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Résumé 

Dans ce papier, une technique de modélisation multi-échelle (EF2) basée sur le principe d’homogénéisation périodique a 

été développée pour décrire le comportement des structures composites 3D avec un comportement élastoviscoplastique 

des endommageable. L’approche proposée permet de simuler le comportement macroscopique non linéaire d’un 

composite à microstructure périodique à partir d’un calcul EF sur sa cellule unitaire, elle-même alimentée par les lois de 

comportement de chacun de ses constituants. La méthode introduit ainsi le concept de méta modèle. Le principal 

avantage de cette méthode est de s’affranchir totalement des limitations sur les lois de comportement locales, ainsi que 

les lois constitutives à l’échelle macroscopique ne sont pas nécessaire  La mise en œuvre numérique de cette stratégie a 

été réalisée dans ABAQUS Implicit. Enfin l’approche a été validée sur macro-structure 3D sur laquelle, une cellule

unitaire est affectée à chaque point d’intégration. 

Abstract 

In this paper, a two-level Finite Element method (FE2), based on periodic homogenization, has been introduced to 

describe the behavior of 3D composite structures with elastoviscoplastic behavior and ductile damage. In the present 

approach, the unknown constitutive relationship at the macroscale is obtained by solving a local finite element problem 

at the microscale (unit cell). The main advantage of the proposed strategy is that the FE2 method does not require an 

analytical form for the constitutive law at the macroscale. It can integrate any kind of microstructure with any type of 

non-linear behavior of the reinforcement (fibers and/or particles) embedded in the matrix. The numerical 

implementation of this model has been achieved with parallel computation technique in ABAQUS Implicit, where a 

python script and user subroutines UMAT have been developed for this goal. Finally numerical results are presented for 

a 3D composite structure. 

Mots Clés : calcul multi-échelle (EF2), homogénéisation périodique, matériaux composite, comportement 

élastoviscoplastique, endommagement.  

Keywords: multiscale Finite Element computation (FE2), periodic homogenization, Composite materials, 

elastoviscoplastic behavior, damage. 



1. Introduction

Nowadays, composite materials are considered to be a good technological solution for automobile 

and aeronautic industries, because of their lightness and their structural durability. For this reason, 

the identification of the mechanical properties of these materials triggered intense researches during 

the past decades. In order to investigate and describe the behavior of the composite materials and 

structures, advanced modeling and simulation methods are necessary. Several numerical approaches 

have been proposed for modeling the nonlinear behavior of composite structures including the 

LATIN method [1-2], the sequential multi-scale method [3] and the multi scale finite element 

method (FE2 method) introduced by Feyel [5-6-7]. 

In this work, a two-level finite element method (FE2), based on the concept of periodic 

homogenization is proposed. The method predicts the 3D nonlinear macroscopic behavior for a 

composite with periodic microstructure by considering that each macroscopic integration point has 

its own unit cell, which includes the material and geometrical characteristics of the constituents in 

the microstructure. To this end, a FE2 analysis process has been developed using an implicit 

resolution scheme, with the use of a Newton Raphson algorithm to solve the nonlinear system of

equations at the macroscopic and the microscopic scales. 

The main advantage of this methodology is that it can account for any type of nonlinear behavior, as 

well as any form of periodic microstructure. This idea was originally introduced by Renard and 

Marmonier in 1987 [4], and various authors have implemented the original approach or proposed 

extensions [8-5-6-7-9-10-11]. The computational scheme of the method is in brief the following: at 

each macroscopic strain increment, the macroscopic tangent modulus and the macroscopic stress 

are computed at each macroscopic integration point by solving iteratively a FE problem at the 

microscopic level. In this paper, the method is implemented in a 3D structure, with a 3D unit cell 

and accounts for viscoplastic and damage mechanisms. 

The layout of this paper is as follows: in section 2, the theoretical formulation of the microscopic 

and the macroscopic problems is described as well as the principle of scale transition between the 

local and the global fields. In section 3, details of the numerical implementation of FE2 method is 

given for a 3D nonlinear problem. In section 4, the approach is validated on a real 3D composite 

structure exhibiting heterogeneous strain fields, in which the microstructure consists of an

elastoviscoplastic polymer matrix with ductile damage, reinforced by short glass fibers. 

2. Theoretical formulation of micro-macro level

The objective of the periodic homogenization theory is to define a fictitious homogeneous medium 

having similar behavior with the average response of the periodic unit cell that represents the 

microstructure. The framework presented in this section follows the works of [12-13] where more 

details can be found.  

