

Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers Institute of Technology researchers and makes it freely available over the web where possible.

> This is an author-deposited version published in: https://sam.ensam.eu Handle ID: .http://hdl.handle.net/10985/12041

To cite this version :

Damien SUBIT, Philippe VÉZIN, Baptiste SANDOZ, Sébastien LAPORTE - Will automated driving technologies obsolete today's effective restraint systems? - American Journal of Public Health - Vol. 107, n°10, p.1590-1592 - 2017

Any correspondence concerning this service should be sent to the repository Administrator : scienceouverte@ensam.eu

- 1 *Title:* Will automated driving technologies obsolete today's effective restraint systems?
- 2
- 3 Authors:
- 4 Damien Subit, Ecole Nationale Supérieure d'Arts et Métiers, Institut de Biomécanique
 5 Humaine Georges Charpak, Paris, France
- 6 Philippe Vézin, Institut Français des Sciences et Technologies des Transports, de
- 7 l'Amenagement et des Réseaux, Département Transport Santé Sécurité, Bron, France
- 8 Sébastien Laporte, Ecole Nationale Supérieure d'Arts et Métiers, Institut de Biomécanique
 9 Humaine Georges Charpak, Paris, France
- Baptiste Sandoz, Ecole Nationale Supérieure d'Arts et Métiers, Institut de Biomécanique
- 11 Humaine Georges Charpak, Paris, France
- 12
- Abstract: Autonomous driving will trigger a shift in the epidemiology of road traffic injuries that is raising concerns for public health and requires the design of new strategies for the protection of vehicle occupants. Indeed, today's effective protection systems were developed for crashes caused primarily by human errors, and they may be ineffective or even injurious in the new typology of crashes that will arise with the increasing level of automation in vehicles. There is a need to continuously analyze and forecast vehicles behavior on roads as automated
- 19 driving technologies spread and get updated, to design effective countermeasures and address
- 20 ethical and public health challenges.
- 21
- 22 *Keywords*: road traffic injuries, automated driving technology, epidemiology, occupant
- 23 protection
- 24
- 25
- 26 Road traffic injuries (RTI) in industrialized countries are a topic of great concern, as these
- 27 potentially debilitating or fatal injuries are seen as preventable. The reduction of the severity
- 28 and frequency of RTI triggers much debate about which technologies and policies could lead
- 29 to safer driving behaviors¹. Automated driving technologies (ADT) that assist vehicle drivers
- 30 or take over the driving tasks are expected to implement better decisions than humans do and
- make the road safer. To attain this goal, new models for exposure and risk assessment for RTIare needed.
- 33

34 EXPECTATIONS FROM AUTOMATED DRIVING TECHNOLOGIES

35 The capability of ADT is an unprecedented change in the automotive transportation landscape

36 that triggers two concurrent expectations:

37 - the 'Safety Expectation': Crashes caused by human errors will be prevented. There is

38 potential for a colossal gain in the reduction of RTI as human error is the primary cause in

39 94 % of crashes today (bit.ly/29kcWKA),

- the '*Better Traffic Expectation*': Algorithms will ensure that vehicles obey traffic rules, and
adjust their behavior to increase road throughput and decrease travel time. They will trigger a
dramatic change in traffic patterns that will lead to less congestion, increase comfort for road
users, and allow vehicle occupants to better exploit the time spent in a car.

44 Both expectations are formulated by projecting the benefits of ADT in today's environment

45 and neglecting the structural changes to traffic that ADT will bring. For instance, the *Safety*

46 *Expectation* is based upon the assumption that vehicles equipped with ADT will drive like

47 humans do, minus the human driving errors, in the same road and traffic environment, which

48 is fundamentally in conflict with the *Better Traffic Expectation*. Indeed, today, both

49 expectations cannot be met simultaneously, as the safety strategies that are currently available

50 to protect road users are effective for today's human driven traffic conditions, not for an

51 environment where the *Better Traffic Expectation* is met. This incompatibility will probably

52 hold true for a significant period of time, while the level of automation increases in the

53 vehicle fleet. The underlying reason is that safety systems in today's vehicles are designed

54 based on the retrospective analysis of accident data, *i.e.* from accidents prominently caused by

55 human errors, in vehicles controlled by humans. Changes in vehicle driving technologies will

56 affect vehicle flow and traffic patterns³, and lead to a new epidemiology of RTI: indeed, ADT

57 are expected to greatly change road traffic accident scenarios⁴, by means of (1) a reduction in

the vehicle energy prior to a crash thanks to better braking ability, (2) the capability to prevent

59 accidents by the execution of avoidance maneuvers, and (3) a better knowledge of the vehicle

60 surroundings and road infrastructure. Therefore, there is a risk that the safety systems

61 designed for human driven vehicles may be ineffective, or even injurious, in vehicle equipped

62 with ADT as the automation of driving tasks increases. In short, tomorrow's road safety

63 technology cannot be designed based upon yesterday's accident scenarios.

64

65 HOW ARE COUNTERMEASURES DEVELOPED FOR TODAY'S VEHICLES?

66 Countermeasures in today's vehicles are tailored to be the most effective in the typical 67 accident scenarios for which new cars have to pass regulatory thresholds for occupant safety 68 to be allowed on public roads. Along the standard accident scenarios, a standard seated 69 position for vehicle occupants is also implemented: today, it is represented by the position of 70 crash-test dummies. Crash-test dummies seat in an upright and forward-facing position, they "look" straight ahead, and have both hands on the steering wheel when they "drive" (figure 1(a)). This position is the gold standard for the design and evaluation of countermeasures for occupant protection. All the other seating positions are collectively referred to as "out-ofposition". The effect of countermeasures on out-of-position occupants is an important concern in automotive safety, as countermeasures that are effective in the standard position may be ineffective or even injurious for out-of-position occupants.

