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ABSTRACT

Structural health monitoring (SHM) is an emerging technology designed to automate the 
inspection process undertaken to assess the health condition of structures. The SHM process 
is classically decomposed into four sequential steps: detection, localization, classification, and 
quantification. In this paper, SHM quantification step is addressed. Particularly, we approach de-
lamination quantification as a classification problem whereby each class corresponds to a certain 
damage extent. Starting from the assumption that damage causes a structure to exhibit nonlinear 
response, we investigate whether the use of nonlinear model based features increases classifica-
tion performance. A support Vector Machine (SVM) is used to perform multi-class classification 
task. Two types of features are used to feed the SVM algorithm: Signal Based Features (SBF) 
and Nonlinear Model Based Features (NMBF). SBF are rooted in a direct use of response signals 
and do not consider any underlying model of the test structure. NMBF are computed based on 
parallel Hammerstein models which are identified with an Exponential Sine Sweep (ESS) signal. 
Dimensionality reduction of features vector using Principal Component Analysis (PCA) is also 
carried out in order to find out i f i t allows robustifying the quantification process suggested in 
this work. Experimental results on Carbon Fiber Reinforced Polymer (CFRP) composite plates 
equipped with piezoelectric elements and containing various delamination severities are consid-
ered for demonstration. Delamination-type damage is introduced into samples in a calibrated 
way using Laser Shock Wave Technique (LSWT) and more particularly symmetrical laser shock 
configuration. LSWT is chosen as an alternative to conventional damage generation techniques 
such as conventional impacts and Teflon inserts since it allows for a better calibration of damage 
in type, depth and size. Results show that by introducing NMBF, classification performance is 
improved. Furthermore, PCA allows for higher recognition rates while reducing features vector 
dimension.

INTRODUCTION

Structural Health Monitoring (SHM) combines advanced sensor technology with intelligent
algorithms to interrogate the structural ’health’ condition. Generally, an SHM process entails
establishing: (1) the existence of damage, (2) the damage locations, (3) the types of damage, and
(4) the damage severity [1]. In this work, the quantification step of the SHM process is addressed.
Particularly, we approach delamination quantification as a classification problem whereby each
class corresponds to a certain damage extent. Based on the assumption that in many cases damage
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causes a structure to exhibit nonlinear response and that the damage monitoring process can be
significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-
sensitive features from measured data [2], we aim here at exploiting a richer nonlinear represen-
tation of our test structure and at investigating whether the use of nonlinear model based features
allows for an enhanced damage quantification approach. A support Vector Machine (SVM) is
used to perform multi-class classification task. Two types of features are used to feed the SVM
algorithm: Signal Based Features (SBF) and Nonlinear Model Based Features (NMBF). SBF are
rooted in a direct use of response signals and do not consider any underlying model of the moni-
tored structure. NMBF are computed based on parallel Hammerstein models which are identified
with an Exponential Sine Sweep (ESS) signal. Dimensionality reduction of features vector using
Principal Component Analysis (PCA) is also conducted in order to find out if it allows robustify-
ing the quantification process suggested in this work. CFRP composite coupons equipped with
piezoelectric elements and containing various delamination severities are considered for demon-
stration. LSWT is used to introduce realistic and well calibrated delamination-type damage into
test coupons.
In the following, after the presentation of laser shock wave technique and CFRP test coupons,
the main key elements of the quantification workflow proposed in this paper are detailed. The
experimental investigation conducted in this work is then described. Results and analysis are
afterwards presented. Conclusions are given at last.

TEST STRUCTURES

Test structures considered for demonstration consist of CFRP composite plates equipped with
piezoelectric elements and containing various delamination severities. Damage is introduced into
samples (See Figure 2) in a calibrated way using LSWT and more particularly symmetrical laser
shock configuration (See Figure 1). LSWT is chosen as an alternative to conventional damage
generation techniques such as conventional impacts and Teflon inserts since it allows for a better
calibration of damage in type, depth and size [3–5]. Four CFRP test coupons are considered. The
first one is kept in a healthy state. The second one was subjected to a symmetrical laser impact at
0 ns time delay and at 100% of the maximum energy of the two laser beams [5]. This resulted in
approximately 7 mm diameter delamination which occurred at 1.1mm depth. The third coupon
was subjected to two symmetrical and contiguous laser impacts which resulted in 14mm diameter
delamination while the fourth coupon was impacted with three contiguous impacts which in turn
resulted in approximately 21mm diameter delamination.
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Figure 1: Experimental set-up of symmetrical
laser shock configuration

Figure 2: Cross-sectional observation show-
ing a delamination generated using LSWT



DAMAGE QUANTIFICATION APPROACH
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Figure 3: Workflow suggested for damage quantification

Figure 3 illustrates the main key ingredients of the quantification workflow proposed in this
work. An input signal is firstly selected to excite a test structure containing a given damage sever-
ity. The structure response signal is then recorded and damage sensitive features are extracted. In
this work, we investigate whether NMBF allow for an enhanced damage quantification strategy.
Two types of features are thus considered: SBF and NMBF.

