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The unloading part of a load–displacement curve from instrumented indentation tests is usually
approximated by a power law (Oliver and Pharr model), where the load is the dependent variable.
This approach generally fits well the data. Nevertheless, the convergence is occasionally quite
questionable. In this regard, we propose a different approach for the Oliver and Pharr model, called
the inverted approach, since it assigns the displacement as the dependent variable. Both models
were used to fit the unloading curves from nanoindentation tests on fused silica and aluminum,
applying a general least squares procedure. Generally, the inverted methodology leads to similar
results for the fitting parameters and the elastic modulus (E) when convergence is achieved.
Nevertheless, this approach facilitates the convergence, because it is a better conditioned problem.
Additionally, by Monte Carlo simulations we found that robustness is improved using the inverted
approach, since the estimation of E is more accurate, especially for aluminum.

I. INTRODUCTION

The instrumented indentation test (IIT) has been largely
studied due to its advantages and facilities to estimate
the mechanical properties of materials from the load–
displacement curve.1,2 The technique is simple to execute;
however, the interpretation of the data could be rendered
difficult depending on the type of system, the material,
and/or the scale of measurement. The principal properties
calculated from the load–displacement data are the elastic
modulus, E, and the hardness, H. Additionally, the work
hardening coefficient, yield stress,3–5 and fracture tough-
ness6,7 can be calculated as well from IIT.

Several approaches have been developed to compute
the elastic modulus and hardness of materials. Some
authors8–12 calculate these properties from the loading
part of the load–displacement curve. Nevertheless, most
of the studies consider the unloading curve to compute
them.13–16 Besides, the properties can be calculated from
the indentation work deduced from the area under the
load–penetration curve.17–19

The methodology proposed by Doerner and Nix16 to
determine the mechanical properties of materials represents
the fundamental of the Oliver and Pharr method.15,20

Doerner and Nix used a flat punch approximation that
considers a constant contact area during withdrawal of
the indenter and consequently, the unloading curve is
linear, therefore, the stiffness should be calculated as the
reciprocal of the compliance expressed by the next relation
[Eq. (1)],16

dh

dP
¼ 1

2hp

p
24:5

� �1=2 1
ER

; ð1Þ

where hp is the plastic depth obtained as the intercept
with the displacement axis of the tangent line to the
unloading curve at maximum load.
Oliver and Pharr demonstrated that the Doerner and

Nix approach presented some inconsistencies, i.e., the
measured contact stiffness is highly dependent on the
portion of the unloading curve taken for its calculation,
the creep phenomenon at the beginning of the unloading
curve, and the change in the area during the indenter
removal.15,20

On the other hand, the method of Oliver and Pharr is
the approach that has been mainly used by the majority of
researches related to IIT. In contrast to the method of
Doerner and Nix, Oliver and Pharr demonstrated that
unloading curves are not well represented by a linear fit.
Instead, unloading curves are properly approximated by a
power law relationship. This method can be extrapolated
to a diversity of axisymmetric indenter geometries such
as sphere and pyramids.15,20
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This paper is focused on the study of a new approach
of the Oliver and Pharr model to fit the unloading curve
for pyramidal indenters (Vickers and Berkovich), which
is intended to improve the robustness of the method. The
study is limited to nanoindentation tests on two materials
with very different mechanical behavior, such as fused
silica and aluminum.

II. THEORETICAL BACKGROUND

Oliver and Pharr proposed that the unloading curve
is generally well approximated to a power law as the
following relation [Eq. (2)]:

P ¼ B0 � h� hfð Þm ; ð2Þ

where B9, m, and hf are fitting parameters determined by
a least squares fitting procedure.

The previous relation is commonly used in the IIT
analysis because it generally approximates well the
unloading data. Oliver and Pharr did a broad study
over different materials and proved that the variation
of the power law exponent remains in the range of
1.2 # m # 1.6, which discards the flat punch approxi-
mation (m5 1) and approaches instead to a paraboloid of
revolution (m 5 1.5). This result was unexpected to
Oliver and Pharr, because the axisymmetric equivalent
to the Berkovich indenter is a cone (m 5 2).20 The
inconsistency was explained by the concept of “effective
indenter shape”, explained in detail in Ref. 21.

