*11, as shown in Fig. 3(e), (f).

• The value of the initial imperfection factor ξI does not affect the
dependence of the critical strain ε*11 on kinematic hardening.
However, it affects the level of the predicted critical strain ε*11.
Indeed, the value of the critical strain ε*11 decreases when the
imperfection factor ξI increases. This result is consistent with
previously reported works using the M–K analysis.

• At the beginning of loading, the imperfection factor is very small
(about 5 × 10 − 10−3 −2), and hence the thicknesses of the band and

of the safe zone are quite comparable. For this reason, the ratio
ε ε/B S

11 11 is very close to 1. As deformation increases, the imperfection
starts to grow in magnitude, resulting in a decreasing thickness in
the band, a phenomenon that becomes very rapid as soon as
localization initiates. This phenomenon is also clearly reflected by
the abrupt evolution of the ratio ε ε/B S

11 11, as demonstrated in the
different curves of Fig. 3. This fast increase in the ratio ε ε/B S

11 11, at the
approach of localization, implies that the predicted critical strain ε*11
is not sensitive to the threshold criterion used in Eq. (23). Therefore,
changing the value of this threshold from 10 to 50, for example,
does not affect the level of ε*11.

Fig. 4 plots the evolution of the critical strain ε*11 as a function of the
initial band orientation θI for three representative strain paths:
ρ = − 0.5, ρ = 0 and ρ = 1. Localized necking occurs along the most
critical orientation that corresponds to the lowest critical strain level.
The conclusions suggested by Fig. 4 are given in what follows for the
different strain paths investigated:

• Uniaxial tension (ρ = − 0.5): For both hardening models (isotropic
and mixed), the critical strain decreases as a function of θI , until
reaching its lowest value, and increases afterwards. This result is
consistent with several existing literature studies (see, e.g. [6,7]).

• Plane-strain tension (ρ = 0): The lowest critical strain for the
occurrence of necking always corresponds to θ = 0I , as shown in
Fig. 4(c), (d). In other words, strain localization always initiates and
develops along a band perpendicular to the plane-strain tension
direction. This latter conclusion applies to all of the strain paths
ranging from plane-strain tension (ρ = 0) to equibiaxial tension
(ρ = 1), and is valid for both hardening models.

• Equibiaxial tension (ρ = 1): The value of the critical strain is
independent of the initial inclination angle. However, it obviously
depends on the material parameters and on the initial imperfection
factor. In other words, under balanced biaxial tension, necking
could occur along any orientation, once the applied loading reaches
the necking criterion (23). This observation is attributable to the
symmetry of the problem under equibiaxial tension (i.e., no
preferential direction, whenever isotropic plasticity is assumed),
and confirms previous conclusions drawn by Jia and Li [6]. Note
that in this latter reference, the bifurcation approach was used as
necking criterion, instead of the M–K imperfection analysis; and the
J2 deformation theory of plasticity was adopted as constitutive
modeling, rather than the flow theory of plasticity.

The effect of the initial imperfection factor ξI on the shape and the
level of the FLDs is investigated in Fig. 5 for both hardening models. As
well-known from previously reported works based on the M–K analysis,
the effect of the initial imperfection is essentially to shift the FLD
downwards. Accordingly, the level of FLD is lowered when the value of
ξI increases. For both hardening models, the imperfection plays a
destabilizing role that precipitates the occurrence of strain localization.
It is noteworthy that the introduction of kinematic hardening in the
constitutive modeling does not modify this general trend. It is also
observed from Fig. 5 that the limit strains are more sensitive to the
initial imperfection in the range of positive biaxial stretching than in
the range of negative minor strains. Analyzing the limit strain level for
strain-path ratios close to 1 (i.e., in the neighborhood of equibiaxial
tension), it is clear that localization cannot be predicted at realistic
strain levels for this range of strain paths without introducing initial
imperfections.

The effect of kinematic hardening on the FLDs and on the necking
band orientations is studied in Fig. 6. The three values used in Fig. 5 for
the initial imperfection factor are considered here once again; namely,
10−3, 5 × 10−3 and10−2. The dependence of FLDs on kinematic hardening
revealed by Fig. 6 is consistent with the results of Figs. 3, 4 and 5. When
kinematic hardening is considered, the limit strains increase slightly in

Fig. 2. Stress–strain response corresponding to a uniaxial tensile test: comparison
between the isotropic and mixed hardening models.



the range of negative minor strains, while they decrease more visibly in
the range of positive biaxial stretching. This observation is valid for the
different initial imperfection factors considered. To sum up, it can be

concluded that kinematic hardening has an effective impact on the
predicted forming limits; however, the observed influence is relatively
small in the whole. This relatively small overall effect may be attributed

Fig. 3. Evolution of ε ε/B S
11 11 as a function of ε S

11 for a freestanding metal layer: (a) ρ = − 0.5, θ = 20°I and ξ = 5 × 10I
−3; (b) ρ = − 0.5, θ = 20°I and ξ = 10I

−2; (c) ρ = 0, θ = 0°I and
ξ = 5 × 10I

−3; (d) ρ = 0, θ = 0°I and ξ = 10I
−2; (e) ρ = 1, θ = 0°I and ξ = 5 × 10I

−3; (f) ρ = 1, θ = 0°I and ξ = 10I
−2.



to the small difference in the yield surfaces corresponding to the two
hardening models.

In terms of band orientation, the different simulations show that for
positive strain paths (ρ≥0), the necking band is always perpendicular
to the major strain direction. Consequently, this range of strain paths is
not considered in Fig. 6. In the range of negative strain paths (ρ<0),

however, the necking band is generally predicted with a slanted
direction, lying between the two loading directions, as demonstrated
in Fig. 6. The corresponding inclination angle is shown to increase as
the strain-path ratio ρ decreases (see Fig. 6(b), (d) and (f)). It is also
clear from these figures that the inclination angle is dependent on the
hardening model; the inclination angle predicted by the mixed hard-

Fig. 4. Evolution of ε*11 as a function of θI for a freestanding metal layer: (a) ρ = − 0.5 and ξ = 5 × 10I
−3; (b) ρ = − 0.5 and ξ = 10I

−2; (c) ρ = 0 and ξ = 5 × 10I
−3; (d) ρ = 0 and ξ = 10I

−2;
(e) ρ = 1 and ξ = 5 × 10I

−3; (f) ρ = 1 and ξ = 10I
−2.



ening model is found generally lower than that predicted by its
isotropic hardening counterpart.