A periodic medium is defined by a repeated unit cell that is translated along three vectors. It is 

important to point out that the concept of periodic homogenization works fine as long as a 

separation of scales is possible. This means that the dimensions of the unit cell, defining the 

microscopic level, must be much smaller than the macroscopic dimensions of the medium. 

According to the average stress and strain theorems, it can be shown that the stress and the strain 

averages within a unit cell are equal to the stress and the strain applied at its boundaries, which are 

considered as the macroscopic stress and strain respectively. The relationship between the two

scales is given by the following equations: 
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where σ, ε, 𝜎 and 𝜀 ̅ denote the microscopic and the macroscopic stress and strain tensors 

respectively, V is the volume of the unit cell. x and u are the position and the displacement vectors 

respectively, n is the outgoing normal of the unit cell boundary 𝜕𝑉. 〈•〉 is the mean operator and ⊗ 

the dyadic product. 

2.1 Microscopic problem 

The assumption of periodicity implies that the displacement vector u of any material point located 

in x can be written under the form of an affine part and periodic fluctuation part 𝑢′:

𝑢(𝑥) = 𝜀.̅ 𝑥 + 𝑢′(𝑥)                                                                    (Eq. 2.3)

The fluctuation part of the displacement 𝑢′ is periodic and it takes the same value on opposite sides

of the unit cell. The strain average produced by 𝑢′ is null and the average strain in the unit cell is

given by: 

〈𝜀(𝑢)〉 = 𝜀̅  + 〈𝜀(𝑢′)〉 =  𝜀 ̅                                                        (Eq. 2.4)

The stress field is also periodic and satisfies the conditions of equilibrium within the unit cell. The 

local problem is formulated as follow: 

{

𝜎(𝑥) = 𝐹 (𝑥, 𝜀 ̅  +  𝜀(𝑢′(𝑥))),  ∀𝑥 ∈ 𝑉,

𝑑𝑖𝑣(𝜎(𝑥)) = 0,  ∀𝑥 ∈ 𝑉,

𝑢′(𝑥+) = 𝑢
′(𝑥−),    𝜎(𝑥+). 𝑛 = −𝜎(𝑥−). 𝑛,    ∀𝑥 ∈ 𝜕𝑉

      (Eq. 2.5) 

where 𝑥+ and 𝑥− are the coordinates of each pair of opposite points of the unit cell boundary, div(•)

denotes the divergence operator and F(•) is an operator that defines the relationship between local 

stress and strain (possibly nonlinear). In linear elasticity the microscopic stress/strain relationship is 

given by: 

𝜎(𝑥) = 𝐶(𝑥) ∶  (𝜀 ̅  +  𝜀(𝑢′(𝑥))) , ∀𝑥 ∈ 𝑉,      (Eq. 2.6) 

where C is the fourth order stiffness tensor and : denotes the twice contracted product. 

2.2 Macroscopic problem 

It is assumed that the material is heterogeneous and characterized by a periodic microstructure. The 

macroscopic stress can be calculated by averaging the local stress using the (Eq. 2.1). The 

equilibrium at the macroscopic level in the absence of body forces is written as follows: 

𝑑𝑖𝑣( 𝜎(𝑥̅) ) = 0         (Eq. 2.7) 

where 𝜎(𝑥̅) is the Cauchy stress tensor associated with the point 𝑥̅ of the macrostructure. The 

macroscopic stress/strain linear relationship is given in Voigt notation by: 
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where ℂ̅ is the macroscopic stiffness tensor that can be recovered by calculating the macroscopic 

stress resulting from the six elementary strain states given in (Eq. 2.9) also in Voigt notation 

{

 𝜀̅1 = (𝑘  0  0  0  0  0 )
𝑇

 𝜀̅2 = (0  𝑘  0  0  0  0 )
𝑇

 𝜀̅3 = (0  0  𝑘  0  0  0 )
𝑇

 𝜀̅4 = (0  0  0  𝑘  0  0 )
𝑇

 𝜀̅5 = (0  0  0  0  𝑘  0 )
𝑇

 𝜀̅6 = (0  0  0  0  0  𝑘 )
𝑇

(Eq. 2.9) 

with k = 1. Then, the 𝑖𝑗 component of the stiffness tensor is given by the 𝑖𝑡ℎ component of the stress

vector calculated with the 𝑗𝑡ℎ elementary strain state, divided by the 𝑗𝑡ℎ component of the strain

vector of the 𝑗𝑡ℎ elementary strain state that is equal to k:

𝐶𝑖̅𝑗 =
𝜎̅𝑖(𝑗)

