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a b s t r a c t 

The aim of this work is to propose a Gurson-type model for ductile porous solids exhibiting isotropic

and kinematic hardening. The derivation is based on a “sequential limit-analysis” of a hollow sphere

made of a rigid-hardenable material. The heterogeneity of hardening is accounted for by discretizing

the cell into a finite number of spherical layers in each of which the quantities characterizing harden- 

ing are considered as homogeneous. A simplified version of the model is also proposed, which permits

to extend the previous works of Leblond et al. (1995) and Lacroix et al. (2016) for isotropic hardening

to mixed isotropic/kinematic hardening. The model is finally assessed through comparison of its predic- 

tions with the results of some micromechanical finite element simulations of the same cell. First, the

numerical and theoretical overall yield loci are compared for given distributions of isotropic and kine- 

matic pre-hardening. Then the predictions of the model are investigated in evolution problems in which

both isotropic and kinematic hardening parameters vary in time. A very good agreement between model

predictions and numerical results is found in both cases.

1. Introduction

The failure of metals, whose impact on the integrity of engi- 

neering structures need not be stressed, is one of the most chal- 

lenging problems faced by the scientific and industrial communi- 

ties. Indeed its analysis and modelling are complex tasks because 

it is a multiscale problem. Various mechanisms, at the microscale 

(e.g. structures of dislocations or grain boundaries) and mesoscale 

(e.g. hard precipitates or voids), can induce damage leading ulti- 

mately to macroscopic cracks. In particular, a difficult but essen- 

tial task consists in providing predictive micromechanically-based 

models that permit to account for both monotonic and cyclic load- 

ings. 

In the case of ductile materials considered in this paper, fail- 

ure essentially takes place in three steps (see e.g. Benzerga and 

Leblond, 2010; Pineau et al., 2016; Benzerga et al., 2016 for recent 

reviews of the topic): (i) the nucleation of voids, (ii) their growth, 

change of shape and rotation, and finally (iii) their coalescence 

leading to final failure. The modelling of these mechanisms started 

with the pioneering work of Gurson (1977) , who combined homog- 
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enization and limit-analysis of a hollow sphere made of a rigid- 

ideal-plastic isotropic material to derive a model of ductile ma- 

terials incorporating void growth. This model has been extended 

in various directions to account for phenomena not included in 

its original version, notably void shape effects ( Gologanu et al., 

1993; 1994; 1997; Garajeu et al., 20 0 0; Madou and Leblond, 2012a; 

2012b; 2013; Madou et al., 2013 ), plastic anisotropy ( Benzerga and 

Besson, 2001; Monchiet et al., 2008; Keralavarma and Benzerga, 

2010; Morin et al., 2015c ) and void coalescence ( Thomason, 1985; 

Tekoglu et al., 2012; Benzerga and Leblond, 2014; Morin et al., 

2015b ). It has met, in both its original and improved forms, consid- 

erable success in the reproduction of experimental tests of failure 

of ductile materials under monotonic loading conditions. 

The failure of ductile metals under cyclic loadings is less 

well understood and mastered. Experiments ( Schmidt et al., 1991; 

Kobayashi et al., 1992 ) have shown that the strain to fracture 

is considerably lower, for a given load, if it is reached under 

cyclic conditions rather than monotonically. This reduction of duc- 

tility is commonly attributed to an effect of gradual increase of 

the mean porosity (volume fraction of voids) during each cy- 

cle termed the ratcheting of the porosity . This phenomenon was 

first evidenced in micromechanical finite element simulations per- 

formed by Gilles et al. (1992) under conditions of constant over- 
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all triaxiality (in absolute value), and later confirmed by several 

authors ( Devaux et al., 1997; Besson and Guillemer-Neel, 2003; 

Brocks and Steglich, 2003; Rabold and Kuna, 2005; Steglich et al., 

2005; Mbiakop et al., 2015; Lacroix et al., 2016 ). As explained by 

Lacroix et al. (2016) , the ratcheting of the porosity is fundamen- 

tally tied to two features of the material behaviour, namely strain 

hardening and elasticity . The effect of elasticity, although important 

in the context of the ratcheting of the porosity under cyclic load- 

ings, will not be considered in this paper, its study and modelling 

being postponed to a future paper. We shall thus focus exclusively 

on the effect of strain hardening, as a first step toward a complete 

modelling of ductile rupture under cyclic loading conditions. 

Devaux et al. (1997) , among other things, showed that 

Gurson (1977) ’s classical model does not predict the effect of 

ratcheting of the porosity under cyclic loadings, but a stabiliza- 

tion of the evolution of the porosity right from the first semi-cycle. 

The explanation of this shortcoming of Gurson (1977) ’s model lies 

in the crude modelling of strain hardening within this model, and 

more specifically in the fact that the same “average yield stress of 

the matrix” appears in both the “square” and the “cosh” terms of 

the yield function. A few theoretical works have tried to improve 

the modelling of strain hardening effects within Gurson (1977) ’s 

model: 

• For isotropic hardening , Leblond et al. (1995) proposed a heuris- 

tic extension of Gurson (1977) ’s yield function involving dis- 

tinct “average yield stresses of the matrix” in the “square” and

“cosh” terms. Their approach was based on some approximate

analytical solution to the problem of a hollow sphere made of

some rigid-hardenable material and subjected to some arbitrary

loading. Their model, which accounts for the heterogeneity of

isotropic hardening within the matrix, has notably permitted to

qualitatively reproduce the ratcheting of the porosity observed

in micromechanical finite element simulations of porous cells

subjected to cyclic loadings under conditions of constant over- 

all triaxiality (in absolute value) ( Leblond et al., 1995 ). From a

quantitative point of view, however, the comparison was not

fully satisfactory. This obviously arose from the fact that the

model was not a priori designed for cyclic loadings, since it

was based on an assumption of positively proportional strain- 

ing which is inadequate for such loadings. This hypothesis was

relaxed by Lacroix et al. (2016) , at the expense of introduc- 

tion of radial discretization of an underlying mesoscopic hollow

sphere and calculation and storage of the hardening parameters

in each of the spherical layers thus defined. This resulted in a

much improved agreement of model predictions and results of

micromechanical finite element simulations.

• For kinematic hardening , Mear and Hutchinson (1985) intro- 

duced a macroscopic backstress in Gurson (1977) ’s model. How- 

ever, this backstress was not linked to some heterogeneously

distributed microscopic counterpart in the matrix, and its evo- 

lution equation was complex: it was adjusted in such a way

that the isotropic (Gurson) and kinematic models yielded iden- 

tical predictions for proportional loadings. The aim of this kine- 

matic model was not to deal with cyclic loadings but rather to

evidence the impact of the local curvature of the yield locus

upon macroscopic strain localization. This aspect was examined

in detail by Becker and Needleman (1986) .