It is worth noting that for all of the previous results, the hardening
parameters were calibrated on the basis of experimental tests.
Accordingly, the identified value for the back-stress saturation Xsat
was set to 58.1 MPa (see Table 1). This value is rather small, because for
an equivalent strain εeq=0.5, the value of the back-stress saturation Xsat
is only about 13% of the yield stress σY. Therefore, the translation of the
yield surface is relatively small compared to its expansion. This explains
the results revealed by Fig. 6, where the effect of kinematic hardening
on the limit strains was not found sufficiently significant. In order to
further investigate the effect of kinematic hardening on the FLDs, a
parametric study is carried out. In this parametric study, four fictitious
materials are considered. For each fictitious material, two sets of
parameters are considered: the first set corresponds to the isotropic
hardening model, while the second is associated with the mixed
hardening model. The parameters K, n and Cx, corresponding to the
mixed hardening model, are kept identical for all materials (as detailed
in Table 2), and only the saturation parameter Xsat is varied from one
material to another (100 MPa, 200 MPa, 300 MPa and 400 MPa). Once
the parameters corresponding to the mixed hardening model are fixed,
the hardening parameters K and n for the isotropic hardening model are
fitted in order to obtain the same uniaxial stress–strain response yielded
by the two hardening models for each fictitious material. The material
parameters, thus identified for all materials and both hardening models,
are given in Table 2.

The effect of the kinematic hardening saturation parameter Xsat on
the shape and the level of the FLDs is illustrated in Fig. 7. For the
different simulations reported in Fig. 7, the initial imperfection factor ξI
is fixed to 10−2. It is clearly shown that the difference between the FLDs
predicted by isotropic hardening and those obtained with mixed
hardening increases as Xsat increases. One can also observe that
kinematic hardening slightly decreases the level of the FLDs in the
range of negative strain paths. However, this decrease is clearly more
significant in the range of positive strain paths. The difference between
the FLDs predicted by the two hardening models increases with the
strain-path ratio ρ (for ρ≥0). This difference is explained by the fact
that the predictions based on kinematic hardening (mixed hardening in
the present study) are rather similar to those given by a solid that
develops a vertex on the yield surface. These observations are consis-
tent with earlier studies (see, e.g. [30,32]).

5.2. Relevance of the mixed hardening model: comparison with experiments

This Section is dedicated to the comparison between the current
numerical predictions and experimental results available in the litera-
ture. Such comparisons are necessary to assess the usefulness of the
consideration of kinematic hardening in the theoretical modeling. In
this aim, different results published in Graf and Hosford [41] and Graf
and Hosford [42] will be analyzed. In these two papers, the effect of
changing strain paths on the ductility limit of aluminum alloy 2008-T4
has been investigated by determining forming limit diagrams (FLDs)
after prestraining. Sheets have been prestrained to several levels in
uniaxial, biaxial, and plane-strain tension parallel and perpendicular to
the prior rolling direction. In Graf and Hosford [41], the authors have
compared the experimental results with some numerical predictions. To
obtain their numerical predictions, the M−K approach has been used
and extended to include the effects of changing strain paths. Predictions
incorporating abrupt strain path changes were in good agreement with
the general trends observed experimentally, despite the fact that the
predicted limit strains were found superior to the experimental ones. It
must be recalled that only isotropic hardening has been considered in
the theoretical M–K model developed in Graf and Hosford [41]. On the
other hand, the plastic behavior has been modeled by the Hosford
anisotropic yield criterion [43]. The experimental results, originally
published in Graf and Hosford [41] and Graf and Hosford [42], have
been compared with several numerical predictions [23,44,45]. All the
above cited numerical contributions are based on the M–K approach to
predict the formability limit. The main difference between the above
cited numerical investigations is related to the modeling of the
mechanical behavior of the studied sheets. Indeed, the Karafillis and
Boyce yield function has been used in Cao et al. [23] and Yao and Cao
[45] to model the plastic anisotropy, while the Hill yield function has
been used in Nurcheshmeh and Green [44]. For the three above cited
references, isotropic hardening has been considered and it has been
modeled by the Swift hardening law. However, kinematic hardening
has been taken into account only in Yao and Cao [45]. In this Section,
comparisons between the current numerical predictions and the
experimental results published in Graf and Hosford [41] are carried
out. Unlike all the other Sections of the current paper, where the von
Mises yield function is used, the Hosford anisotropic function is used as
yield criterion in the current Section. This choice has been motivated by
the fact that the Hosford yield function gives a more accurate
description for the plastic anisotropy of aluminum alloy 2008-T4
[41]. Similar to the previous contributions [23,41,45], our comparisons

Fig. 5. Effect of the initial imperfection factor on the FLDs for a freestanding metal layer: (a) Isotropic hardening; (b) Mixed hardening.



Fig. 6. Effect of kinematic hardening on the FLDs and on the necking band orientations for a freestanding metal layer: (a) FLDs for ξ = 10I
−3; (b) Necking band orientations for ξ = 10I

−3;
(c) FLDs for ξ = 5 × 10I

−3; (d) Necking band orientations for ξ = 5 × 10I
−3; (e) FLDs for ξ = 10I

−2; (f) Necking band orientations for ξ = 10I
−2.



are restricted to the right-hand side of the forming limit diagrams
(strain paths for which ε2≥0). For such strain paths, the band remains
normal to the direction of major strain during the loading, as has been
demonstrated in Section 5.1. Consequently, the shearing components of
the strain and stress tensors, both in the safe zone and the band, remain
equal to 0 during the deformation. Under this condition and the plane-
stress assumption, the yield criterion in both zones can be expressed by
the following form (equivalent to Eq. (2)):

F
R

R S S S S S S σ= 1
(1 + )

( ( − ) + (2 + ) + ( + 2 ) ) − = 0,∼ ∼ ∼ ∼ ∼ ∼
p

a a a
Y22 11 11 22 11 22a

(24)

where R is the Lankford coefficient and a is a hardening exponent. As to
S∼11 and S∼22, they are defined by the following expressions:

S σ X S σ X= − ; = − ,∼ ∼
d d11 11 11 22 22 22 (25)

where σd is the deviatoric part of the Cauchy stress tensor σ, and X is the
back-stress tensor.