𝑘
,  𝑖, 𝑗 = 1, 2, 3, 4, 5, 6         (Eq. 2.10) 

For non-linear materials, the macroscopic stress/strain relationship cannot be explicitly provided by 

a stiffness tensor. Nevertheless, for a given macroscopic strain, the macroscopic stress response can 

be computed using an implicit resolution scheme, where the local behavior is linearized and 

corrected at each strain increment. Then using the same principle the macroscopic behavior can also 

be linearized in order to predict the next increment. This linearization requires to write the 

microscopic and macroscopic constitutive law in the rate form as follows: 

𝜎 ̇ (𝑥) =  𝐶𝑡(𝑥) ∶   (  𝜀̇̅  +   ԑ̇ (𝑢’̇ (𝑥))),   ∀𝑥 ∈ 𝑉 (Eq. 2.11) 

𝜎̇ = 〈𝜎 ̇ (𝑥)〉 = 〈 𝐶𝑡(𝑥) ∶   (  𝜀̇̅  +   ԑ̇ (𝑢’̇ (𝑥)))〉,   ∀𝑥 ∈ 𝑉 (Eq. 2.12) 

where 𝐶𝑡 is the local tangent stiffness tensor defined as the differentiation of the stress with respect 

to the total strain. In order to connect the microscopic problem with any macroscopic problem, the 

global tangent stiffness tensor  𝐶𝑡̅ is computed by applying the six elementary strain states in the 

same way as previously described for linear elasticity. 

3. Numerical implementation in ABAQUS

The developed approach lies within the general category of multiscale models. It consists of three 

main goals according to F. Feyel [5]: 

(1) A geometrical description and a FE model for the unit cell 

(2) The local constitutive laws expressing the response of each component of the composite within

the unit cell. 



(3) Scale transition relationships that define the connection between the local and the global fields

(stress and strain).  

The scale transition is obtained by considering periodic homogenization, which is expressed using 

specific boundary conditions on the unit cell. The macroscopic fields (stress and strain) are 

introduced with the help of additional degrees of freedom (DOFs) that are connected to the unit cell 

using kinematic equations. Thus, the behavior of a 3D macroscopic structure is predicted by 

considering that the material response of each integration point is determined from the 

homogenization of a unit cell, which includes the local constitutive laws and the geometrical 

characteristics of the microstructure (Fig. 1). 

The proposed FE2 process has been developed using an implicit resolution scheme, with the use of a 

Newton-Raphson algorithm that solves the nonlinear system of equations at the macroscopic and 

the microscopic scales. At each macroscopic strain increment, the macroscopic tangent modulus 

and the macroscopic stress are computed at each macroscopic integration point by solving 

iteratively a FE problem at the microscopic level. The steps of the multi-scale computational

strategy are described below: 

The microscopic problem is rewritten in the nonlinear form given by the following equations: 

{

∆σ (𝑥) = 𝐶𝑡(𝑥) ∶ (  ∆𝜀̅ + ∆ԑ (∆𝑢’))  ∀𝑥 ∈ 𝑉

div (∆σ (𝑥)) =  0,  ∀𝑥 ∈ 𝑉

 ∆𝑢𝑖  −   ∆𝑢𝑗  =    ∆ 𝜀̅𝑖𝑗 . (𝑥𝑖 − 𝑥𝑗  )  ∀𝑥 ∈  𝜕𝑉

(Eq. 3.1) 

To start the process, the local problem is solved by applying the PBCs. The initial tangent modulus 

 𝐶𝑡̅  is computed by using the six elementary strain states written in section 2.2 (the initial tangent 

modulus is the elastic stiffness tensor). Once  𝐶𝑡̅  is computed, the analysis at the macro-level is then 

performed and the first macroscopic strain increment ∆𝜀 ̅ is given by the Meta-UMAT user 

subroutine. This increment is used in the subsequent step through the periodic boundary condition 

(PBCs) for the calculation of the microscopic response in the unit cell by using the developed user 

subroutine UMAT. By averaging the microscopic stresses, the macroscopic stress is computed. The 

updating of the macroscopic stress is performed for each integration point. 

At each time increment the macroscopic strain is obtained by a prediction provided by the 

macroscopic FE model. This macroscopic strain is then applied to the local problem (unit cell) that, 

once solved, gives the macroscopic stress. Next, the local tangent moduli are mapped on the unit 

cell and, by applying the six elementary strain states, the global tangent modulus is computed. To 

proceed to the second step, the solution dependent variable (SDVs) and the local stress are saved as 

initial conditions using (*Initial Conditions, type=) available in ABAQUS, in order to be used in the 

next iteration step. 