The importance of the effect of strain hardening upon duc- 

tile failure - and especially the ratcheting of the porosity under 

cyclic loadings - acts as a strong incentive to develop models ac- 

counting better for the heterogeneous distribution of hardening 

in the plastic matrix. In particular, the incorporation of kinematic 

hardening appears to be necessary in order to deal with cyclic 

plasticity ( Chaboche, 1991 ). The development of a Gurson-type, 

micromechanically-based model accounting for both isotropic and 

kinematic hardening, with possibly complex evolution laws for the 

parameters governing the latter type of hardening, seems of great 

interest to reproduce the failure of ductile metals under cyclic 

loadings. 

The aim of this paper is to derive such a model. It is organized 

as follows: 

• Section 2 presents the basic ingredients of the theoretical ap- 

proach and notably the “sequential limit-analysis” approach,

which extends the methods and results of classical limit- 

analysis to materials exhibiting strain hardening.

• Section 3 is devoted to the derivation of a Gurson-like “layer

model” extending that developed by Lacroix et al. (2016) , ac- 

counting for both isotropic and kinematic hardening.

• Section 4 finally compares the predictions of the theoretical

model to the results of some new micromechanical finite ele- 

ment simulations.

2. Position of the problem

In the major part of the paper, no hypothesis is made what- 

soever on the magnitude of the displacements and strains, and a 

large displacement - large strain formulation is used; d represents 

the local Eulerian strain rate and σ the local Cauchy stress tensor. 

2.1. Geometry, material, admissibility conditions of velocity fields 

In order to derive the overall constitutive law of the porous 

medium, we consider, following Gurson (1977) , a spherical “el- 

ementary cell” � containing a concentric spherical void ω. The 

porosity (void volume fraction) is defined by 

f = 

vol (ω)

vol (�) 
= 

a 3

b 3 
, (1) 

where a is the void’s radius and b the cell’s external radius. The 

spherical coordinates and associated local orthonormal basis are 

denoted r, θ , ϕ and ( e r , e θ , e ϕ). 

The material is assumed to be rigid-plastic (no elasticity) and 

exhibit a mixed, isotropic and kinematic hardening; it is thus sup- 

posed to obey the following criterion: 

φ(σ(x )) = ( σ(x ) − α(x ) ) 
2 
eq − σ̄ 2 (x ) ≤ 0 , ∀ x ∈ � − ω, (2) 

where σ̄ is the current yield stress and (σ − α) 2 eq is defined by 

(σ − α) 2 eq = 

3 

2 

(σ ′ − α) : (σ ′ − α) . (3)

In this expression, σ′ = σ − 1 
3 ( tr σ) I (where I is the second-order 

unit tensor) is the deviator of σ , and α is a traceless backstress 

tensor due to kinematic hardening. The Prandtl–Reuss flow rule as- 

sociated to the criterion via the normality property reads 

d = 

˙ λ
∂φ

∂σ
(σ) = 3 ̇

 λ(σ ′ − α) , (4) 

where ˙ λ ≥ 0 is the plastic multiplier. The evolution equations of 

the yield stress σ̄ and the backstress α characterizing kinematic 

hardening will be presented in due time. 

The spherical cell is subjected to conditions of homogeneous 

boundary strain rate: 

v (x ) = D · x , ∀ x ∈ ∂�, (5) 

where v denotes the local velocity, x the present position-vector 

and D some overall strain rate tensor. 

The velocity must verify the property of incompressibility im- 

posed by the absence of elasticity and the plastic flow rule: 

tr d (x ) = div v (x ) = 0 , ∀ x ∈ � − ω. (6) 



2.2. Principles of limit-analysis 

Limit-analysis combined with Hill–Mandel homogenization is a 

convenient framework to derive constitutive equations for porous 

ductile solids. It permits to effectively operate the scale transition 

by evidencing the effects of microstructural features at the macro- 

scopic scale. 

Classical limit-analysis is limited to rigid-ideal-plastic materi- 

als within a small displacement - small strain (linearized) frame- 

work. Under such assumptions the macroscopic yield locus can 

be determined using the classical upper-bound theorem (see e.g. 

Benzerga and Leblond, 2010 ). The macroscopic stress and strain 

rate tensors � and D being defined as the volume averages of 

their microscopic counterparts σ and d , the fundamental inequal- 

ity enunciated by the theorem, 

� : D ≤ 
(D ) , (7) 

leads to the parametric equation of the yield locus 

� = 

∂


∂D 

(D ) , (8) 

where D is arbitrary and independent of � in inequality (7) , but 

tied to it through the macroscopic constitutive law in Eq. (8) . The 

macroscopic plastic potential 
( D ) in Eqs. (7) and (8) is defined 

by: 


(D ) = inf 
v ∈K(D )

(1 − f ) 〈 π(d ) 〉 �−ω , (9) 

where the notation 〈 . 〉 �−ω stands for volume averaging over the

sound volume � − ω. In this definition the set K(D ) consists of 

those velocity fields v which are kinematically admissible with D 

and verify the property of incompressibility, and π ( d ) is the micro- 

scopic plastic potential defined for any traceless d by the formula 

π(d ) = sup 

σ∗∈C
σ∗ : d , (10) 

where C is the microscopic convex domain of reversibility. 

Sequential limit-analysis ( Yang, 1993; Leu, 2007 ) heuristically ex- 

tends the methods and results of classical limit-analysis by incor- 

porating the effects of strain hardening and geometric changes. The 

idea is, still disregarding elasticity, to consider a hardenable mate- 

rial as the sequence of different, successive rigid-ideal plastic ma- 

terials. At a given instant, a hardenable material without elastic- 

ity behaves, if the hardening and the geometry are considered as 

fixed, like a rigid-ideal plastic material with some pre-hardening 

modifying its yield criterion and flow rule. An instantaneous limit- 

load can thus be determined using the classical limit-analysis the- 

orems. In order to account for changes of the strain hardening and 

geometry, the local hardening parameters and present positions 

are then updated approximately using the trial velocity field used 

in the limit-analysis, integrated in a small time step. 

3. A Gurson-type model accounting for isotropic and kinematic

hardening 

In this section we will use sequential limit-analysis to derive 

a Gurson-type model incorporating both isotropic and kinematic 

hardening. Hardening will be introduced locally in the criterion as 

a fixed pre-hardening, and the resulting instantaneous loads pro- 

moting plastic flow of the cell will be evaluated. The hardening 

parameters in the matrix will then be considered to evolve a pos- 

teriori according to the trial velocity field adopted in the limit- 

analysis. 

3.1. Macroscopic plastic potential 

In order to derive a Gurson-type model accounting for both 

isotropic and kinematic hardening, we first need to evaluate the 

macroscopic plastic potential for an initial arbitrary distribution of 

the quantities characterizing hardening, that is σ̄ (x ) and α( x ). 