Substituting a = 2 recovers Hill's 1948 quadratic anisotropic yield
function, and setting R = 1 also gives rise to von Mises isotropic yield
function. In the simulations presented in the current Section, coefficient
R is set to 0.78 and exponent a is fixed to 8 (which is a typical value for
FCC materials). The latter values have been originally provided in Graf
and Hosford [41].

As previously explained, the objective of this section is to assess the
usefulness of the consideration of kinematic hardening in the theore-
tical model. In this aim, simulations with isotropic and mixed hard-
ening models are compared with the experimental results provided in
Graf and Hosford [41]. For the isotropic hardening model, the hard-

Table 2
Hardening parameters.

Isotropic hardening Mixed hardening

K (MPa) n K (MPa) n Cx Xsat (MPa)

Material 1 589 0.3 447 0.221 2 100
Material 2 736 0.357 447 0.221 2 200
Material 3 886 0.402 447 0.221 2 300
Material 4 1039 0.437 447 0.221 2 400

Fig. 7. Effect of the kinematic hardening saturation parameter Xsat on the FLDs: (a) FLDs for Xsat=100 MPa; (b) FLDs for Xsat=200 MPa; (c) FLDs for Xsat=300 MPa; (d) FLDs for
Xsat=400 MPa.



ening parameters used in the simulations are the same as those given in
Graf and Hosford [41]. These parameters have been identified by Graf
and Hosford [41] on the basis of experimental stress–strain data
obtained from monotonic uniaxial tensile loading. However, for the
mixed hardening model, there are four parameters (K, n, Cx and Xsat)
that need to be identified and, in this case, parameters K and n are likely
to be different from their values fitted for the isotropic hardening
model. It is also well known that monotonic experimental stress–strain
curves are not sufficient to calibrate the parameters (K, n, Cx and Xsat)
of a mixed hardening model and, often, experimental stress–strain
curves obtained after reverse or cyclic loading are required to obtain
the optimal set for these four parameters. Unfortunately, cyclic data for
this particular aluminum alloy is not available in the literature. To
overcome this lack of experimental data, the experimental FLD of the
as-received material (determined on the basis of linear strain paths and
without any prestrain) will be used here as additional experimental
fitting data, supplementary to the experimental monotonic stress–strain
curve. Note that the same fitting technique has been previously
followed in Cao et al. [11]. The value of the initial imperfection factor
ξI used in the M–K calculations is chosen to match the experimental FLD
of the as-received material at the point of plane-strain tension (ε = 02 ).
It should be noted that the identified value for ξI is not the same for both
hardening models (isotropic and mixed). The value of ξI used for the
isotropic hardening model is the same as that identified and used in
Graf and Hosford [41]. The numerical values for all identified
parameters are given in Table 3.

The comparisons between the predictions obtained with both
hardening models are given in Fig. 8. The comparisons between the
stress–strain curves are shown in Fig. 8(a). It is clearly revealed that the
stress–strain curves obtained by both hardening models are almost the
same. The different forming limit diagrams determined on the basis of
linear strain paths are compared in Fig. 8(b). A detailed description for
the different FLDs presented in Fig. 8(b) is given hereafter:

• FLD # 1: the experimental FLD determined in Graf and Hosford [41]
for the as-received aluminum alloy 2008-T4 for linear strain paths.

• FLD # 2: the FLD calculated in Graf and Hosford [41]. It should be
recalled that, in this numerical prediction, only isotropic hardening
has been considered.

• FLD # 3: the FLD predicted by the current numerical tool when
hardening is assumed to be only isotropic.

• FLD # 4: the FLD determined by the current numerical tool when
hardening is assumed to be mixed (isotropic and kinematic).

It is clear that FLD # 2 and FLD # 3 match perfectly, which provides
some additional validation for the developed numerical tool. The
comparison between FLD # 1 and FLD # 4 shows that the mixed
hardening parameters and the initial imperfection factor ξI are correctly
calibrated. Indeed, FLD # 4 matches the experimental FLD (FLD # 1)
reasonably well. Furthermore, this comparison highlights the reliability
and the flexibility of the mixed hardening model in the prediction of the
forming limit diagrams, as compared to the isotropic hardening model.
As demonstrated in Fig. 8(b), the use of the two hardening models
(isotropic and mixed) leads to two distinct FLDs (FLD # 3 and FLD # 4),
despite the high similarity between the associated stress–strain curves,
as shown in Fig. 8(a). As commented in Section 5.1, this result can be
explained by the fact that the strain path inside the band is non-linear
during the deformation (contrary to the strain path in the homogeneous
zone, which is assumed to be linear in this case). To further clarify this
point, the evolution of the strain rate ratios ε ε̇ / ̇S S

22 11 and ε ε̇ / ̇B B
22 11 is plotted

in Fig. 9 as a function of the strain component ε S
11. Two particular strain

paths are considered in this figure: ρ = 0. 5 and ρ = 1. Although
isotropic hardening is used for the predictions reported in Fig. 9, the
corresponding conclusions are valid for the mixed hardening model as
well. From Fig. 9, it is clear that the strain path ratio ε ε̇ / ̇S S

22 11 is constant
and equal to ρ during the deformation. However, the strain path ratio
ε ε̇ / ̇B B

22 11 evolves during the loading: it is almost equal to ρ at the
beginning of the loading, while it tends to 0 when plastic strain
localization is approached. These results confirm the fact that the
strain path in the band is non-linear during the deformation, even if it is
linear in the safe (homogeneous) zone.