The global convergence of the FE2 technique is checked at the macroscopic stress. The two 

quantities previously computed (𝜎,  𝐶𝑡̅ ) are transferred to the macroscopic FE solver by using the 

Meta UMAT user subroutine. The convergence of 𝜎 is examined before proceeding to the next time 

increment. 

The two scale algorithm for the nonlinear computational homogenization in ABAQUS is presented 

in tab. 1. 



Micro Macro 
1- Initialization 

 Apply periodic boundary condition on the unit cell.

 Solve the problem microscopic with the local

nonlinear behavior

 Compute the initial macroscopic stress by averaging

σ̅ =〈 σ 〉.

 Compute the initial macroscopic tangent modulus 𝐶𝑡̅

2- Updating 

 Restart the analysis in the microscopic level from

the previous step.

 Compute the macroscopic stress σ̅.

 Compute the macroscopic tangent modulus  𝐶𝑡̅̅ ̅̅ .

 Input filed for the Meta-UMAT

 Define  𝜎̅ in the Meta-UMAT

 Define  𝐶𝑡̅̅̅̅  in the Meta-UMAT

 Resolve the macroscopic problem

 Get the macroscopic strain increment ∆ 𝜀̅𝑛+1

3- Convergence testing : 

 Introduce the σ̅ in the Meta-UMAT

 Convergence analysis.

o if OK : we proceed to the next increment : step 4

o Else, iteration Intel convergence: step 2, 3 and 4.

4- Next increment: 

 Call the python script for restart the microscopic

analysis with the new strain increment  ∆ 𝜀̅𝑛+1

 Solve the problem microscopic in the unit cell step 2,

3 and 4.

Tab. 1. The two-scale FE2 algorithm in ABAQUS Implicit in the nonlinear case 

Fig. 1. The overall behavior of the composite is implemented in the form of a "Meta-UMAT" which uses the 

microscopic problem (unit cell) at each strain / time increment. The microscopic problem is fed by the laws 

of behavior of the constituents, implemented in the form of a "Micro-UMAT". 

 𝐶𝑡̅̅̅̅ ,  𝜎̅̅̅

 ∆ 𝜀̅𝑛+1

σ̅ 



4. Numerical example

4.1 Validation with a semi analytical solution

The developed multiscale ABAQUS approach has been validated by comparing the numerical 

results with a semi analytical solution for a multilayer composite structure with elastoplastic phases 

[15]. The unit cell consists of two phases, one elastic and the other plastic (Fig. 2). 

The two approaches yield the same response, demonstrating hence the accuracy of the FE2 strategy. 

4.2 Validation with a virtual test on the unit cell 

To further validate the proposed model under complex temporal loadings, a second validation 

example is examined. In this second example, a composite, consisting of a viscoplastic-damageable 

matrix reinforced with elastic short fibers with ellipsoidal shape, is subjected to the macroscopic 

strain loading path of (Fig 3a) The solution obtained by the FE2 method on a single macroscopic 

finite element has been compared to a virtual test (the same macroscopic loading path has been 

applied on a single unit). The comparison of the results with the two methods (Fig. 3.b-c-d)

illustrate the accuracy of the developed framework. 

One 3D Macro Finite Element  Composite short fiber  

Fig 3. Comparison of FE2 strategy with the virtual testing 

(a) (b) 

(d) (c) 

Fig. 2. : Comparison of the solution FE2 with semi-analytical solution on a multilayer with elastoplastic behavior. 



4.3 Two-scale analysis on 3D composite structure 

In order to demonstrate the capability of the developed approach, the complex 3D composite 

structure of (Fig. 4a), subjected to the loading path of (Fig. 4b), is simulated. The structure is made 

of a thermoplastic aligned short fiber reinforced composite in which the matrix phase exhibits a 

coupled damageable elastoviscoplastic response. The multiscale nonlinear behavior and the effects

of such periodic microstructure on the macroscopic response of the structure are shown in Fig. 5. 

The results illustrate that the response of the composite is highly influenced by the presence of the 

matrix, exhibiting both viscoplastic response (through creep and relaxation phenomena), as well as 

stiffness reduction during unloading due to the ductile damage.  

Fig. 5. Temporal loading test on 3D composite structure with microstructure is a matrix phase exhibits a 

coupled damageable elastoviscoplastic response.  