3.1.1. Velocity fields 

To approximately calculate the plastic potential, we consider 

Gurson (1977) ’s trial incompressible velocity field 

1 

v (x ) = 

b 3

r 2 
D m 

e r + D 

′ · x , (11) 

where D m 

= 

1 
3 tr D denotes the mean overall strain rate and D 

′ = 

D − D m 

I the deviatoric overall strain rate tensor. The associated 

microscopic strain rate reads 

d (x ) = D 

′ + 

b 3

r 3 
D m 

(−2 e r � e r + e θ � e θ + e ϕ � e ϕ ) . (12) 

3.1.2. Expression of the approximate plastic potential 

Using equations (2) and (10) , the value of the microscopic plas- 

tic potential π ( d ) is calculated to be, for any traceless d , 

π(d ) = σ̄d eq + α : d , (13) 

where the equivalent strain rate d eq is defined by 

d eq = 

√
2 

3 

d : d . (14) 

The approximate macroscopic plastic potential thus reads, adopting 

the trial velocity field defined by Eq. (11) and the associated strain 

rate d given by Eq. (12) : 


(D ) = 

1 

vol (�) 

∫ 
�−ω

π(d ) d�

= 

1 

vol (�) 

∫ 
�−ω

( ̄σd eq + α : d ) d� = 
iso (D ) + 
kine (D ) , 

(15) 

where the “isotropic” and “kinematic” contributions 
iso ( D ) and 


kine ( D ) to 
( D ) are given by ⎧⎪ ⎨ 

⎪ ⎩ 


iso (D ) = 

1 

vol (�) 

∫ 
�−ω

σ̄d eq d�


kine (D ) = 

1 

vol (�) 

∫ 
�−ω

α : d d�. 

(16) 

Some further approximations are needed in order to evaluate 

these integrals analytically. One necessary assumption will be that 

the local hardening parameters are distributed in a certain, specific 

way within the matrix. The cell is thus considered to be composed 

of a finite number N of phases distributed in concentric spheres of 

radii 2 (see Fig. 1 ) 

a = r 1 < . . . < r i < . . . < r N+1 = b. (17) 

The phase contained within the interval [ r i , r i +1 ] is denoted P i . The 

distribution of the quantity σ̄ characterizing isotropic hardening 

will be considered as homogeneous in each phase P i . The distribu- 

tion of the quantity α characterizing kinematic hardening will also 

be considered as “homogeneous” in each P i , in a more elaborate 

sense specified below. 

It should be noted that this kind of approach is basically similar, 

in the context of ductile rupture, to that of Herve and Zaoui (1993) , 

in the context of Eshelby’s inclusion problem. 

1 The component proportional to D m of this velocity field reproduces the exact 

solution for a hollow sphere made of plastic material (with or without hardening)

and subjected to a hydrostatic loading.
2 The thickness of the phases is not necessarily uniform and may be chosen ar- 

bitrarily.



Fig. 1. Hollow sphere: definition of some geometric parameters.

3.1.3. Calculation of the isotropic contribution 
iso 

The expression (16) 1 of the isotropic part 
iso ( D ) of the macro- 

scopic plastic potential reads 


iso (D ) = 

1 

vol(�) 

∫ b

a

4 π r 2 σ̄ 〈 d eq (r) 〉 S(r) d r, (18) 

where the symbol 〈 . 〉 S ( r ) denotes an average value over the sphere

S ( r ) of radius r . 

In order to evaluate analytically the integral in Eq. (18) , we use 

Gurson (1977) ’s classical approximation detailed by Benzerga and 

Leblond (2010) and Leblond and Morin (2014) ; the potential is 

evaluated as: 


iso (D ) 
 

1 

vol(�) 

∫ b

a

4 π r 2 σ̄

√
〈 d 2 eq (r) 〉 S(r) d r

= 

1 

vol(�) 

∫ b

a

4 π r 2 σ̄

√
D 

2 
eq + 

4 b 6

r 6 
D 

2 
m 

d r. (19) 

In order to calculate the potential 
iso ( D ), we introduce the fol- 

lowing approximation on the spatial distribution of the yield limit 

σ̄ : 

A 1 : In each phase P i , the yield limit σ̄ = σ̄ i is considered as uni- 

form. 

The expression (19) of the isotropic part 
iso ( D ) of the macro- 

scopic plastic potential can thus be simplified into: 


iso (D ) 
 

N ∑ 

i =1


iso 
i (D ) , (20) 

where the “partial” isotropic potential 
iso 
i 

(D ) in phase P i is given 

by 


iso 
i (D ) = 

3 ̄σ i

b 3 

∫ r i +1

ri

r 2 

√
D 

2 
eq + 

4 b 6

r 6 
D 

2 
m 

d r, (21) 

or equivalently upon use of the change of variable u = b 3 / r 3 , by 


iso 
i (D ) = σ̄ i 

∫ b 3 /r 3 
i 

b 3 /r 3
i +1

√
D 

2 
eq + 4 D 

2 
m 

u 

2 
d u 

u 

2 
. (22) 

Define now the “local volume fraction” f i as 

f i = 

(
r i
b 

)3

. (23) 

The expression of the partial isotropic potential then becomes 


iso 
i (D ) = σ̄ i 

∫ 1 / f i 

1 / f i +1

√ 

D 

2 
eq + 4 D 

2 
m 

u 2 
d u

u 2

= σ̄ i 

[ 

−
√ 

D 

2 
eq 

u 2 
+ 4 D 

2 
m 

+ 2 D m 

ln 

( 

2 D m 

u 

D eq 
+

√ 

1 + 

4 D 

2 
m 

u 2

D 

2 
eq 

) ] u =1 / f i 

u =1 / f i +1

.

(24) 

3.1.4. Calculation of the kinematic contribution 
kine 

In order to calculate the kinematic part 
kine ( D ) of the poten- 

tial, we introduce the following approximation on the spatial dis- 

tribution of the backstress α: 

A 2 : In phase P i , the backstress α is of the form: 

α = αi = A 

i 
1 + A 

i 
2 (−2 e r � e r + e θ � e θ + e ϕ � e ϕ ) , (25) 

where A 

i 
1 

is a second-order traceless tensor and A 

i 
2 

a scalar, both 

uniform within P i . (Note that the term A 

i 
2 
(−2 e r � e r + e θ � e θ +

e ϕ � e ϕ ) is not uniform since the vectors e r , e θ , e ϕ vary within 

P i ). It should be noted that the form considered in Eq. (25) has 

been chosen in order to be compatible with the microscopic strain 

rate given by Eq. (12) . This is a reasonable choice since the rate of 

the backstress depends on the microscopic strain rate, regardless 

of the model considered for kinematic hardening. 