During the initial loading stage of indentation tests,
the material is deformed plastically and elastically and the
contact impression can be simulated as a perfect cone
shape. During the unloading, the indentation imprint
changes due to the elastic recovery. Consequently, the
unload impression is not perfectly conical, since a small
curvature is created on its surface. The effective indenter
shape concept accounts for the formation of this curvature.
This concept considers the fact that the unloading process
is described by a half-space with a local distortion of
the surface, caused by the plastic deformation during the
formation of the indentation imprint, instead of an elastic
contact between a rigid cone and a flat elastic half-space.
The elementary idea is to transform the contact geometry
to the geometry where the elastic half-space solutions can
be applied, to consider the surface distortion.21

To compute the elastic modulus and hardness, it is
necessary to measure and calculate four principal param-
eters: the maximum load, Pmax, the maximum displace-
ment, hmax, the final or residual depth, hf, and the contact
stiffness, S (dP/dh). Pmax and hmax can be measured
directly from the indentation curve, however, S and hf
need to be computed. The schematic load–penetration
curve obtained by IIT, showing the mentioned parameters,
is presented in Fig. 1.

The hardness, HIT, is defined as the ratio between
the maximum load, Pmax, and the projected contact
area, Ac,

HIT ¼ Pmax

Ac

: ð3Þ

The reduced elastic modulus, ER, is calculated with the
contact stiffness as follows:

ER ¼ S
ffiffiffi
p

p
2b

ffiffiffiffiffi
Ac

p ; ð4Þ

where b is a factor related to the geometry of the indenter,
for Berkovich indenters commonly is 1.034.20 ER

contains the properties of the indenter (Ei, mi) and the
material (E, m) described by Eq. (5). For diamond
indenters, Ei 5 1140 GPa and mi 5 0.07,

1
ER

¼ 1� mi2

Ei

þ 1� m2

E
: ð5Þ

The contact stiffness is calculated as the slope of the
upper portion of the unloading curve; explicitly, it is
the derivative of load with respect to the displacement
evaluated at the maximum displacement [Eq. (6)],20

SO&P ¼ dP

dh
¼ mB0 hmax � hfð Þm�1 ; ð6Þ

where the subscript O&P for the contact stiffness S
denotes that the relation is derived from the Oliver and
Pharr model.

The contact area function is a critical quantity to
compute, especially in nanoindentation tests with pyramidal
indenters, where the influence of the blunted indenter tip
can be very important, especially for small displacements.

FIG. 1. Typical load–depth curve obtained by IIT. Pmax: maximum
load, hmax: maximum displacement, hf: residual depth, hp: plastic depth
and, S: stiffness.
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For that purpose, the contact area function proposed by
Oliver and Pharr is a good approach [Eq. (7)],

Ac ¼ C0 hc
2 þC1 hc

1 þC2 hc
1=2 þC3 hc

1=4 þ . . .þ C8 hc
1=128 :

ð7Þ

The contact penetration depth, hc, changes according
to the predominant deformation mode. Frequently, two
methods are used, Oliver and Pharr for sink-in and
Loubet et al.22,23 for pile-up,

hc sink�in ¼ hmax � 0:75
Pmax

S
; ð8Þ

hc pile�up ¼ 1:2 hmax � Pmax

S

� �
: ð9Þ

III. A NEW APPROACH OF THE OLIVER AND
PHARR MODEL TO APPROXIMATE THE
UNLOADING CURVE

The Oliver and Pharr model is rewritten as a dimen-
sionless relation [Eq. (10)] to get comparable parameters
for various tests and loads. Otherwise, the parameter B9
of Eq. (2) changes its units (mN/nmm) and is not
comparable between tests if the power law coefficient,
m, takes different values,

P

Pmax

¼ B� h

hmax

� hf
hmax

� �m

; ð10Þ

where B is given by the following relationship:

B ¼ B0 � hmax
m

Pmax

: ð11Þ

Consequently, the stiffness corresponding to the Oliver
and Pharr model is described by the following relation:

SO&P ¼ dP

dh
¼ m� B� Pmax

hmax

� h

hmax

� hf
hmax

� �m�1

:

ð12Þ
The proposed method is intended to simplify the fitting

by the least squares procedure to compute easily the
parameters that describe the unloading curve and to obtain
more robust results. The new approach, called the inverted
methodology, is described by Eq. (13), where the dis-
placement is estimated instead of the load. This is
expressed by the following dimensionless relation:

h

hmax

¼ hf
hmax

þ G� P

Pmax

� �n

; ð13Þ

where G, n, and hf are fitting parameters. These param-
eters can be arranged to get the equivalent ones of the
Oliver and Pharr model, applying the next relationships:

m ¼ 1
n
; B ¼ 1

G1=n
: ð14Þ

The contact stiffness calculated by this method is
obtained by the following relation:

Sinv ¼ dP

dh
¼ 1

n� G� hmax

Pmax
� P

Pmax

� �n�1 : ð15Þ

IV. LEAST SQUARES METHOD TO FIT THE
UNLOADING CURVE

The method most commonly used to fit an experimental
data is the least squares regression [Eqs. (16) and (17)],
due to the difficulties of solving equations with other
methods, especially for complicated fitting functions.24

The principle of this method consists in minimizing the
squares of the offsets between the data and the model. The
squares are used instead of the absolute offset values
because they can be treated as a continuous differentiable
quantity,25

vOP
2 ¼

Xz

i¼1

bPi � Pi

� �2
; ð16Þ

vinv:
2 ¼

Xz

i¼1

bhi � hi
� �2

; ð17Þ

where bPi and bhi are the values of load and displacement,
respectively, obtained by the fitting with the Oliver
and Pharr and inverted models. These values depend
on p number of parameters (z $ p); Pi and hi are the
experimental values from each data point. This is
the general expression for the least squares fitting,
emphasizing that with the Oliver and Pharr model
we minimize the differences between loads and with
the inverted methodology the differences between
displacements.

The functions implemented to fit the unloading curve
for both models are power law functions that can be
linearized by applying logarithm at both sides of the
equations,24,26 to fit the data by a linear least squares
fitting. However, this linearization commonly disrupts
the implicit assumption of normal distributed errors.24

Due to this reason, we suggest the use of a nonlinear least
squares fitting which allows to compute the coefficients
of the predicted model by means of an iterative process
until convergence is achieved; namely, the process
ends when the difference between reduced chi-square
values of two successive iterations is less than a fixed
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tolerance value.24,27 The convergence principally
depends on the type of fit (Newton, Gauss–Newton,
Levenberg–Marquardt, etc.), the initial parameters, and
the selected model.28,29

The metrology loop in a measuring machine is defined
for the force and displacement. If the force sensor works
properly, Newton’s third law of action–reaction guar-
antees that the force uncertainties are of the order of
magnitude of the sensor uncertainties. On the contrary,
the displacement measure is more delicate, any defect of
stiffness in the metrology loop or any defect in the
alignment of the sensor regarding the direction of the
measurement leads to notable uncertainties.30 Thereby,
also many factors such as roughness, initial depth of
penetration, contact point, thermal drift, mechanical
vibrations, fluctuations of voltage, and frame stiffness
could affect the measured displacements in instrumented
indentation tests.1,15,31–33

The Oliver and Pharr model to fit the unloading curve
assigns the load as the dependent variable and the dis-
placement as the independent variable. The least squares
regression generally introduces errors in the dependent
variable, y. Then, the error on the independent variable, x,
should be negligible. In the real data from experimenta-
tion both variables are subject to uncertainties, therefore,
the uncertainties on the dependent variable should be a
sum of measured errors and the error propagated by the
uncertainty in x.24,34 However, in the case where one of
the variables presents larger uncertainties with respect to
the other, this one should be assigned as the dependent
variable and the uncertainties over the other one can be
considered as negligible. Thus, the inverted methodology
swaps the variables of displacement and load, since the
uncertainties are more important in the displacement,
assigned as the dependent variable.

V. EXPERIMENTS

The studied materials were fused silica (FQ) and an
aluminum alloy (Al). The load–displacement curves were
taken from nanoindentation tests in MTS Nano Indenter
XP (MTS Nano Instruments, Oak Ridge, Tennessee,
USA). Several standard tests at different loads from
20 mN up to 500 mN have been performed, the loading
and unloading times were 30 s, and the holding time at
maximum load is 15 s. The calibration of the indenter
tip was done on fused silica, using the continuous
stiffness measurement (CSM) method to compute the
coefficients of the contact area according to the pro-
cedure of Oliver and Pharr;15 the parameters for these
tests were frequency, 45 Hz; harmonic displacement, 2 nm;
strain rate target, 0.05 s�1; and maximum displacement,
2000 nm.