It is worth noting that, similar to the vast majority of M–K
approaches developed and used in the literature, the rupture stage is
not modeled in the present M–K approach. Accordingly, the localization
of plastic deformation is adopted as the unique indicator for the
determination of the formability limit.

In order to further analyze the relevance of the consideration of
kinematic hardening in the mechanical modeling of aluminum alloy
2008-T4, abrupt strain path changes have been incorporated into the
developed M–K approach. This incorporation of sequential strain paths

Table 3
Identified parameters for the aluminum alloy 2008-T4.

K (MPa) n Cx Xsat (MPa) ξI

Isotropic hardening 530 0.25 8 × 10−3

Mixed hardening 400 0.2 90 2 15 × 10−3

Fig. 8. Calibration of the material parameters for both hardening models (isotropic and mixed): (a) Stress–strain response corresponding to uniaxial tensile loading, (b) Experimental and
simulated FLDs.



allowed us to simulate FLDs for bilinear strain paths. The algorithm
given in Section 4 is used to simulate the prestrain stage. When the
desired prestrain level is achieved, the current imperfection factor ξ and
the mechanical variables (equivalent strain, back-stress…) in the
groove and the safe zone are used as starting values for the second
(subsequent) strain path. Fig. 10 shows the comparisons between the
experimental and the numerical FLDs, corresponding to different
prestrain levels, for both plane-strain and equibiaxial tension states.
The parameters used as input values for the different simulations
reported in Fig. 10 are provided in Table 3. It must be recalled that
the experimental monotonic uniaxial tensile stress–strain curve and the
experimental FLD associated with linear strain paths have been used to
calibrate the parameters of Table 3. As demonstrated in Fig. 10, the
experimental results and the current numerical predictions using the
mixed hardening model match very well qualitatively. Quantitatively,
the results obtained with the mixed hardening model are much closer to
experiments than those given by the isotropic hardening model. These
results reveal that the mixed hardening model predicts more reliably
the forming limits.

5.3. Elastomer/metal bilayer

In this section, a bilayer combination is considered, which consists
of a metal layer supported by an elastomer substrate.

In order to emphasize the impact on the ductility of the bilayer of
the different parameters involved (hardening parameters of the metal
layer, relative thickness and shear modulus of the elastomer layer), a
preliminary parametric study is first carried out. In this parametric
study, attention is focused on the particular case of plane-strain tension
(ρ=0). This choice is motivated by the fact that, for the plane-strain
tensile state, the strain path is proportional both in the band and in the
safe zone. Hence, the incremental algorithm of Section 4 is no longer
required, and a simpler compact analytical equation can be derived (Eq.
(31)), which allows us to determine in a more straightforward way the
limit strains. With this analytical equation we are also able to easily
analyze the impact of the different parameters on the evolution of the
limit strain. As previously stated, both hardening models (isotropic and
mixed) provide the same limit strain in the case of the plane-strain
tension loading path. Therefore, the effect of kinematic hardening on
the limit strain cannot be highlighted in the current parametric study.

Fig. 9. Evolution of the strain rate ratios ε ε̇ / ̇S S
22 11 and ε ε̇ / ̇B B

22 11 as a function of the strain component ε S
11 (isotropic hardening model): (a) ρ = 0. 5, (b) ρ = 1.

Fig. 10. Comparisons between the experimental and numerical FLDs for aluminum alloy 2008-T4 prestrained at: (a) two straining levels (ε = 0. 0811 and ε = 0. 1311 ) near plane-strain
tension, (b) two straining levels (ε = 0. 0411 and ε = 0. 0711 ) along equibiaxial tension.



Nevertheless, this effect is extensively studied in the remainder of the
paper, as already shown in Fig. 7, in particular (see also the associated
discussions and conclusions). Hence, the current parametric study is
restricted to the investigation of the impact on the limit strains of the
following parameters: the isotropic hardening parameters K and n of the
metal layer, the relative thickness and the shear modulus of the
elastomer layer. As will be demonstrated in Fig. 13(c) and Fig. 13(d),
the necking band orientation θ is equal to 0° for the plane-strain tension
loading path. Accordingly, the unit vector n

→
normal to the band is equal

to (1, 0, 0), and the equilibrium Eq. (15) simply reduces to the following
scalar equation:

h σ M H σ E h σ M H σ E( ) + ( ) = ( ) + ( ).B B B B S S S S
11 11 11 11 (26)

By inserting Eq. (18) and their equivalent forms pertaining to the
elastomer layer into Eq. (26), one obtains

h σ M H σ E e h σ M H σ E e( ( ) + ( )) = ( ( ) + ( )) .I
B B

I
B B ε

I
S S

I
S S ε

11 11 11 11
B S33 33 (27)

Taking into account the plane-strain state and the proportionality of
the strain path both in the band and in the safe zone, one can easily
deduce that ε B

33 and ε S
33 are equal to ε− B

11 and ε− S
11, respectively. As a

result, Eq. (27) can be rewritten as

h σ M H σ E e h σ M H σ E e( ( ) + ( )) = ( ( ) + ( )) .I
B B

I
B B ε

I
S S

I
S S ε

11 11
−

11 11
−B S11 11 (28)

On the other hand, the expressions of σ M( )B
11 , σ E( )B

11 , σ M( )S
11 and

σ E( )S
11 can be obtained (after straightforward developments) by combin-
ing the plane-stress conditions and the constitutive equations of the
metal and elastomer layers
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By inserting the above expressions into the equilibrium Eq. (28),
one obtains
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As previously stated, the initial imperfection is assumed to initiate
within the metal layer and, accordingly, HI

B is equal to HI
S. For the sake

of simplicity, these two initial thicknesses will be designated as HI , in
what follows, and hI

S will be simply denoted hI . By using the above
notations and the definition (11) for the initial imperfection ratio ξI , Eq.
(30) can be rewritten as
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To obtain the limit strain ε11, Eq. (31) is incrementally solved. In this
incremental procedure, the strain rate component ε ̇B11 is set to 1 (which
means that ε B

11 is equal to t), and time t is varied between 0 and 1, with
an increment size of 10−3. For each value of ε B

11, Eq. (31) is solved by an
iterative scheme, thus providing the corresponding value of ε S

11. The
limit strain is reached when ε ε̇ / ̇B S

11 11 becomes greater than 10, as stated
by Eq. (23). For all of the simulations in this parametric study, the
initial imperfection ratio ξI is set to 10−2. The results of this parametric
study are reported in Fig. 11. On the basis of these results, the following
conclusions can be drawn:

• The limit strains increase with the hardening exponent n, which is

consistent with a number of previously reported experimental
observations. Also, this result applies to both the freestanding metal
layer and the substrate-supported metal layer.