The expression (16) 2 of the kinematic potential 
kine ( D ) then 

becomes 


kine (D ) = 

1 

vol (�) 

∫ b

a

4 π r 2 〈 α : d 〉 S(r) d r

= 

1 

vol (�) 

N ∑ 

i =1

∫ r i +1

ri

4 π r 2 〈 αi : d 〉 S(r) d r. (26) 

Let us first study the quantity 〈 αi : d 〉 S ( r ) :

〈 αi : d 〉 S(r) = A 

i 
1 : D 

′ + A 

i 
2 

b 3 

r 3 
D m 

〈 b : b 〉 S(r)

where b = −2 e r � e r + e θ � e θ + e ϕ � e ϕ . (27) 

In this expression the property 〈 b 〉 S(r) = 0 has been used

( Gurson, 1977 ). One then gets upon calculation of 〈 b : b 〉 S ( r ) :

〈 αi : d 〉 S(r) = A 

i 
1 : D 

′ + 6 A 

i 
2 

b 3 

r 3 
D m 

. (28) 

It follows that 


kine (D ) = 

N ∑ 

i =1

3 

b 3 

∫ r i +1

ri

A 

i 
1 : D 

′ r 2 d r

+ 

N ∑ 

i =1

∫ r i +1

ri

18 A 

i 
2 D m 

d r 

r 
= A 1 : D 

′ + 3 A 2 D m 

, (29) 

where ⎧⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

A 1 = 

N ∑ 

i =1

A 

i 
1 ( f i +1 − f i )

A 2 = 

N ∑ 

i =1

2 A 

i 
2 ln 

(
f i +1 

f i 

)
.

(30) 

3.2. Macroscopic yield criterion 

The macroscopic yield criterion is given by the parametric 

equation 

� = 

∂(
iso + 
kine ) 

∂D 

(D ) = �iso + �kine , (31) 

where the “isotropic” and “kinematic” contributions �iso and �kine 

to the stress � are defined by ⎧⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

�iso = 

∂
iso

∂D 

(D ) 

�kine = 

∂
kine

∂D 

(D ) . 

(32) 



Isotropic contribution. Since the isotropic contribution to the plas- 

tic potential 
iso ( D ) depends only on D m 

and D eq , the isotropic 

stress �iso reads 

�iso = 

∂
iso 

∂D m 

∂D m 

∂D 

+ 

∂
iso 

∂D eq 

∂D eq 

∂D 

= 

1 

3 

∂
iso 

∂D m 

I + 

∂
iso 

∂D eq 

2 D 

′ 
3 D eq 

= �iso 
m 

I + �iso 
eq 

2 D 

′ 
3 D eq 

, (33) 

where the mean and equivalent isotropic contributions �iso 
m 

and 

�iso 
eq to the stress are defined by⎧⎪⎪ ⎪ ⎪ ⎨

⎪⎪⎪ ⎪ ⎩ 

�iso 
m 

= 

1 

3 

∂
iso 

∂D m 

= 

N ∑ 

i =1

�iso 
m ,i 

�iso 
eq = 

∂
iso

∂D eq 
= 

N ∑ 

i =1

�iso 
eq ,i 

(34) 

with ⎧ ⎪ ⎪ ⎪ ⎨
⎪ ⎪ ⎪ ⎩

�iso 
m ,i 

= 

1 

3 

∂
iso 
i 

∂D m 

= 

2 

3 
σ̄ i 

[ 
ln 

(
2 ξu + 

√ 

4 ξ 2 u 2 + 1 

)] u =1 / fi

u =1 / f i +1

�iso 
eq ,i 

= ∂
iso 
i 

∂D eq 
= σ̄ i 

[ 

−
√ 

4 ξ 2 + 

1

u 2 

] u =1 / fi

u =1 / f i +1

, ξ = 

D m

D eq 
.

(35) 

Eqs. (34) and (35) provide a parametric representation of the quan- 

tities �iso 
m 

and �iso 
eq , ξ acting as a parameter. 

Kinematic contribution. The calculation of the kinematic stress 

�kine is straightforward and yields 

�kine = 

∂
kine

∂D 

= A 1 + A 2 I . (36) 

Summary. By Eqs. (31) , (33) and (36) , the macroscopic stress in- 

ducing plastic flow is given by 

� − ( A 1 + A 2 I ) = �iso 
m 

I + �iso 
eq 

2 D 

′ 
3 D eq 

. (37) 

Separating the mean and deviatoric parts in this expression and 

calculating the “von Mises norm” of the latter part, one obtains 

the macroscopic yield locus in the parametric form{
�m 

− A 2 = �iso 
m 

(ξ )

( � − A 1 ) eq = �iso 
eq (ξ ) ,

(38) 

where �iso 
m 

, �iso 
eq , A 1 and A 2 are given by Eqs. (34) , (35) and (30) . 

3.3. Flow rule 

Since the property of normality of the flow rule is preserved in 

the homogenization procedure (see Gurson, 1977 ), it reads 

D = 

˙ �
∂�

∂�
(�) , ˙ �

{
= 0 if �( �) < 0 

≥ 0 if �( �) = 0 , 
(39) 

where D denotes the plastic Eulerian strain rate, ˙ � the plastic mul- 

tiplier and �( �) the macroscopic yield function. 

It is worth noting that writing the flow rule (39) explicitly 

is more difficult than it seems at first sight, since the yield lo- 

cus is defined by the parametric equations (38) , the corresponding 

yield function � having no explicit expression. Morin et al. (2015a ) 

have analyzed this problem for a parametric criterion of the form 

(38) and shown that the flow rule may be rewritten, with a suit- 

able re-definition of the plastic multiplier being now denoted 

˙ ˜ �, 

in the following parametric form: 

D = 

˙ ˜ �

(
−1 

3 

d�iso 
eq 

d ξ
(ξ ) I + 

d�iso
m 

d ξ
(ξ ) 

3 

2 

�′ − A 1

�iso 
eq (ξ ) 

)
, (40) 

where �′ is the deviator of �.

3.4. Evolution of hardening parameters 

Isotropic hardening. Let g 1 denote the function providing the local 

yield limit σ̄ of the matrix as a function of the local cumulated 

plastic strain p : 

σ̄ = g 1 (p) . (41) 

We introduce the following approximation on the evolution of 

isotropic hardening: 

A 3 : The “mean yield limit” σ̄ i in phase P i is then supposed to de- 

pend on some average value p̄ i of the cumulated plastic strain in this 

phase, through the formula 

σ̄ i = g 1 ( ̄p 
i ) . (42) 

The cumulated plastic strain p̄ i is taken on the mid-surface of the 

spherical shell occupied by phase P i , that is at the radial position 

r̄ i = 

1 
2 (r i + r i +1 ) ; its expression reads 

p̄ i = 

∫ t

0

d̄ i eq (τ )d τ, (43) 

where d̄ i eq is the average equivalent plastic strain rate at the posi- 

tion r̄ i associated to Gurson’s trial velocity field: 

d̄ i eq = 〈 d eq 〉 S( ̄r i ) ≈
√ 

〈 d 2 eq 〉 S( ̄r i ) = 

√
D 

2 
eq + 4 

b 6 

r̄ 6 
i 

D 

2 
m 

, (44) 

where Gurson’s classical approximation has again been used. 