In this paper, the contact depth hc is calculated for
the fused silica using Eq. (8), because the predominant

deformation mode is sink-in, instead for the aluminum
sample, hc was computed using Eq. (9), because pile-up
is the principal deformation mode, according to previous
studies.15,22,23 Therefore, the contact area is computed
using Eq. (7), with the coefficients obtained from the
calibration on the fused silica. Finally, the elastic
modulus is calculated with the relations described in
Eqs. (4) and (5).

An example of the load–displacement dimension-
less curves is presented in Fig. 2 to highlight the
dissimilar behavior between the two materials during
unloading. The aluminum sample presents a quasilinear
behavior.

VI. COMPARISON BETWEEN THE OLIVER AND
PHARR AND THE INVERTED MODELS

The fitting parameters of Oliver and Pharr and inverted
models were calculated for the two materials, fused silica
and aluminum, to compare these two models.

The stiffness and elastic modulus were computed
according to the relations previously described using
the parameters obtained for each model. Both models
were fitted until convergence. The results are presented in
Table I, only three loads are represented for convenience
to highlight the similitudes between the two methods.
Nevertheless, five different loads were used to accomplish
the analysis, the tendency related to the fit parameters and
the elastic moduli were comparable to the results in
Table I. Similar results were obtained in a steel sample.

Table I shows that both models lead to a very similar
estimation of the stiffness and consequently of the elastic
modulus, which is conditioned to the convergence of the
fitting of the unloading curves; a more detailed descrip-
tion of this subject is done in the next section. Besides,

FIG. 2. Load–displacement dimensionless curves for the fused silica
and aluminum samples.
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the two models represent excellently the experimental
data since the coefficients of correlation, R2, between the
experimental values and the predicted values are very
close to one.25

In general, the inverted approach leads to approximate
results of the Oliver and Pharr solution, validating the
applicability of this methodology, at least for nano-
indentation tests. Therefore, the question is what are the
advantages of the inverted approach? The following
section gives some elements to answer this question.

VII. FITTING THE UNLOADING CURVES WITH
INVERTED AND OLIVER AND PHARR MODELS BY
THE LEAST SQUARES METHOD

Most of the instruments compute the stiffness derived
from the unloading curve by an internal algorithm that
usually approaches the curve to the Oliver and Pharr
model. However, sometimes this algorithm can fail,
consequently, neither the value of the stiffness nor
the elastic modulus is correct. The algorithm can be
programmed to a certain number of iterations; there-
fore, a local minimum can be found instead of a global
minimum, obtaining an incorrect result. The evaluation
of the results must be done cautiously, if some values
of the elastic modulus computed by the software of the
instrument are out of the range of coherent values
according to the material, then the fitting parameters
and the stiffness should be recalculated.

To exhibit the convenience of using the inverted
approach to fit the unloading curve as a modified approach
of the Oliver and Pharr model, the following assumptions
in the data were done that all the measurements have the
same standard deviation and that the errors are normally
distributed and independent.

Nonlinear least squares fitting needs starting values and
step sizes. The rate of the convergence of the approx-
imation method can depend on these parameters and the
selected method. An improper selection of the starting
point may lead to the solution of a local minimum rather
than an absolute one, also several local minimums can
exist that render it difficult for the correct selection of
the results. In this regard, the Oliver and Pharr model can
lead to some problems to achieve convergence if the
starting values are not correctly selected, obtaining a local
minimum or any solution.14 It is worth mentioning that
these issues are mainly encountered in metallic samples
that present high plastic deformation, rather than in
materials with great elastic recovering upon unloading,
like fused silica.

As an example of the analysis, the tests of aluminum
and fused silica performed at 245 mN load were selected.
The algorithm was built in the Mathematica� language
to compute the fitting parameters of the unloading curve
with both models.