• The hardening parameter K has no impact on the limit strain for the
freestanding metal layer. However, this parameter has a slight effect
on the limit strain for the metal/elastomer bilayer. Indeed, in this
latter case, the limit strain slightly decreases with K. By analyzing
Eq. (31), this result is also expectable.

• The predicted limit strains increase with the shear modulus and/or
the relative thickness of the elastomer layer. This means that the
addition of an elastomer layer substantially retards the occurrence
of necking, a result which is valid for both hardening models. This
necking retardation is tied to the fact that under biaxial stretching,
the incremental modulus of the elastomer layer remains essentially
unchanged, or increases, while the incremental modulus of the
metal layer steadily decreases. Additional details on this specific
aspect will be provided in Appendix B.

In all calculations reported in the remainder of this section, the
material parameters of the metal layer are those given in Table 1. The
shear modulus of the elastomer layer is set to 22 MPa. This latter choice
is based on data for polyurea [46].

Fig. 12 reflects the effect of the elastomer layer and its initial
thickness HI, relative to that of the metal layer hI, on the evolution of
the ratio ε ε/B S

11 11 as a function of ε S
11. It must be first noted that, in the case

of uniaxial tension (ρ=−0.5) with an initial inclination angle of 20°,
localization is significantly retarded, due to the addition of the
elastomer layer, for both initial imperfection factors (5×10−3 and
10−2). In other words, in this special case of strain path and initial band
orientation, the presence of the elastomer layer tends to enhance the
immunity of the whole bilayer against necking. This phenomenon can
be explained by the high resistance of the elastomer to necking and by
the mechanical constraint applied by the substrate to the metal
deformation. Because localization cannot be observed at a realistic
strain level for ρ=−0.5 and θI=20° (in this case, the limit strain
exceeds 1), the curves in Fig. 12(a) and (b) are rather plotted for an
alternative strain path (ρ=−0.2), for which necking is observed. When
the elastomer initial thickness HI is set to 0 (i.e., with no addition of
elastomer substrate), the results of Fig. 3 are obviously consistently
recovered. For both hardening models, the effect of the elastomer layer
is to increase the critical strain ε*11 (which is the maximum value
reached by ε S

11). It is also observed that the dependence of the limit
strain of the elastomer/metal bilayer on kinematic hardening is the
same as for the freestanding metal layer. More specifically, when
kinematic hardening is considered, the limit strain of the bilayer
increases slightly for uniaxial tension and plane-strain tension, while
it decreases more visibly in the case of equibiaxial tension. Also, the
effect of the initial imperfection on the limit strain of the bilayer is quite
similar to its effect in the case of a freestanding metal layer.

The combined effect of kinematic hardening and of the elastomer
layer on the evolution of the critical strain ε*11 as a function of the initial
band orientation θI is illustrated in Fig. 13. Similar to the case of a
freestanding metal layer, we can conclude that, for the strain-path ratio
ρ=−0.3, localization occurs along a slanted direction, lying between
the two loading directions, as demonstrated in Fig. 13(a) and (b). It is
also clear that the presence of the elastomer substrate reduces the value
of the band inclination angle for this particular strain path, as shown in
Fig. 13(a) and (b). However, this angle remains equal to 0 for positive
strain paths (ρ=0 and ρ=1), a result analogous to that found in the case
of a freestanding metal layer (see Fig. 4). In the same way as before, for
the equibiaxial tensile state, the critical strain ε*11 is found to be
independent of the value of θI (see Fig. 13(e) and (f)). However, this
critical strain obviously depends on the material parameters of both
layers, on the thickness ratio HI /hI and on the initial imperfection
factor ξI . On the whole, Fig. 13 reveals that the effect of kinematic
hardening on the limit strain of the bilayer follows the same trends



observed in Fig. 4 for a freestanding metal layer.
In Fig. 14, the combined effect of kinematic hardening and of the

elastomer layer on the FLDs and on the necking band orientations is
illustrated for three initial imperfection factors, namely, 10−3, 5 × 10−3

and 10−2. Fig. 14(a), (c) and (e) confirm the previous observations
reflected by Fig. 12 and Fig. 13; namely, the elastomer layer substan-
tially enhances the ductility of the bilayer for both hardening models
and all of the strain paths. Also, we can conclude that the impact of the
addition of an elastomer substrate is more significant than the effect of
kinematic hardening. The evolution of the necking band orientation, as
a function of the strain-path ratio (for negative values of the latter), is
plotted in Fig. 14(b), (d) and (f). These figures confirm the trends
reflected by Fig. 13(a) and (b); namely, the elastomer substrate reduces
the value of the band inclination.

Additional simulations have been carried out in order to further
investigate the effect of the relative thickness of the elastomer layer on
the ductility limit of the whole bilayer. The associated results are
reported in Fig. 15, for an initial imperfection factor ξI equal to 10−2.
From this figure, it can be seen that the larger the relative thickness HI
/hI, the more significant the retardation of necking occurrence. These
results clearly demonstrate the significant impact of the elastomer
substrate on the ductility of the bilayer, and confirm the previous
discussions on the positive effect of the elastomer layer on the necking

retardation. Moreover, these conclusions are valid for both hardening
models.

6. Conclusions

The forming limits for freestanding metal layers and substrate-
supported metal layers have been numerically determined using both
isotropic and mixed hardening models. The conclusions based upon the
present work are given as follows:

• Overall, the predicted limit strains for the whole FLD tend to
decrease when the saturation parameter of the kinematic hardening
model increases, as illustrated in Fig. 7. For small to moderate
values of the kinematic hardening saturation parameter, the differ-
ence between the FLDs predicted by the isotropic hardening model
and those determined by the mixed hardening model is not very
significant.