Signal Based Features

Signal Based Features are rooted in a direct use of response signals and do not consider any
underlying model of the test structure. Four signal based features are considered in this study
and are computed as follows. Let sref (t) and sd(t) be the structure output signal in reference
and damaged state respectively, where t refers to time, one defines:

TABLE I: SIGNAL BASED FEATURES.

Damage-sensitive feature Details

CC = 1−
cov(sref (t), sd(t))

σsref (t)σsd(t)
(1)

• Feature based on cross correlation

• cov(sref (t), sd(t)) is the covariance of
sref (t) and sd(t)

• σsref (t) and σsd(t) are the standard devi-
ations of sref (t) and sd(t) respectively

NRE =

∑T2
t=T1

(sref (t)− sd(t))2∑T2
t=T1

sref (t)2
(2)

• Normalized Residual Energy

• [T1, T2] is the time interval in which
signals of interest are analyzed

MA =
maxt(|sref (t)− sd(t)|)

maxt |sref (t)|
(3) • Maximum Amplitude

ENV =

√√√√∑T2
t=T1

A2
sref,d(t)∑T2

t=T1
A2

sref (t)

(4)

• Signal envelope or instant amplitude
energy

• sref,d(t) = sref (t)− sd(t)

• As(t) =
√
s2(t)−H{s} (t)2

• H {s} (t) is the Hilbert transform of
s(t)



Nonlinear Model Based Features
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Figure 4: Parallel Hammerstein models

NMBF are considered based on previous work presented in [6, 7]. Parallel Hammerstein
models are used to model the damaged structure (See Figure 4). The model is fully represented
by its kernels {hn(t)}n∈{1...N} (N being the model order and can be automatically estimated [8]).
The model is identified by means of Exponential Sine Sweeps excitation signal (e(t)). The
system output s(t) can be rewritten as follows:

s(t) =
N∑

n=1

(hn ∗ en)(t) (5)

= (h1 ∗ e)(t) +
N∑

n=2

(hn ∗ en)(t) (6)

= sL(t) + sNL(t) (7)

= sL(t) +
∑
n odd

(hn ∗ en)(t) +
∑

n even

(hn ∗ en)(t) (8)

= sL(t) + sNL
o (t) + sNL

e (t) (9)

The output signal is decomposed into a linear part and a nonlinear part (6). The nonlinear part is
in turn decomposed into odd harmonics contribution and even harmonics contribution (8). Three
features are chosen and computed as detailed in Table II.

SVM and PCA

SVMs SVM learning technique is used for the classification step. SVMs [9] are originally
introduced by Vapnik and co-workers [10, 11] and successfully extended by a number of other
researchers. SVMs are applicable to both classification and regression. When used for classi-
fication, SVMs separate a given set of binary labeled training data with a hyper-plane that is
maximally distant from them (known as the maximal margin hyper-plane). For cases in which
no linear separation is possible, they can work in combination with the technique of ’kernels’,
that automatically realizes a non-linear mapping to a feature space. The hyper-plane found by the
SVM in the feature space corresponds to a non-linear decision boundary in the input space. To
extend SVMs to multi-class scenario, a typical conventional way is to decompose a multi-class
problem into a series of two-class problems. One can distinguish between two implementations:

• One Against All ’OAA’ approach

• One Against One ’OAO’ approach



TABLE II: NONLINEAR MODEL BASED FEATURES.