The parameters were computed applying the two
models for the fused silica sample. Several methods for
the nonlinear fitting were tried: Newton, quasi-Newton,
Levenberg–Marquardt, and gradient. The initial values
were not introduced in the algorithm, using the values
that take Mathematica by default which is one for all the
parameters. The Levenberg–Marquardt method leads to
convergence with less iterations than the other methods.
The Oliver and Pharr model do not achieve convergence
with these setup values, the value of hf/hmax should be in
the same order of magnitude to achieve the convergence
(Table II). For the inverted approach, the convergence is
reached with five iterations, with the setup initial values.
The value of tolerance to stop the algorithm is 0.002, as
a default value in Mathematica�.

In the case of the aluminum sample, the same settings
established for the algorithm to fit the curve of the fused
silica were applied. An equivalent behavior was obtained,
i.e., without assigning initial values in the correct orderTABLE I. Fitting parameters obtained by the Oliver and Pharr and

inverted models using the dimensionless load–displacement curves.

Material Fused silica Aluminum

Load (mN) 98 245 490 98 245 491
hmax (nm) 910 1449 2049 1826 2941 4075
hf (nm) 446 724 1032 1678 2715 3757
hf/hmax 0.49 0.50 0.50 0.92 0.92 0.92
G 0.51 0.50 0.50 0.08 0.08 0.08
n 0.81 0.81 0.80 0.74 0.73 0.73
B 2.29 2.35 2.39 30.17 33.15 32.98
m 1.24 1.24 1.25 1.36 1.36 1.37
R2 0.99995 0.99997 0.99993 0.99996 0.99999 0.99997
Sinv. (mN/nm) 0.26 0.42 0.60 0.90 1.49 2.12
Einv. (GPa) 72.8 72.6 73.4 70.7 72.5 75.0
SO&P (mN/nm) 0.26 0.42 0.60 0.90 1.48 2.12
EO&P (GPa) 72.8 72.5 73.3 70.7 72.3 74.8

R2, coefficient of correlation. O&P: Oliver and Pharr model and inv.:
inverted model.

TABLE II. Fitting results according to the initial values of parameters
for the unloading curve of fused silica sample at 250 mN.

Model Parameters
Initial
values

Number of
iterations

Fitting
parameters

Standard
errors

Inverted
G 1.00

5
0.50 3.04 � 10�4

hf/hmax 1.00 0.50 2.77 � 10�4

n 1.00 0.81 8.31 � 10�4

O&P
B 1.00

300
(nc) (nc)

hf/hmax 1.00 (nc) (nc)
m 1.00 (nc) (nc)

O&P
B 1.00

6
2.35 6.52 � 10�4

hf/hmax 0.40 0.50 3.18 � 10�4

m 1.00 1.24 1.29 � 10�3

nc: without convergence.
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of magnitude for the Oliver and Pharr model, it is not
possible to achieve the convergence (Table III). If the
initial values are close to the solution values, the global
minimum is easily found; nevertheless, if those are far
from the solution, the number of iterations should be
increased and in some cases, the convergence is not
achieved. The proposed methodology with the default
setup values reaches the convergence with 5 iterations.
Also, different sets of initials values lead to the same
solution. As in the fused silica sample, the best method
to perform the least squares procedure is Levenberg–
Marquardt for both models.

Tables II and III summarize the fitting procedure of
the unloading curves for both samples at 250 mN using
the Levenberg–Marquardt method with a tolerance of
0.002 using Mathematica�. The fitting procedures were
verified with Excel and Igor Pro finding the same trend
than with Mathematica�.

The values for the parameters G and n presented in
Tables II and III were recalculated using Eq. (14) to find
the equivalent parameters of the Oliver and Pharr model,
obtaining B 5 2.35 and m 5 1.27 for the fused silica
sample, and B 5 33.31 and m 5 1.37 for the aluminum
sample.

The results presented for the two materials stand out
that the convergence is easily reached when the inverted
approach is used.