• As demonstrated in Fig. 10, the experimental results and the
numerical predictions based on the mixed hardening model match
very well qualitatively. Quantitatively, the results obtained with the
mixed hardening model are much closer to experiments than those
given by the isotropic hardening model. These results reveal that the
mixed hardening model predicts more reliably the forming limits.

Fig. 11. Parametric study on the effect of some parameters on the limit strain in plane-strain tension (ξ = 10I
−2): (a) Effect of the hardening exponent n of the metal layer (K=522 MPa;

μ=22 MPa; HI /hI=0 and HI /hI=1); (b) Effect of the hardening parameter K of the metal layer (n=0.257, μ=22 MPa, HI /hI=0 and HI /hI=1); (c) Effect of the shear modulus μ of the
elastomer (K=522 MPa, n=0.257, HI /hI=1); (d) Effect of the thickness ratio HI /hI (K=522 MPa, n=0.257, μ=22 MPa).



• For both hardening models, the addition of an elastomer layer
substantially enhances the ductility limit of the resulting metal/
elastomer bilayer. This neck retardation is attributable, on the one
hand, to the high resistance of the elastomer material to necking
and, on the other hand, to the mechanical constraint of the

elastomer substrate to the metal deformation.
• In both cases of freestanding metal layers and metal/elastomer
bilayers, the necking band for positive strain paths (ρ≥0) is found to
be perpendicular to the direction of major strain. Also, for equibiax-
ial tension (ρ=1), the value of the critical strain is independent of

Fig. 12. Evolution of ε ε/B S
11 11 as a function of ε S

11 for a metal/elastomer bilayer: (a) ρ = − 0.2, θ = 20°I and ξ = 5 × 10I
−3; (b) ρ = − 0.2, θ = 20°I and ξ = 10I

−2; (c) ρ = 0, θ = 0°I and
ξ = 5 × 10I

−3; (d) ρ = 0, θ = 0°I and ξ = 10I
−2; (e) ρ = 1, θ = 0°I and ξ = 5 × 10I

−3; (f) ρ = 1, θ = 0°I and ξ = 10I
−2.



Fig. 13. Evolution of ε*11 as a function of θI for a metal/elastomer bilayer: (a) ρ = − 0.3 and ξ = 5 × 10I
−3; (b) ρ = − 0.3 and ξ = 10I

−2; (c) ρ = 0 and ξ = 5 × 10I
−3; (d) ρ = 0 and ξ = 10I

−2;
(e) ρ = 1 and ξ = 5 × 10I

−3; (f) ρ = 1 and ξ = 10I
−2.



Fig. 14. Effect of kinematic hardening and of the elastomer substrate on the FLDs and on the necking band orientations of a metal/elastomer bilayer: (a) FLDs for ξ = 10I
−3; (b) Necking

band orientations for ξ = 10I
−3; (c) FLDs for ξ = 5 × 10I

−3; (d) Necking band orientations for ξ = 5 × 10I
−3; (e) FLDs for ξ = 10I

−2; (f) Necking band orientations for ξ = 10I
−2.



the initial groove orientation. These results are valid for both
hardening models, and are fully consistent with previous studies

from the literature.

Appendix A. Incremental algorithm

The aim of this incremental algorithm is to integrate the governing equations for the M–K analysis over a typical time increment t t[ , ]n n+1 . For
this purpose, we assume that besides the material parameters, the following quantities are known at tn in both layers:

• Ft
B
n
(resp. Ft

S
n
): the deformation gradient in the band (resp. in the safe zone).

• εeq t
B

n
(reps. εeq t

S
n
): the equivalent strain in the band (resp. in the safe zone).

• Xt
B
n
(resp. Xt

S
n
): the back-stress tensor corresponding to the metal layer in the band (resp. in the safe zone).

It must be recalled that, due to perfect adherence assumption (12), Ft
B
n
, Ft

S
n
, εeq t

B
n
, εeq t

S
n
take the same values both in the metal and in the elastomer

layer.
In order to simplify notations, subscript tn+1, indicating that the corresponding quantity is expressed at tn+1, will be omitted hereinafter, with the

implied understanding that this quantity is evaluated at tn+1, unless otherwise indicated.
As any numerical algorithm for the time integration of mechanical constitutive equations, which are assumed to be strain-driven, a prescribed

quantity must be chosen as a loading parameter over t t[ , ]n n+1 . In order to simplify the computation and to avoid some numerical problems, this
prescribed quantity should be chosen among the different strain quantities that evolve monotonically before and after the occurrence of localization
(the onset of localization being not a priori known). Regarding the strain quantities in the safe zone, these evolve monotonically before strain
localization, but remain constant afterwards (as the behavior is taken rigid–plastic, thus precluding elastic unloading in the safe zone following strain
localization). Consequently, it is more suitable to choose the prescribed quantity among the velocity gradient components in the band. In our case,
the component G B

33 is chosen as prescribed quantity over t t[ , ]n n+1 . The mechanical behavior in both layers being taken strain-rate independent, the
prescribed value for G B

33 may be chosen quite freely without influencing the predicted necking limit. For convenience, G B
33 is assumed to be constant

and equal to –1. This latter choice in conjunction with Eq. (22) leads to the following relation (where the different variables are expressed at tn+1):

ρ ε c n c n(1 + ) ˙ + ˙ + ˙ = 1.S
11 1 1 2 2 (A.1)

The unit normal vector n
→

is equal to (cos θ, sin θ, 0), and hence n
→

only depends on θ. On the other hand, θ can be expressed as follows (an
equation equivalent to Eq. (16)):

∫Tan θ e Tan θ( ) = ( ),ρ ε dt
I

(1− ) ̇
tn S

0
+1

11 (A.2)

which can also be rewritten in the following incremental form:

Tan θ e Tan θ( ) = ( ),Δt ρ ε
t

(1− ) ̇S
n

11 (A.3)

where θtn is the orientation of the band at the beginning of the time increment, which is assumed to be known in this incremental formulation.
Accordingly, for a given strain path ρ and initial orientation θI (as explained in the algorithm of Section 4), Eq. (A.1) depends on three scalar

unknowns: ε ̇S11, c1̇ and c2̇.
The back-stress X can be integrated by an implicit scheme over t t[ , ]n n+1

ΔtX X X= + ̇ .tn (A.4)

Introducing the equality (A.4) into Eq. (4) leads to

C X ε ΔtX ε X Ẋ = ( ̇ − ̇ ( + ̇ ) ).x sat eq tn (A.5)

Fig. 15. Effect of the elastomer relative thickness HI /hI on the predicted FLDs: (a) Isotropic hardening; (b) Mixed hardening.