In particular, for a power-law isotropic hardening, the function 

g 1 ( p ) is given by 

g 1 (p) = σ̄0 + hp m , (45) 

where σ̄0 is the initial yield stress, h the isotropic hardening pa- 

rameter and m the hardening exponent. 

Kinematic hardening. Let g 2 denote the function providing the lo- 

cal rate ˙ α of the backstress α as a function of this backstress itself, 

the strain rate d , the cumulated plastic strain p and the equivalent 

plastic strain rate d eq : 

˙ α = g 2 (α, d , p, d eq ) . (46) 

Note that the function g 2 must be homogeneous of degree 1 with 

respect to the strain rate d since only rate-independent behaviors 

are considered in the limit-analysis theory. 

We introduce the following approximation on the evolution of 

kinematic hardening: 

A 4 : The rate ˙ αi of the backstress αi in phase P i is then supposed 

to depend locally on this backstress itself, the plastic strain rate d 

i 

and some average values p̄ i , d̄ i eq of the cumulated plastic strain and 

equivalent plastic strain rate in this phase through the formula 

˙ αi = g 2 (α
i , d 

i , p̄ i , d̄ i eq ) . (47) 

We again take the strain rate d 

i on the mid-surface of the spherical 

shell defining phase P i : 

d 

i (θ, ϕ) = d ( ̄r i , θ, ϕ) ∀ (θ, ϕ) , (48) 

and the average values p̄ i , d̄ i eq of the cumulated plastic strain and 

equivalent plastic strain rate are defined by Eqs. (43) and (44) , re- 

spectively. 

Eq. (47) is based on the implicit assumption that the form pos- 

tulated for ˙ αi is compatible with that postulated for αi , Eq. (25) . 

This is not the case for all possible functions g 2 . However the forms 

(25) and (47) are compatible for Armstrong and Frederick (1966) ’s 

quite (though not fully) general kinematic hardening law, 

g 2 (α, d , p, d eq ) = c(p) d − k (p) αd eq , (49) 

where c ( p ) is the “kinematic hardening slope” and k ( p ) the “strain 

recovery parameter” (which may both depend on p ). For such a 



law combination of equations (25) and (47) leads to the following 

evolution equations for the parameters A 

i 
1 

and A 

i 
2 
: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪⎪ ⎪ ⎩ 

˙ A 

i 
1 = c( ̄p i ) D 

′ − k ( ̄p i ) A 

i 
1

√
D 

2 
eq + 4 

b 6 

r̄ 6 
i 

D 

2 
m 

˙ A 

i 
2 = c( ̄p i )

b 3 

r̄ 3 
i 

D m 

− k ( ̄p i ) A 

i 
2

√
D 

2 
eq + 4 

b 6 

r̄ 6 
i 

D 

2 
m 

, 

(50) 

where Eqs. (12) and (44) have been used. 

3.5. Evolution of geometrical parameters 

The evolution of the porosity is classically given by 

˙ f = (1 − f ) tr D . (51) 

The proposed approximate evolution equation of the internal 

radii reads 

˙ r̄ i = 

r̄ i 
f i 

D m 

. (52) 

Note that this equation accounts for the geometry changes due to 

the sole hydrostatic part of the loading. 

3.6. A simplified version of the model and its link with Leblond et al. 

(1995)’s model 

3.6.1. Leblond et al. (1995)’s model for isotropic hardening 

Leblond et al. (1995) proposed to replace Gurson (1977) ’s 

heuristic approach to isotropic hardening effects in porous duc- 

tile materials (briefly recalled in Appendix A ) with some mi- 

cromechanical approach based on some approximate analytical so- 

lution to the problem of a hollow sphere made of some rigid- 

hardenable material and subjected to some arbitrary loading. 

The criterion they obtained was a heuristic extension of that of 

Gurson (1977) involving distinct “average yield stresses of the ma- 

trix” in the “square” and “cosh” terms of the yield function: 

�2 
eq 

�2 
1 

+ 2 f cosh 

(
3 

2 

�m 

�2 

)
− 1 − f 2 = 0 , (53) 

where �1 and �2 are macroscopic internal variables connected 

to the spatial distribution of the local yield stress σ̄ . These vari- 

ables govern the yielding in purely deviatoric and purely hydro- 

static loadings, respectively: 

• For a purely deviatoric loading ( �m 

= 0 ), the value �LPD 
eq of the

overall yield stress is given by

�LPD 
eq = (1 − f )�1 . (54) 

• For a purely hydrostatic loading ( �eq = 0 ), the value �LPD 
m 

of

the overall yield stress is given by

�LPD 
m 

= −2

3 

�2 ln f . (55) 

In the original version of the model ( Leblond et al., 1995 ), the 

expressions of �1 and �2 were obtained in two steps, using the 

approximate solution of the hollow hardenable sphere problem re- 

ferred to above. First, �1 and �2 were expressed as functions of 

the distribution of the local yield stress, using estimates of the 

overall yield stresses of the hollow sphere under purely deviatoric 

and purely hydrostatic loadings. Second, the distribution of the lo- 

cal yield stress resulting from the previous mechanical history was 

obtained in an analytical form under the assumption of positively 

proportional straining. Although the model did provide a better de- 

scription of isotropic strain hardening effects in plastic porous ma- 

terials than that of Gurson recalled in Appendix A , its predictions 

for cyclic loadings were found to only qualitatively capture the 

ratcheting of the porosity observed in numerical micromechanical 

simulations ( Devaux et al., 1997 ), the quantitative agreement re- 

maining mediocre. The explanation was, of course, the inadequacy 

of the hypothesis of positively proportional straining in the case of 

cyclic loadings. 

In an improved version of the model ( Lacroix et al., 2016 ), 

the hypothesis of positively proportional straining was dropped. In 

the absence of any specific hypothesis on the evolution of strain 

in time, the analytical calculation of the distribution of the local 

yield stress resulting from the previous mechanical history was no 

longer possible and numerical integration became necessary. The 

spherical cell was therefore discretized radially - exactly like in the 

layer model developed here which extends the idea so as to incor- 

porate kinematic hardening. Using our notations, the expressions 

of �1 and �2 were given by Lacroix et al. (2016) as⎧⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

�1 = 

1

1 − f 

N ∑ 

i =1

σ̄ i ( f i +1 − f i ) 

�2 = − 1

ln f 

N ∑ 

i =1

σ̄ i ln 

(
f i +1 

f i 

)
.

(56) 

3.6.2. A simplified version of the model 

It is worth noting that in the case of purely isotropic hardening, 

the limit-loads given by the parametric criterion (38) coincide ex- 

actly with the predictions of Leblond et al. (1995) ’s model, for both 

purely hydrostatic and purely deviatoric loadings. Indeed: 

• Hydrostatic loading. In this case, the parameter ξ goes to infin- 

ity. The limit-load then reads

�iso 
m 

(ξ → ∞ ) = 

2 

3 

N ∑ 

i =1

σ̄ i ln 

(
f i +1 

f i 

)
= �LPD 

m 

. (57) 

• Deviatoric loading. In this case, the parameter ξ is equal to zero.