To present some mathematical basis for the previous
results, we evocate the conditioning concepts in the
numerical analysis. Regarding a function f(x), a well-
conditioned problem implies that the small perturbations
of x lead to only small changes in f(x). On the contrary,
in an ill-conditioned problem a small perturbation of x
leads to a large change in f(x), which means that small
relative errors in the inputs would lead to high errors in
the outputs, opposite to a well-conditioned problem.
To quantify the conditioning of a problem, the relative

condition number (k) can be computed according Eq. (18).
A lower number indicates a better conditioned problem,35–37

k ¼ xk k JðxÞk k
f ðxÞk k ; ð18Þ

where kJ(x)k is the norm of the Jacobian matrix.
The condition numbers for the Oliver and Pharr and

inverted models were calculated using the experimental
dimensionless curves at 250 mN for both materials
(Table IV). These results are related to the parameters
of each model.

Table IV confirms the results regarding the convergence
of the models presented in Tables II and III, indicating that
using the inverted approach leads to a better conditioned
problem, i.e., small variations in the load data lead to small
variations in the displacement data, due to a smaller slope.
These results also demonstrate that for metallic samples
with a large plastic deformation, as aluminum, the inverted
methodology is definitively an improved approach. It is
worth mentioning that the relative condition number is
only an evaluation of the superior limit of the relative
error. Therefore, we evaluate the results in the next section
through Monte Carlo (MC) simulations.

A. Testing the robustness of the inverted and
Oliver and Pharr models

To study the robustness of both models, we used
the MC method defined by JCGM 101:200838 as “the
method used to determine the probability distribution for
an output quantity from the probability distributions
assigned to the input quantities on which the output
quantity depends”. To apply this methodology, the
constants of the Oliver and Pharr model computed from
the load–displacement dimensionless curves found at
245 mN (Table I) were used to obtain the theoretical
unloading curves to being perturbed by a random
Gaussian noise. The resulting unloading curves from
MC simulations were fitted by the least squares method,
collecting 10,000 sets of fitting parameters. The schematic
representation of MC simulation is presented in Fig. 3.
The initial values to compute the fitting were set up to
the approximated values of the solution of the curves
without perturbation. The fitting was accomplished
using the 80% of the unloading curve according to the
standard ISO 14577.39

TABLE III. Fitting results according to the initial values of parameters
for the unloading curve of the aluminum sample at 250 mN.

Model Parameters
Initial
values

Number of
iterations

Fitting
parameters Standard errors

Inverted
G 1.00

5
0.08 1.19 � 10�4

hf/hmax 1.00 0.92 1.29 � 10�4

n 1.00 0.73 1.98 � 10�3

O&P
B 1.00

300
(nc) (nc)

hf/hmax 1.00 (nc) (nc)
m 1.00 (nc) (nc)

O&P
B 20.00

300
29.28 26.56 (nc)

hf/hmax 0.85 0.99 2.91 � 10�3 (nc)
m 1.20 0.86 1.54 � 10�1 (nc)

O&P
B 20.00

6
33.04 2.64 � 10�1

hf/hmax 0.90 0.92 1.45 � 10�4

m 1.20 1.36 4.02 � 10�3

nc: without convergence.

TABLE IV. Condition number [Eq. (18)] of Oliver and Pharr and
inverted models for fused silica and aluminum.

Model Fused silica Aluminum

O&P 27 207
Inverted 10 9
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The random Gaussian noise for the load data is
centered at zero with a standard deviation of 0.001 mN.
For the displacement, the Gaussian noise is also centered
at zero, but the standard deviations (stdv) were fixed at
2.5 nm (;0.2% hmax) and 5 nm (;0.35% hmax) for the
fused silica sample, and 2.5 nm (;0.1% hmax), 5 nm
(;0.2% hmax) and 10 nm (;0.35% hmax) for the
aluminum sample. The purpose is to reproduce the data
with high dispersion between the different tests, to evaluate
the robustness of the Oliver and Pharr and inverted models.

This procedure allows to corroborate the existence of
correlations between the parameters of each model,
presented in the Fig. 4, showing that the fit constants
are highly correlated, as often reported for the power–law
correlations.40,41

Figure 4 clearly shows that increasing the perturba-
tion of the indentation depth leads to a broader disper-
sion of parameters, which is higher for the aluminum
sample.