Macro model 

Unit cell 

Fig. 4. Tensile and compression test on the Meuwissen test tube [14] with temporal loading 

(a) 

 

(b) 

 



5. Summary and Conclusion

This work presents a nonlinear 3D two-scale finite-element (FE2) framework. The framework 

allows to simulate 3D heterogeneous composite structures with any kind of nonlinear behavior at 

the microscopic level and various types of periodic microstructures. 

The developed multiscale strategy in the Finite Element Analysis (FEA) package ABAQUS 

Implicit has been validated with two independent examples: In the first example, a multilayer 

composite structure with elastoplastic phases is simulated and the results are compared with a semi 

analytical solution. In the second example, a short fiber composite with elastoviscoplastic-

damageable matrix under uniform macroscopic conditions is studied through the FE2 framework

and a virtual testing machine that solves a single unit cell. 

A periodic 3D composite structure exhibiting heterogeneous strain fields is simulated, in which the 

microstructure consists of an elastoviscoplastic polymer matrix with ductile damage, which is 

reinforced by aligned short glass fibers. The response of the structure clearly highlights creep and 

relaxation phenomena, which are characteristic for rate dependent responses. This viscous behavior 

and the stiffness reduction observed during unloading have been induced by the viscoplastic nature 

of the polymer matrix. 

Reference: 

 [1] P. Ladeveze, O. Loiseau, et D. Dureisseix. A micro-macro and parallel computational stra- tegy for 

highly heterogeneous structures. International Journal for Numerical Methods in Engineering, 52 

:121–138, 2001. 

[2] P. Ladvedeze, A. Nouy, et O. Loiseau. A multiscale computational approach for contact problems.

Computer Methods in Applied Mechanics and Engineering, 191 :4869–4891, 2002.. 

[3] J. Yvonnet, D. Gonzalez, et Q.C. He. Numerically explicit potentials for the homogenization of nonlinear 

elastic heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 

198:2723–2737, 2009. 

[4] J. Renard et M. F. Marmonier. Etude de l’initiation de l’endommagement dans la matrice d’un materiau 

composite par une methode d’homogenisation. Aerospace Science and Technology, 9:37–51, 1987. 

[5] F. Feyel « Multiscale FE2 elastoviscoplastic analysis of composite structures », Computational Materials

Science Vol. 16, pp. 344–354, 1999. 

[6] F. Feyel et J.L. Chaboche. FE2 multiscale approach for modeling the elastoviscoplastic behavior of long 

fiber SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering, 

183:309–330, 2000. 

[7] ] F. Feyel « A multilevel finite element method (FE2) to describe the response of highly non-linear 

structures using generalized continua », Computer methods in applied mechanics and engineering Vol. 

192, pp. 3233–3244, 2003. 

[8] R. Smit, W. Brekelmans, et H. Meijer. Prediction of the mechanical behavior of nonlinear heterogeneous 

systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and 

Engineering, 155:181–192, 1998. 

[9] K. Terada et N. Kikuchi. A class of general algorithms for multi-scale analysis of he- terogeneous media. 

Computer Methods in Applied Mechanics and Engineering, 190: 5427–5464, 2001. 

[10] J. Yvonnet et Q.C. He. The Reduced Model Multiscale Method (R3M) for the nonlinear 

homogenization of hyperelastic media at finite strains. Journal of Computational Physics, 223:341–

368, 2007. 



[11] A. Tchalla, S. Belouettar, A. Makradi, H. Zahrouni « An ABAQUS toolbox for multiscale finite element 

computation », Composites: Part B Vol. 52, pp. 323–333, 2013. 

[12] Michel, J.-C., Moulinec, H., and Suquet, P. (1999). Effective properties of composite materials with 

periodic microstructure: a computational approach. Computer methods in applied mechanics and 

engineering, 172:109–143. 

[13] Michel, J.-C., Moulinec, H., and Suquet, P. (2001). Composites à microstructure périodique. In 

Homogénéisation en mécanique de matériaux 1: Matériaux aléatoires élastiques et milieux 

périodiques, chapitre 3, pages 57–94. Hermes sci edition. 

[14] Meraghni, F. and Nouri, H. and Bourgeois, N. and Czarnota, C. and Lory, P. (2011) Parameters 

identification of fatigue damage model for short glass fiber reinforced polyamide (PA6-GF30) using 

digital image correlation: Procedia Engineering, pages 2110—2116, volume 10. 

[15] Chatzigeorgiou, G. Chemisky, Y. Meraghni, F. (2005) Computational micro to macro transitions for 

shape memory alloy composites using periodic homogenization. Smart Materials and Structures, 24, 

035009. 