The limit-load then reads

�iso 
eq (ξ = 0) =

N ∑ 

i =1

σ̄ i ( f i +1 − f i ) = �LPD 
eq . (58) 

A natural idea is then to replace the parametric form given by 

Eq. (38) for �iso 
m 

(ξ ) and �iso 
eq (ξ ) by the simpler explicit yield func- 

tion proposed by Leblond et al. (1995) . We thus propose a simpli- 

fied version of the model involving the explicit criterion 

(�iso 
eq ) 

2 

�2 
1 

+ 2 f cosh 

(
3 

2 

�iso 
m 

�2 

)
− 1 − f 2 = 0 , (59) 

or equivalently by equations (38) : 

( � − A 1 ) 
2 
eq 

�2 
1 

+ 2 f cosh 

(
3 

2 

�m 

− A 2 

�2 

)
− 1 − f 2 = 0 , (60) 

where �1 , �2 , A 1 and A 2 are given by Eqs. (56) and (30) , respec- 

tively. 

It is worth noting that this simplified form coincides with the 

full parametric form in the case of a homogeneous distribution of 

the isotropic hardening parameter σ̄ but a heterogeneous distribu- 

tion of the kinematic hardening parameter α; indeed in this case 

the parametric expressions (38) of �iso 
m 

(ξ ) and �iso 
eq (ξ ) exactly 

yield, upon elimination of ξ , the criterion (59) , with �1 = �2 = σ̄ . 

4. Assessment of the model

The model will now be assessed by comparing its predictions 

to the results of some micromechanical finite element simulations 

of the elementary cell considered in its derivation. 



Fig. 2. Spherical mesh used in the finite element calculations ( f = 0 . 01 ). 

4.1. Yield surfaces with initial pre-hardening 

4.1.1. Description of the simulations 

First, in order to study the macroscopic criterion, we consider 

all internal parameters (geometry and hardening) as fixed. We thus 

solve the limit-analysis problem for a given, fixed pre-hardening 

(resulting from some given prestraining), without any geometry 

update, using the finite element method (FEM). 

The calculations are performed with a homemade code us- 

ing 2D axisymmetric meshes subjected to conditions of homoge- 

neous boundary strain. Fig. 2 shows the mesh used for a void 

volume fraction f = 0 . 01 . Eight-node quadratic elements subinte- 

grated with 2 × 2 Gauss points are used. The mesh contains 3540 

elements and 10,859 nodes (21,718 degrees of freedom). This dis- 

cretization is adequate for the numerical calculations envisaged, 

further mesh refinement making no appreciable difference to the 

results. Axisymmetric loadings are considered: �11 = �22 � = 0 , �33 

� = 0, and �i j = 0 otherwise. Two Lode angles (denoted θ L ) are con- 

sidered: θL = 0 corresponding to �33 − �11 > 0 and θL = π corre- 

sponding to �33 − �11 < 0 . The simulations are performed by solv- 

ing an elastic-plastic evolution problem, the limit-load being con- 

sidered as reached when the overall stress components no longer 

evolve ( Michel et al., 1999 ). 

4.1.2. Isotropic pre-hardening 

We consider two cases with isotropic pre-hardening (and no 

kinematic pre-hardening: α = 0 everywhere in the matrix): 

• Case 1. Hardening is assumed to be more important near the

cavity; the yield stress is supposed to vary linearly with r from

the value σ̄ (r = a ) = 1 . 5 σ̄0 to the value σ̄ (r = b) = 0 . 5 σ̄0 .

• Case 2. Hardening is assumed to be more important near the

cell’s boundary; the yield stress is supposed to vary linearly

with r from the value σ̄ (r = a ) = 0 . 5 σ̄0 to the value σ̄ (r = b) =
1 . 5 σ̄0 . Note that this case is probably unrealistic in practice

since hardening will likely concentrate near the voids’s bound- 

ary; it is however interesting to consider it in order to study

the robustness of the model.

Fig. 3 compares the yield surfaces associated to the theoretical 

model of Section 3.2 and its simplified version of Section 3.6 with 

N = 10 phases, 3 Gurson (1977) ’s model without pre-hardening 

and the finite element results, for a porosity f = 0 . 01 . Since 

Gurson (1977) ’s model does not account for the different values of 

the macroscopic yield stresses in the “square” and “cosh” terms of 

the yield criterion (resulting from the heterogeneous distribution 

3 In all the simulations, the thickness of the phases has been chosen uniform for

simplicity.

of the local yield stress within the matrix), two values of Gurson’s 

unique “overall yield stress” �̄ (see Appendix A ) are envisaged, 

�̄ = �1 and �̄ = �2 , these quantities being given by Eq. (56) . 

Some comments are in order here: 

• In the two cases considered, the model developed is in very

good agreement with the finite element results for all the tri- 

axialities considered; in particular, the hydrostatic point is per- 

fectly reproduced.

• In both cases, the full and simplified models yield very similar

results: the simplified model with an explicit form of the yield

criterion thus seems to be a viable alternative to the more com- 

plex one.

• The comparison with Gurson (1977) ’s model highlights the in- 

fluence of the heterogeneous distribution of pre-hardening on

the strength of the porous material: this model involving a

single overall yield limit �̄ can capture either the hydrostatic

point or the deviatoric point, depending on the choice made

for this overall yield limit, but not both. 4

• Finally, it is worth noting that the finite element results are

slightly sensitive to the Lode angle θ L (small dissymmetry of

the numerical results with respect to the horizontal axis), in

contrast to the model developed that does not account for a

Lode angle dependency; this is due to Gurson (1977) ’s approx- 

imation (leading from Eqs. (18) to (19) above) that erases the

Lode angle dependency in the macroscopic plastic potential

( Cazacu et al., 2013; Leblond and Morin, 2014 ).

4.1.3. Kinematic pre-hardening 

We now consider three cases with kinematic pre-hardening 

(and no isotropic pre-hardening: σ̄ = σ̄0 = Cst. everywhere). In all 

cases the local backstress α is of the form 

α = α1 (r) + α2 (r)(−2 e r � e r + e θ � e θ + e ϕ � e ϕ ) , (61) 

where the traceless tensor α1 ( r ) and the scalar α2 ( r ) depend only 

on r . 

• Case 1. Pre-hardening is assumed to affect the sole deviatoric

stress; the non-zero components of α1 are: α1(11) = α1(22) = 

−α1(33) / 2 = −σ̄0 / 6 and α2 is nil.

• Case 2. Pre-hardening is assumed to affect the sole hydrostatic

stress; α2 is supposed to vary linearly from the value α2 (r =
a ) = −σ̄0 / 6 to the value α2 (r = b) = 0 , and α1 is nil.