When the algorithm fails to convergence, another set
of parameters can be identified in the plots of hf/hmax

versus B and m versus B in the aluminum sample given
by the Oliver and Pharr model. Nevertheless, the values
that are outside of the white squares, under the striped
areas, also indicate that the fit performed with both
models in the aluminum sample did not achieve the right
minimum; the regions were delimited using the bounds of
the power law exponent, m, 2 $ m $ 1, considering that
the values out of this range do not have a physical
meaning.20 It is consistent that both models sometimes
did not lead to convergence because the data are highly
perturbed and the procedure of least squares can be easily
stacked in a local minimum.

The correlation of fit parameters for the fused silica
sample exhibits that both models lead to almost identical
results, the region of valuable solutions is just, logically,
amplified when increasing the standard deviation of the
Gaussian noise on the displacement data. On the contrary,
the results for the aluminum samples reveal that the two
models do not follow the same trend; this is most notable
when the standard deviation is increased. Subsequently,
the main arising questions are the following: How these
dissimilarities affect the estimation of the stiffness and

elastic modulus? Which model would lead to a better
approximation of the initial solution?

To answer to these questions, we considered the histo-
grams of the elastic modulus of both materials, dismissing
the obtained values out of the correct order of magnitude
(Figs. 5 and 6).

The unloading curves for the fused silica sample
perturbed with a Gaussian noise with mean 0 and 5 nm
standard deviation are perfectly overlapped, indicating
that the models of Oliver and Pharr and inverted behave
similarly. A smaller noise added to the displacement data
results in a similar behavior. Consequently, the estimated
elastic modulus computed from the unloading curves
using both models leads to similar values, as confirmed
by the histograms in Fig. 5.

The histograms representing the elastic modulus of
fused silica sample (Fig. 5) corroborate that both models
lead to the same results, as observed for the fitting
parameters represented in Fig. 4. The average values
obtained by the two models are the same as the reference
value, 72.5 GPa, and they are well approximated to a
normal distribution, i.e., the kurtosis and skewness are
almost zero. The introduced noise to the data leads to
a range of possible values for the elastic modulus of
72.5 6 1.7 with 99.73% of probability for the highest
noise (5 nm).

The unloading curves of the aluminum sample are
similar for both models for the smaller noise of 2.5 nm.
However, increasing the standard deviation to 5 and
10 nm causes some dissimilarities between both models,
but they are not evident through the illustration of the
curves. Nevertheless, the histograms of the elastic modulus
obtained by MC simulations (Fig. 6) allow to differentiate
between the inverted and the Oliver and Pharr models.
There are represented for the Gaussian noise with 5 and
10 nm standard deviation.

The histograms plotted in Fig. 6 confirm the existence
of a gap between the results obtained by the two models
for the aluminum sample, similarly, to the behavior
observed for the fitting parameters in Fig. 4. The mean
values obtained by the inverted approach are equal to the
reference value, 72.3 GPa. Instead, the average elastic
modulus decreases when it is estimated by the Oliver and

FIG. 3. Schematic representation of MC simulation, where P and h are the load and displacement of the experimental data at which is added
a Gaussian noise centered at zero (average) and standard deviation different to zero (r).
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Pharr model. Likewise, the data obtained by the inverted
approach are better approximated to a normal distribution
due to the values of kurtosis and skewness are lower
than those for the Oliver and Pharr model as presented
in the histograms. The values of elastic modulus are
summarized in Table V, regarding the different Gaussian
noises added to the displacement data.

Results in Table V confirmed the previous statements,
i.e., the modulus decreases with respect to the reference
value when the Oliver and Pharr model is used to compute
it, while the standard deviation of the Gaussian noise
added to the displacement data increases.

One of the differences in the estimation of the modulus
between the two models is related to the computation of
the stiffness that includes the residual depth in the Oliver
and Pharr model [Eq. (12)], however, it is not considered
in the inverted approach [Eq. (15)]. The stiffness depends
on the fitting parameters n, m, G, B, and hf/hmax, which
exhibit differences between them. Generally, the parame-
ters of the inverted approach (n, G, and hf/hmax) are closer
to a normal distribution in comparison with the parameters
of the Oliver and Pharr model (m, B, and hf/hmax). These
dissimilarities lead to an underestimation of the stiffness
when it is computed by the Oliver and Pharr model.

FIG. 4. Correlation of fitting parameters obtained by the inverted and Oliver and Pharr models. The values are collected from 10,000 load–
displacement curves obtained from MC simulation.
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The corresponding histograms for the contact stiffness
for the aluminum sample are presented in Fig. 7.