77

78 Furthermore, ADT will give occupants more freedom during their ride, and occupants may be 79 out-of-position during part of or all the duration of their trip depending on their vehicle's level 80 of automation Technologies that allow vehicles to be self-driven on highways are gradually 81 available on luxury vehicles, and the spread of ADT bringing new challenges to safety 82 researchers: as occupants will have the opportunity to change position based on their 83 occupation, the response of the restraint systems will need to be adjusted so that the occupants 84 are efficiently protected⁵. Therefore, there is a risk that existing restraint strategies will be less 85 effective in the new occupant position. Further away, prototypes and designer concepts of fully autonomous vehicles suggest that occupant seating habits will change dramatically to 86 87 allow vehicle occupants to enjoy more social seating configurations, and various activities 88 (relaxing, reading, or having a meeting, figure 1(b)). The methods currently in place to 89 evaluate the performance of occupant protection systems do not account for the change in 90 occupant seating habits.

91

92 DESIGNING ROAD TRAFFIC SAFETY WITH THE RIGHT PERFORMANCE 93 TARGETS

94 The possible inadequacy of countermeasure design targets for the actual scenarios of road 95 traffic accident is a fair concern, as they are historical precedents: for instance, epidemiology 96 studies revealed that frontal airbags that were developed to mitigate injuries in high speed 97 accidents increased the risk of injuries when deployed in low-speed accidents, in particular for 98 women⁵. The knowledge of accident causation and injury mechanisms is a prerequisite to 99 develop realistic driving algorithms and protection strategies, and properly address RTI. If the 100 Better Traffic Expectation comes true, unknown accident scenarios will arise, and the safety 101 systems proven effective in human driven vehicles may become obsolete, as accident scenarios 102 and occupant activities in the car will be different compared to today's⁶. Ultimately, 103 retrospective epidemiologic studies may be ineffective to identify accident scenarios, because 104 of its much longer characteristic timescale (several years) compared to the pace at which on105 board vehicle software can be upgraded (several times a year, http://bit.ly/2cH9Ce2). 106 Identifying meaningful scenarios for both normal driving and traffic conflicts (situations that 107 put road users at risk if the vehicle kinematics is not modified) is a prerequisite for the design 108 of ADT. The trolley problem², that is often used to illustrate the non-trivial decisions that 109 driving algorithms will have to take, has been discussed as too unrealistic and naive⁷, and is 110 therefore inadequate to model what future traffic conflicts will be. Today's challenge is to 111 develop guidelines for the design of future vehicles, while having little information on the 112 environment in which they will evolve.

113

114 THE NEED TO PREPARE FOR FUTURE ROAD TRAFFIC INJURIES

115 ADT are a vivid example of "disruptive technologies" that affect the environment so

116 profoundly that safety researchers and medical professional do not have the tool yet to

117 develop effective intervention strategies to mitigate injuries. Research is indeed needed to

118 design new simulation tools and computational traffic models to anticipate the consequences

119 of changing vehicle behavior onto the epidemiology of RTI, and fully exploit the potential of

120 ADT to protect road users. The limitation in how much today's knowledge can apply to the

121 future of transportation raises important questions about the risks associated to the

122 development of ADT in both traffic conflicts and accident situations. The assessment and

123 management of these risks through evidence-based strategies will define whether and how

124 fast-changing ADT will contribute to improving public health.

125

126

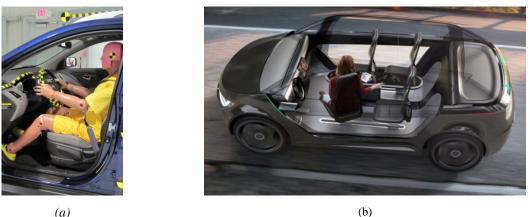
127 References

McKay MP. Traffic safety in the United States. *American Journal of Public Health*. 2004;
 94(2): 170-171. doi: 10.2105/AJPH.94.2.170-a

130 2. Fleetwood J. Public health, ethics, and autonomous vehicles. *American Journal of Public*131 *Health.* 2017; 107(4): 532-537.

132 3. Bose A, Ioannou PA. Analysis of traffic flow with mixed manual and semiautomated

133 vehicles. *IEEE Transactions on Intelligent Transportation Systems*. 2003; 4(4): 173-188,


134 doi: 10.1109/TITS.2003.821340.

4. Lie A, Tingvall C, Krafft M, Kullgren A. The effectiveness of electronic stability control
(ESC) in reducing real life crashes and injuries. *Traffic Inj. Prev.* 2005; 7(1): 38-4.

137 5. Segui-Gomez M. Driver air bag effectiveness by severity of the crash. *Am J Public Health*.

138 2000; 90(10): 1575–1581

- 139 6. Page Y, Cuny S, Hermitte T, Labrousse M. A comprehensive overview of the frequency
- 140 and the severity of injuries sustained by car occupants and subsequent implications in terms
- 141 of injury prevention. Annals of Advances in Automotive Medicine / Annual Scientific
- 142 Conference. 2012; 56: 165-174.7
- 143 7. Noah J. Goodall. From trolleys to risk: models for ethical autonomous driving. American
- 144 Journal of Public Health. 2017; 107(4): 496-496.
- 145

(a)

- 146 Figure 1: (a) Anthropomorphic test device in the standard seated posture, (b) Representation of what could be 147 the driver position in a future autonomous vehicle (by the design firm IDEO).
- 148
- 149 **Photography credits:**
- 150 Fig 1a: https://fr.wikipedia.org/wiki/Dispositif_anthropomorphe_d'essai, by Brady Holt, own
- 151 work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=11113754
- 152 Fig 1b: IDEO, automobility, http://automobility.ideo.com/ (with permission)