• Case 3. Pre-hardening is assumed to affect both the hydro- 

static and deviatoric stresses; the nonzero components of α1

are α1(11) = α1(22) = −α1(33) / 2 = −σ̄0 / 4 , and α2 is supposed to

vary linearly from the value α2 (r = a ) = −σ̄0 / 4 to the value

α2 (r = b) = 0 .

Fig. 4 compares the yield surfaces associated to the the- 

oretical model developed in Section 3.2 with N = 30 phases, 

Gurson (1977) ’s model without pre-hardening (with σ̄ = σ̄0 every- 

where in the matrix), 5 and the finite element results, for a porosity 

f = 0 . 01 . (In this case, the simplified model exactly coincides with 

the more complete one since there is no isotropic pre-hardening, 

so its predictions need not be shown). 

In all three cases considered, the model developed is in very 

good agreement with the finite element results for all the tri- 

axialities considered; in particular, the model reproduces the 

“translatory motion” of the yield surface perfectly, in contrast to 

4 The reason why Gurson (1977) ’s model fails so utterly to reproduce the numer- 

ical results is that the variation of σ̄ considered here in the matrix is very impor- 

tant; for a more moderate variation the results would have been more acceptable.
5 Gurson (1977) ’s criterion, which does not account for kinematic hardening, is

represented with the sole purpose of evidencing the influence of pre-hardening.



Fig. 3. Yield surfaces for isotropic pre-hardening: theoretical model given by Eq. (38) (Present model), simplified model given by Eq. (60) (Simplified model), Gurson’s model

(Gurson) and finite element results (FEM). (a) Case 1, (b) Case 2 (see text).

Gurson (1977) ’s model without kinematic hardening. As expected 

from the theoretical form of the criterion, the term A 1 affects only 

the position of the yield surface in the “deviatoric direction” while 

the term A 2 affects only its position in the “hydrostatic direction”. 

4.2. Evolution problems 

4.2.1. Description of the simulations 

We now wish to compare the model’s predictions to the results 

of micromechanical finite element simulations of evolution prob- 

lems. The hardening is now supposed to evolve locally within the 

matrix but geometry changes are still disregarded. The motivation 

for this choice is to comply with the model’s hypothesis of spher- 

ical voids, in order to assess the sole evolution of the hardening; 

the modification of the geometry would induce some void shape 

effects that are disregarded by the model and thus would intro- 

duce some discrepancies. 

Again, the simulations are performed using 2D axisymmetric 

meshes subjected to conditions of homogeneous boundary strain 

(see Fig. 2 ). The macroscopic stress tensor is constrained to be of 

the form 

� = C(t) �0 , �0 = 

( 

�0
11 0 0 

0 �0 
11 0 

0 0 �0 
33

)
. (62) 

In this expression, C ( t ) is a time-varying scalar and �0 is a constant 

tensor whose components �0 
11 

and �0 
33 

are given by 

�0 
11 = cos β − 1 

3 

sin β, �0 
33 = cos β + 

2

3 

sin β, (63) 

where the angle β depends on the stress triaxiality T : 

β = argtan 

(
1

T 

)
. (64) 

Only the value θL = 0 of the Lode angle is considered, correspond- 

ing to �33 − �11 > 0 . The simulations are performed incrementally, 

for proportional loading paths - implying a constant stress triaxi- 

ality ( Michel et al., 1999 ). Finally the macroscopic strain tensor is 

denoted E . 

We investigate the cases of isotropic hardening and linear kine- 

matic hardening. Isotropic hardening is supposed to follow the 

power-law defined by Eq. (45) , and kinematic hardening the law 

defined by Eq. (49) with c = Cst. and k = 0 (no strain recovery). 

The values of the material parameters considered are as fol- 

lows: Young’s modulus, E = 10 , 0 0 0 GPa, Poisson’s ratio, ν = 0 . 25 ; 

isotropic hardening parameters, σ̄0 = 100 MPa, h = 400 MPa and 

m = 0 . 2 ; kinematic hardening slope, c = 400 MPa. Note that the 

value chosen for Young’s modulus is extremely high so that elas- 

ticity is negligible in the simulations, in agreement with the hy- 

pothesis made in the derivation of the model. 

The response is investigated for three stress states: (i) pure hy- 

drostatic loading, T = + ∞ ; (ii) high triaxiality, T = 2 . 333 ; (iii) low 

triaxiality, T = 1 / 3 . We are interested in: 

1. Macroscopic quantities. We study the evolution of the stress am- 

plitude C ( t ) versus the “measure of deformation” E : �0 .

2. Microscopic quantities - isotropic hardening. For this type of

hardening we study the distribution of the local equivalent

von Mises stress σ eq (at the end of the simulation for which

E : �0 = 0 . 05 ). This variable reduces to the local yield stress σ̄
in the model which assumes that the matrix is plastic every- 

where; but this is not true in the finite element calculations

since the material is not necessarily entirely plastic.

3. Microscopic quantities - kinematic hardening. For that type of

hardening we study the distribution of the local equivalent

backstress αeq =
√ 

3 
2 α : α (at the end of the simulation for 

which E : �0 = 0 . 05 ).

4.2.2. Isotropic hardening 

Fig. 5 compares the strain-stress predicted by the model de- 

veloped with N = 10 phases, to that predicted by Gurson (1977) ’s 

classical model including a heuristic modelling of isotropic hard- 

ening (see Appendix A ), and the results obtained by the finite el- 

ement method. Note that the predictions of the simplified model 

are not represented since they are almost indistinguishable from 

those of the full model for the three cases considered. 

The present model’s predictions are globally very close to the 

numerical results in the three cases considered. In the interme- 

diate case ( T = 2 . 333 ) the model slightly overestimate the finite 

element results. It is worth noting that the very good agreement 

observed at very low triaxiality ( T = 1 / 3 ) is due in part to the 

fact that the geometry is not allowed to evolve in the simulations, 

which ensures that the void remains spherical. Gurson (1977) ’s 



Fig. 4. Yield surfaces for kinematic pre-hardening: theoretical model given by Eq. (38) (Present model), Gurson’s model without hardening (Gurson) and finite element

results (FEM). (a) Case 1, (b) Case 2, (c) Case 3 (see text).

Fig. 5. Stress-strain curve in the case of isotropic hardening: predictions of the

present model (Present model), Gurson (1977) ’s model with a heuristic modelling

of isotropic hardening (Gurson) and finite element results (FEM).

predictions are in good agreement with the numerical results for 

low and moderate triaxialities but become poor at very high triax- 

iality. This highlights the detrimental effect of Gurson’s hypothesis 

that the overall yield stresses under purely hydrostatic and purely 

deviatoric loadings may be related to a single average yield stress 

of the matrix. 