By rearranging Eq. (A.5), we can obtain the following expression for Ẋ:

C X ε
Δt C ε

X
ε Ẋ =

( ̇ − ̇ )
1 + ̇

.x sat t eq

x eq

n

(A.6)

The back-stress X at tn+1 can then be expressed in the following form:

Δt C X ε
Δt C ε

X X
ε X

= +
( ̇ − ̇ )

1 + ̇
.t

x sat t eq

x eq
n

n

(A.7)

Finally, the back-stress within the metal layer both in the safe zone and in the band, noted respectively XS and XB, can be expressed as follows:

Δt C X ε

Δt C ε

Δt C X ε

Δt C ε
X X

ε X
X X

ε X
= +

( ˙ − ˙ )

1 + ˙
; = +

( ˙ − ˙ )

1 + ˙
.S

t
S x sat

S
t
S

eq
S

x eq
S

B
t
B x sat

B
t
B

eq
B

x eq
Bn

n
n

n

(A.8)

Considering expression (21) (resp. (22)) pertaining to GS (resp. GB), we can easily observe that ε ̇S (resp. ε ̇B), which is the symmetric part of GS

(resp. GB), is function only of the unknown ε ̇S11 (resp. the unknowns ε ̇S11, c1̇ and c2̇). Accordingly, XS and XB are completely determined once ε ̇S11, c1̇ and
c2̇ are known.

In the same way, Eq. (6) reveals that Mσ ( )d
S (resp. Mσ ( )d

B ) is function of the unique unknown ε ̇S11 (resp. the three unknowns ε ̇S11, c1̇ and c2̇).
On the other hand, the velocity gradients FS and FB can be expressed as functions of GS and GB, respectively

e eF F F F= ; = .S Δt
t
S B Δt

t
BG GS

n

B

n (A.9)

Accordingly, FS and FB (and hence the associated left Cauchy-Green tensors VS and VB) depend only on the three unknowns ε ̇S11, c1̇ and c2̇. By
analyzing the constitutive Eq. (7) for the elastomer, we can conclude that the computation of ε ̇S11, c1̇ and c2̇ allows us to completely determine the
deviatoric stresses EΒ ( )S and EΒ ( )B .

Also, the current thicknesses of the metal and elastomer layers, both in the safe zone and in the band, can be written in the following incremental
forms:

h h e h h e H H e H H e= ; = ; = ; = ,S
t
S Δt G B

t
B Δt G S

t
S Δt G B

t
B Δt G

n

S

n

B

n

S

n

B
33 33 33 33 (A.10)

which reveals that h h H H, , ,S B S B depend only on the three unknowns ε ̇S11, c1̇ and c2̇.
The equilibrium Eq. (15) can be expressed in the following index form:

i h σ M H σ E n h σ M H σ E n j∀ = 1, 2, 3: ( ( ) + ( )). = ( ( ) + ( )). ; = 1, 2, 3.B
ij
B B

ij
B

j
S

ij
S S

ij
S

j (A.11)

The normal vector being lying in the plane of the sheet, as shown in Fig. 1, its third component n3 is equal to 0. Furthermore, by virtue of the
plane-stress conditions, σi

B
3 and σi

S
3 are equal to 0. Therefore, Eq. (A.11) can be reduced to the in-plane components

i h σ M H σ E n h σ M H σ E n j∀ = 1, 2: ( ( ) + ( )). = ( ( ) + ( )). ; = 1, 2.B
ij
B B

ij
B

j
S

ij
S S

ij
S

j (A.12)

The equilibrium equation (A.12) may be regarded as a system of two scalar equations with three unknowns ε ̇S11, c1̇ and c2̇. By adding Eq. (A.1) to
Eq. (A.12), we can formulate the resulting system, to be solved at each time increment t t[ , ]n n+1 , in the following generic form:

ε c cR( ̇ , ̇ , ̇ ) = 0,S
11 1 2 (A.13)

where the components of the residual vector R are defined by

⎧
⎨
⎪⎪

⎩
⎪⎪

R ε c c ρ ε c n c n
R ε c c h σ M H σ E n h σ M H σ E n

R ε c c h σ M H σ E n h σ M H σ E n

j

( ˙ , ˙ , ˙ ) = (1 + ) ˙ + ˙ + ˙ − 1 = 0
( ˙ , ˙ , ˙ ) = ( ( ) + ( )) − ( ( ) + ( )) = 0

( ˙ , ˙ , ˙ ) = ( ( ) + ( )) − ( ( ) + ( )) = 0

; = 1, 2 .

S S

S B
j
B B

j
B

j
S

j
S S

j
S

j
S B

j
B B

j
B

j
S

j
S S

j
S

j

1 11 1 2 11 1 1 2 2

2 11 1 2 1 1 1 1

3 11 1 2 2 2 2 2 (A.14)

The above nonlinear system (A.14) should be solved iteratively (using the Newton–Raphson method, for example) in order to determine ε ̇S11, c1̇
and c2̇. Ultimately, the determination of these unknowns allows the computation of the different mechanical quantities at tn+1. In particular, the two
strain quantities G S

33(=ε ̇S33) and ε S
11 are especially of interest; the first G S

33 is required for the necking criterion (23) (in which the prescribed component
G B

33 is taken equal to −1), while the second ε S
11 is needed in the algorithm of Section 4.