Damage-sensitive feature Details

fshift =
fd − fref
fref

(10)

• Frequency shift

• fd is the frequency of the first mode of
the structure in the damaged case

• fref is the frequency of the first mode
of the structure in the reference case

• These frequencies can here be easily
extracted from the estimated nonlinear
model as the kernel h1(t)

NLL =

∫ f2
f1
|SNL(f)|2 df∫ f2

f1
|SL(f)|2 df

(11)

• SNL(f) is the nonlinear part of the sys-
tem output in the frequency domain

• SL(f) is the linear part of the system
output in the frequency domain

• [f1, f2] is the frequency interval in
which signals of interest are analyzed

EO =

∫ f2
f1
|SNL

e (f)|2 df∫ f2
f1
|SNL

o (f)|2 df
(12)

• Ratio of the even to the odd nonlinear
energies

• SNL
e (f) corresponds to even harmon-

ics contribution to the nonlinear part of
the system output in the frequency do-
main

• SNL
o (f) corresponds to odd harmonics

contribution to the nonlinear part of the
system output in the frequency domain

The ’OAO’ and the ’OAA’ are two popular strategies for multi-class SVM. ’OAO’ builds one
SVM for each pair of classes while ’OAA’ consists of building one SVM per class, trained to
distinguish the samples in a single class from the samples in all remaining classes. In this work, a
Gaussian kernel SVM is considered. SVM and Kernel Methods (SVM-KM) Matlab toolbox [12]
is used to perform multiclass classification.

PCA Principal Component analysis (PCA) [13] is a popular tool for linear dimensionality
reduction and feature extraction. Intuitively, PCA can supply the user with a lower-dimensional
picture of data when viewed from its most informative viewpoint. Several extensions of the
standard PCA have been proposed such as the Kernel PCA which is the nonlinear form of PCA
and which better exploits the complicated spatial structure of high-dimensional features. In this
work we opted for the standard PCA since our features vector is not very high-dimensional.

Input Features Scenarios

Several input features scenarios are considered according to which features to select to feed
and train the SVM algorithm:

• Scenario 1 Only SBF are used to train the SVM algorithm

• Scenario 2 Only NMBF are used to train the SVM algorithm

• Scenario 3 Both SBF and NMBF are used to train the SVM algorithm



• Scenario 4 PCA is performed on both SBF and NMBF and only 2 principal components
are used to train the SVM algorithm

• Scenario 5 PCA is performed on both SBF and NMBF and only 3 principal components
are used to train the SVM algorithm

EXPERIMENTAL INVESTIGATION

Test coupons were excited using an exponential sine sweep signal with 1kHz minimum fre-
quency (fmin), 100kHz maximum frequency (fmax), 0.45s sweep duration, 10V amplitude and
10MHz input sampling frequency. Twenty repetitions were considered. At each repetition one
goes around all PZT elements and only one PZT operates as an actuator while others operate as
sensors. Acquisition frequency was set to 1 MHz. An instance of measurements corresponding
to a given repetition is illustrated in Figure 5.
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Figure 5: Left: Excitation ESS signal, Right: Structure response signal

RESULTS AND ANALYSIS

From Output Signals to Input Features

Once signals are acquired, we proceeded to information condensation, that is, to damage-
sensitive features computing. Each class of damage state (0: healthy, 1: one laser impact, 2:
two contiguous laser impacts and 3: three contiguous laser impacts) has 400 instances. Each
instance is characterized by a total of seven features. Stratified sampling is considered; 70%
of data is used for training the SVM model and 30% of data is used for testing the model. In
the following figures, we represent training data in SBF space, NMBF space and in principal
components spaces. The first three principal components retain 94% of data variance while the
first two principal components retain 78% of data variance. Figures 6 and 7 reveal a structure of
four classes. Each corresponds to a state of damage severity. However, class separability is much
better in NMBF space and in principal components spaces than in SBF space.
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Figure 6: Data representation - Left: in SBF space, Right in NMBF space
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Figure 7: Data representation in principal components spaces

Classification Performance

Ten SVM models are established according to which approach is adopted (’OAO’ or ’OAA’)
and to which features are chosen as inputs (SBF, NMBF, SBF & NMBF, 3 PCs or 2 PCs). Models
performance on test data is then assessed. As illustrated in figure 8, independently of which
approach is used, SVM models trained on NMBF or on principal components perform better
than those trained on only SBF. This is clearly due to class overlapping introduced by SBF and
which induces the classifiers into error.
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Figure 8: Performance assessment of the considered SVM models on test data

CONCLUDING REMARKS

From the outcome of our investigation one can conclude that:

• NMBF bring forward more interesting information in terms of sensitivity to damage sever-
ity

• PCA reduces features vector dimension while performing well on damage severity recog-
nition

In our future research we intend to conduct further investigation, through numerical simulations,
in order to reveal the physical phenomena behind NMBF and to better understand damage/ exci-
tation interaction.
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