The distribution of the local equivalent von Mises stress is rep- 

resented in Fig. 6 for the present model and the finite element 

simulations. The present model globally accurately reproduces the 

heterogeneous distribution of hardening. In particular, the finite el- 

ement results reveal that the hypothesis made in the model of an 

essentially radial variation of the yield limit σ̄ is acceptable. In 

the case of a pure hydrostatic loading, T = + ∞ , this approxima- 

tion becomes exact. In the cases of low or high triaxiality, T = 1 / 3 

and 2.333, the maps show that the hypothesis of essentially ra- 

dial dependence is acceptable in a large domain far from the void’s 

boundary, and that the stress level predicted is correct. The hy- 

pothesis is no longer verified near the void’s boundary, but the 

angular average of the finite element values is qualitatively well 

predicted by the model. 



Fig. 6. Distribution of the local equivalent von Mises stress σ eq at E : �0 = 0 . 05 in the case of isotropic hardening. (a) T = 1 / 3 , (b) T = 2 . 333 , (c) T = + ∞ . Top: finite element 

results, bottom: predictions of the present model.

Fig. 7. Stress-strain curve in the case of kinematic hardening: predictions of the

present model (Present model) and finite element results (FEM).

4.2.3. Kinematic hardening 

Fig. 7 compares the strain-stress curve predicted by the present 

model with N = 30 phases to the results obtained by the finite el- 

ement method. 

In this case, the predictions of the model coincide almost per- 

fectly with the finite element results, emphasizing that the “macro- 

scopic backstresses” A 1 and A 2 are sufficient to capture the effect 

of the heterogeneous distribution of kinematic hardening. Again it 

is worth noting that the geometry is not allowed to evolve in the 

simulations, which ensures that void shape effects are disregarded. 

The distribution of the local equivalent backstress αeq predicted 

by the model is compared in Fig. 8 to the finite element results. 

The present model globally accurately reproduces the distribution 

of kinematic hardening. Again, the finite element results also re- 

veal that the hypothesis made in the model about the distribution 

of α in the phases ( Eq. (25) ) is acceptable; the comments made 

above for isotropic hardening also apply to kinematic hardening. 

Note, however, that for kinematic hardening, unlike for isotropic 

hardening, formula (25) predicts some dependence of α upon the 

spherical angle θ , which is confirmed by the finite element results, 

see case (b). 

4.3. Remarks 

It should be noted that the very good results observed for yield 

surfaces as well as evolution problems have been achieved with a 

reasonable number of layers ( N = 10 for isotropic hardening and 

N = 30 for kinematic hardening). These discretizations were found 

to be sufficient to accurately describe both the macroscopic results 

and the distributions of microscopic hardening, further refinement 

making no appreciable difference to the results. 

It should be noted too that the model developed, with the num- 

ber of layers considered, does not require a significantly larger CPU 

time than Gurson’s original model. This is due to the fact that the 

integration over the layers represents only a small number of oper- 

ations in the local projection algorithm, representing itself a mod- 

est part of the global iterative algorithm. However, the new model 

requires more memory than Gurson’s original model in order to 

store the internal variables in the layers. 



Fig. 8. Distribution of the local equivalent backstress αeq at E : �0 = 0 . 05 in the case of kinematic hardening. (a) T = 1 / 3 , (b) T = 2 . 333 , (c) T = + ∞ . Top: finite element 

results, bottom: predictions of the present model.

5. Conclusion

The aim of this paper was to develop a model for ductile 

porous materials accounting for both isotropic and kinematic hard- 

ening. This model differs (although it is inspired) from that of 

Gurson (1977) including only isotropic hardening, and also from 

its extension to kinematic hardening due to Mear and Hutchin- 

son (1985) , in that it is no longer based on a purely heuristic and 

macroscopic approach, but on some detailed analysis of the effect 

of the heterogeneous distribution of microscopic hardening param- 

eters near the voids. 

An approximate yield criterion was derived by performing a 

“sequential limit-analysis” of a hollow sphere made of a rigid- 

hardenable matrix. To approximately account for the heterogene- 

ity of hardening, the cell was discretized into a finite number of 

spherically distributed phases in which the quantities characteriz- 

ing hardening were considered as homogeneous. The macroscopic 

yield locus was characterized by an overall criterion expressed 

in a parametric form, wherein the heterogeneous local harden- 

ing parameters were accounted for through macroscopic variables. 

A simplified version of the model involving an explicit form of 

the overall criterion was then proposed. This version reduces to 

Lacroix et al. (2016) ’s model in the case of purely isotropic hard- 

ening. 

The model was assessed numerically using micromechanical fi- 

nite element simulations. First, overall yield loci were investigated 

for both isotropic and kinematic pre-hardening: a very good agree- 

ment was observed between the numerical results and the predic- 

tions of the model. Then these predictions were assessed on evolu- 

tion problems: they were found to be in very good agreement with 

the finite element results, with regard to both the overall stress- 

strain curves and the distributions of isotropic and kinematic hard- 

ening parameters. 

Future developments of the work will include: 

• Numerical micromechanical simulations for cyclic loadings in- 

cluding geometry changes, with some comparisons with the

predictions of the present model. Such studies are desirable

in order to understand the effect of mixed isotropic/kinematic

hardening on the ratcheting of the porosity mentioned in the

Introduction.

• Finite element implementation of the model and applications

to numerical studies of the ductile rupture of actual test speci- 

mens subjected to cyclic loadings.

• Derivation of a model including void shape effects, in order to

investigate cyclic ductile rupture under conditions of low stress

triaxiality.
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Appendix A. Gurson’s heuristic approach to isotropic hardening 

effects in porous ductile materials 

Gurson (1977) ’s original model was obtained for a rigid-ideal 

plastic material obeying von Mises’s criterion and the associated 

Prandtl-Reuss flow rule, from an approximate limit-analysis of a 

hollow sphere made of such a material and subjected to condi- 

tions of homogeneous boundary strain rate. The macroscopic yield 



criterion obtained read 

�G (�) = 

�2 
eq 

σ̄ 2 
0 

+ 2 f cosh 

(
3 

2 

�m 

σ̄0 

)
− 1 − f 2 = 0 , (A.1) 

where σ̄0 is the yield stress, uniform in the matrix. 

To introduce isotropic hardening effects into the model, instead 

of pursuing his micromechanical analysis (as was later done by 

Leblond et al., 1995 ), Gurson dropped homogenization and limit- 

analysis and adopted a heuristic approach. This approach consisted 

in retaining the analytic form (A.1) of the criterion, replacing σ̄0 

with some “average yield stress” �̄ of the matrix given by: 

�̄ = g 1 (P ) ; (A.2) 

in this equation g 1 ( p ) denotes the function providing the local yield 

limit σ̄ as a function of the local cumulated plastic strain p , like in 

Section 3.4 above, and P represents some “average equivalent cu- 

mulated strain” in the heterogeneous, porous material. The evolu- 

tion of P was assumed to be governed by the following equation: 

(1 − f ) ̄� ˙ P = � : D , (A.3) 

which expressed the heuristic assumption of equality of the plas- 

tic dissipations in the real, heterogeneous porous material and in 

a fictitious “equivalent” homogeneous material with equivalent cu- 

mulated strain P and yield stress �̄. 
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