Appendix B. Effect of the elastomer substrate on the ductility of the bilayer

The aim of the current appendix is to explain, through some analytical developments, why the addition of an elastomer substrate leads to necking
retardation for the resulting metal/elastomer bilayer. As a starting point of this development, let us consider the equilibrium Eq. (15). This
equilibrium equation is equivalent to the following rate form:

h M H E h M H En Ν Ν n Ν Ν. ( ˙ ( ) + ˙ ( )) = . ( ˙ ( ) + ˙ ( )),B B B B S S S S→ →
(B.1)

where Ν̇ is the nominal stress rate related to the Cauchy stress rate σ̇ by the following relation:

Ν σ G σ̇ = ̇ − . . (B.2)

The unit vector n
→
normal to the necking band is restricted to rotate in the plane of the sheet. Hence, its third component n3 is always equal to 0.

Therefore, the third components in Eq. (B.1) are equal to zero, and this equilibrium equation (B.1) can be reduced to its in-plane form. This in-plane
form is considered in the remainder of this appendix. For the sake of simplicity and clarity, the same notations used in the general 3D case will be
adopted again in the in-plane formulation.



The nominal stress rate Ν̇ is related to the velocity gradient G by the following generic form:

Ν Ġ = : , (B.3)

where  is a tangent modulus which will be specified later.
By inserting Eq. (B.3) into Eq. (B.1), the equilibrium equation can be expressed in terms of G B and G S

   h M H E h M H En G n G. ( ( ) + ( )): = . ( ( ) + ( )): ,B B B B B S S S S S→ →
(B.4)

which is equivalent to

 n G n G. ( : ) = . ( : ),B B S S→ →
(B.5)

where  B and  S are defined by the following expressions:

     h M H E h M H E= ( ) + ( ) ; = ( ) + ( ).B B B B B S S S S S (B.6)

The insertion of the compatibility condition (14) into the equilibrium equation (B.5) leads to the following equation:

  ⎛
⎝⎜
⎛
⎝⎜

⎞
⎠
⎟⎟n n c n G( . . ). ˙ = . − ): ,B S B S→ → → →

(B.7)

which, when tensor n n. .B→ →
is invertible, is equivalent to

  
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠
⎟⎟
⎞
⎠
⎟⎟c n n n G˙ = ( . . ) . ( − ): .B S B S

→ → → −1 →

(B.8)

As defined by criterion (23), localized necking occurs when the velocity gradient in the band G B becomes much larger, in norm, than its
counterpart G S. Correspondingly, the jump vector c→̇ becomes unbounded at the onset of strain localization. A natural outcome from Eq. (B.8) is that
the latter condition corresponds to the singularity of the acoustic tensor associated with the band n n( . . )

B→ →

detc n n˙ → + ∞ ⇔ ( . . ) = 0.B
→ → →

(B.9)

As previously given in Eq. (B.6), the tangent modulus in the band  B is expressed as the weighted sum of two contributions: the first is related to
the metal layer ( h M( )B B ) and the second corresponds to the elastomer layer ( H E( )B B ).

In the general case, and for both layers and zones, the tangent modulus  is defined by the following expression:

 L L L= − − ,1 2 (B.10)

where L is the instantaneous modulus relating the Jaumann co-rotational rate σJ of the Cauchy stress tensor to the strain rate tensor ε ̇ (the symmetric
part of the velocity gradient G)

σ L ε= : ̇.J (B.11)

As to L1 and L2, these are fourth-order tensors that convey the effect of convective stress components through the expression (B.11) of the tangent
modulus . These tensors are given by the following general expressions:

i j k l L σ δ σ δ L σ δ σ δ∀ , , , = 1, 2: = 1
2

( + ) ; = 1
2

( − ).ijkl lj ik kj il ijkl ik lj il jk1 2 (B.12)

Eq. (B.11) can be rewritten more explicitly in the following index form:

⎧
⎨⎪

⎩⎪

σ L ε L ε
σ L ε L ε
σ L ε

= ̇ + ̇
= ̇ + ̇
= 2 ̇

.

J

J

J
S

11 11 11 12 22

22 12 11 22 22

12 12 (B.13)

In what follows, the components L11, L12, L22 and LS of the instantaneous moduli corresponding to each of the metal and elastomer layers will be
given in detail.

1. Instantaneous modulus for the metal layer
Tvergaard [19] provided the analytical expressions for the components L11, L12, L22 and LS, in the case of incompressible and isotropic elasto-

plastic flow theory combined with mixed hardening

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

L E Ε Ε L E Ε Ε

L E Ε Ε L

= − ( − ) ; = − ( − )

= − ( − ) ; =
,

T
σ
σ T

σ
σ

T
σ σ

σ S
E

11
4
3

2

22
4
3

2

12
2
3 3

∼ ∼

∼ ∼

Y Y

Y

11 22

11 22
2

(B.14)

where tensor σ∼ is equal to σ X− , while E and ET denote, respectively, the Young modulus and the scalar tangent modulus equal to dσ dε/eq eq. The
rigid-plastic behavior can be recovered as a limiting case of the elasto-plastic behavior, when E → ∞.

2. Instantaneous modulus for the elastomer layer

The components of the instantaneous modulus corresponding to the neoHookean model are given by the following expression [7]:



⎪

⎪

⎧
⎨
⎩

L μ e e L μ e e
L μ e L e e

= 2 ( + ) ; = 2 ( + )
= 2 ; = ( + )

,
ε ε ε ε ε ε

ε ε
S

μ ε ε
11

2 −2 ( + )
22

2 −2 ( + )

12
−2 ( + )

2
2 2

11 11 22 22 11 22

11 22 11 22
(B.15)

By analyzing Eqs. (B.14) and (B.15), we can easily observe that the tangent modulus of the elastomer layer remains constant or even increases
slightly with stretching, while the tangent modulus of the metal layer decreases steadily. Therefore, compared to a freestanding metal layer at a given
stretching level, the metal/elastomer bilayer has a stiffer tangent modulus, which promotes neck retardation. As a consequence, the addition of an
elastomer substrate to a metal layer substantially enhances the ductility of the resulting bilayer.
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