Figure 7 shows the diminution of the stiffness com-
puted from the Oliver and Pharr model while the standard

deviation of the Gaussian noise increases; this variation
of stiffness is directly related to the variation of the elastic
modulus (Table V). On the contrary, the stiffness cal-
culated by the inverted approach is centered almost at the
same reference value for all the standard deviations, but
the normality of the histograms is reduced when the noise
increases.

Clearly, the dispersion of the estimated elastic modulus
is higher for the aluminum sample than for the fused
silica sample, even if the Gaussian noise added to the
displacement data is equivalent regarding hmax. However,
Fig. 2 shows that the unloading curves for the two materials
are dissimilar, the slope is higher for the aluminum sample
and quasivertical. The gap between the residual depth and
the maximum depth that is related to the elastic recovery is
725 nm for the fused silica sample and 226 nm for the
aluminum sample. Consequently, an equivalent perturba-
tion of the displacement data would impact more the data
of the unloading curve of the aluminum sample because it
considers a smaller displacement difference for the fitting,
leading to a higher dispersion on the elastic modulus.

According to the previous results, the robustness of the
inverted approach to compute the elastic modulus is
improved compared to the Oliver and Pharr model,
especially for the metallic samples with higher stiffness.

FIG. 5. Histograms of the elastic modulus computed from the curves
obtained by MC simulation for the fused silica. stdv represents the
standard deviation of the Gaussian noise added to the displacement
data. The unloading curves were fitted by the Oliver and Pharr and
inverted models.

FIG. 6. Histograms of the elastic modulus computed from the curves obtained by MC simulations for the aluminum using the Oliver and Pharr and
inverted models. stdv represents the standard deviation of the Gaussian noise added to the displacement data. The dotted lines represent the average
elastic modulus of each data (AVGO&P, AVGinv.). For the inverted approach AVGinv., the value matches with the reference modulus (Ref.)
computed without perturbation of the data.

TABLE V. Elastic modulus obtained by the Oliver and Pharr and inverted models, applying MC simulations with different Gaussian noises added
to the displacement data of the aluminum sample.

Parameters
Inv. O&P Inv. O&P Inv. O&P

stdv 5 2.5 nm stdv 5 2.5 nm stdv 5 5 nm stdv 5 5 nm stdv 5 10 nm stdv 5 10 nm

E (GPa) 72.4 71.9 72.4 70.5 72.6 66.2
stdv (GPa) 1.3 1.4 2.6 2.6 5.3 4.1
Probability 95.45% 72.4 6 2.7 71.9 6 2.8 72.4 6 5.3 70.5 6 5.3 72.6 6 10.6 66.2 6 8.2
Kurtosis �0.003 0.111 0.031 0.218 0.167 0.585
Skewness 0.105 0.158 0.132 0.287 0.285 0.547
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For materials with a high elastic recovery, like the fused
silica, both models lead to similar results. Nevertheless, if
the standard deviation of the Gaussian noise is increased,
the fused silica is going to show a similar behavior as the
aluminum sample. These results indicate that the desig-
nation of displacement as the dependent variable in the
model to fit the unloading curve is going to enhance the
robustness of the model.

VIII. CONCLUSIONS

The new approach proposed in this paper to fit the
unloading curve approximates the experimental data very
well and the results are comparable with the Oliver and
Pharr model.

The inverted methodology is an approach of the Oliver
and Pharr model that proposes the displacement as the
dependent variable because this value is more sensitive to
large uncertainties than the load, according to one principle
of the least squares regression where uncertainties are
attributed to the dependent variable.

Generally, the inverted approach facilitates the con-
vergence by a least squares fitting and leads to a better
conditioned problem, mainly for metallic samples. If the
experimental data are highly perturbed, particularly the
indentation depths, the fitting procedure could give
a wrong estimation of parameters, finding an incorrect
minimum. In this regard, the Oliver and Pharr model is
more sensitive. Consequently, by means of MC simulations
introducing a random Gaussian noise to the displacement
data, we found that the inverted methodology improves
the robustness, thus leading to a more accurate deter-
mination of the stiffness and the elastic modulus.
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