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 Application of the Proper Generalized Decomposition to Solve 

MagnetoElectric Problem 
 

T. Henneron1 and S. Clénet1 
 

1Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP, F-59000 Lille, France 

 

Among the model order reduction techniques, the Proper Generalized Decomposition (PGD) has shown its efficiency to solve a large 

number of engineering problems. In this article, the PGD approach is applied to solve a multi-physics problem based on a 

magnetoelectric device. A reduced model is developed to study the device in its environment based on an Offline/Online approach. In 

the Offline step, two specific simulations are performed in order to build a PGD reduced model. Then, we obtain a model very well 

fitted to study in the Online stage the influence of parameters like the frequency or the load. The reduced model of the device is 

coupled with an electric load (R-L) to illustrate the possibility offered by the PGD. 

 
Index Terms— Finite element method, Magnetoelectric problem, Proper Generalized Decomposition. 

 

I. INTRODUCTION 

O reduce the computational time of numerical models in 

the time or frequency domain, Model Order Reduction 

(MOR) methods have been developed and presented in the 

literature. These approaches have been mainly used to study a 

large number of devices in mechanics. In this field, the Proper 

Generalized Decomposition method has been largely 

developed since the early 2000’s [1][2]. In computational 

electromagnetics, the PGD approach has been applied with a 

fuel cell polymeric membrane model [3]. In static 

electromagnetism, the nonlinear behavior of a Soft Magnetic 

Composite Material and of a three phase transformer has been 

studied [4][5]. In magneto-quasistatics, the skin effect in a 

rectangular slot or in a conducting plate and a squirrel cage 

induction machine at standstill have been addressed [6][7]. 

Multi-physic problems have been also considered like a 

magneto-thermal problem [8], a piezoelectric energy harvester 

[9] or a magnetoelectric device at no-load [10]. 

The principle of the PGD method consists in expressing the 

solution by a sum of functions depending on each parameter 

of the problem, so-called modes. Each mode is determined by 

an iterative procedure and depends on the previous modes. In 

the case of systems of partial differential equations in the 

frequency domain, the PGD approach approximates the 

solution by a sum of functions separable in frequency and 

space. In this paper, we propose to apply the PGD approach to 

study a magnetoelectric device coupled with any electrical 

circuit. An Offline/Online approach is introduced. In the 

Offline step, two specific configurations of the problem 

without electric load are solved with the PGD in order to build 

a reduced model. The PGD formulation proposed is different 

to this presented in [10]. In fact, the global quantities like the 

voltage, the magnetic flux and the electric charge appear 

explicitly in the formulation. In the Online step, the reduced 

model of the device is coupled with an electric load (R-L). 

This model is very well fitted to study the influence of 

parameters like the frequency or the load. The results obtained 

with the PGD reduced model are compared in terms of 

accuracy and of computational time with the full model.  

II. MAGNETOELECTRIC PROBLEM 

Let us consider a domain D with its boundary  holding a 

2D sensor composed of magnetostrictive (MM) and 

piezoelectric (PZT) materials (Fig. 1). An external harmonic 

magnetic flux  is imposed. The sensor is clamped in 2 points 

where the displacement is imposed to zero in the two 

directions. Due to the symmetry of the studied problem, the 

electric potential is equal to v0 on v1 and to - v0 on v2. 
 

 
x 

y 

 
Fig. 1. Magnetoelectric sensor 

 

By neglecting the external forces, the eddy and displacement 

currents, the system of equations to be solved, based on the 

mechanical equilibrium equation as well as the magnetostatics 

and electrostatics ones, becomes 
   

0ρdiv 2  uT ω , (1) 

(b), 0div   (a), 0  DE curl  (2) 

(b)   0 div   (a),  0  BHcurl , (3) 

with T the stress tensor, u the displacement, D the electric 

induction, E the electric field, H the magnetic field, B the 

magnetic flux density,  the mass density and  the angular 

frequency. As we consider a 2D problem, we have curl X = 

(y Xz  -x Xz)t. Therefore, in the following, the curl equations 

can be modified in order to introduce the gradient operator 

gradR. The constitutive laws of MM and PZT materials are:  
 

BEST
tt hτc  , (4) 

SED  τ ε  , (5) 

SBH hν  , (6) 
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with S the strain tensor, c the stiffness tensor,  the 

piezoelectric coefficients,  the electric permittivity,  the 

magnetic reluctivity and h the relative piezomagnetic 

coefficients defined by h=e with e the piezomagnetic 

coefficients . To solve the problem, a formulation in terms of 

potentials can be used. From (2-a) and (3-b) and by assuming 

small deformations, we have 
 

)αα(v-v- v2v10 gradgradgradE   (7) 

ARR αΦ-- gradAgradB   (8) 

uugradgraduS D )(
2

1 t  
(9) 

with v the electric potential defined in D--v1-v2, v0 (resp. -

v0) the electric potential on v1 (resp. v2), v1 and v2 scalar 

functions equal to 1 and -1 on v1 and v2 respectively and 0 

elsewhere, A the magnetic potential defined on D-A1-A2 and 

A a scalar function equal to 1 on A1, -1 on A2 and 0 

elsewhere. Then, we seek for the solutions v, A and u in the 

space domain D and in the angular frequency interval 

[min:max].  

III. PROPER GENERALIZED FORMULATION  

The PGD method consists in approximating the solutions by 

a sum of separable functions in frequency and space. Then, v, 

A and u are approximated by separated forms of space and 

frequency functions,  
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with xD,  [min:max] and M the number of modes of 

the expansions. To apply the PGD approach, we consider a 

weak formulation on D[min:max] of (1), (2-b) and (3-a). In 

the following, we suppose that the electric charge Q is 

imposed. Then, we have: 
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 with u’,v’ and A’ test functions defined in the same spaces of 

the functions u, v and A respectively. To compute the 

functions l

jR  and l

jS for j[1:M] and l={v, A, u} and v0, an 

iterative enrichment approach is used. At the nth iteration, vn, 

An and un are expressed as functions of 
l

nR and 
l

nS  and of the 

known previous approximations vn-1, An-1 and un-1 such as 

1-n
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u

nn   ) (ω)S( uxRu  . Then, to compute the unknown 

functions 
l

nR , 
l

nS  and v0, two sets of equations deduced from 

(11-15) are solved iteratively. In a first step, we assume that 

the functions l

nS  with l={v, A, u} and v0 are known in order to 

calculate the functions 
l

nR . In 2D, the functions are 

discretised in the nodal element space such as 
l

n

ll

n WR R  for 

l={v, A, u} with W the vector which entries are the nodal 

functions and l
nR  the vector of the values at the nodes. Then, 

we solve  
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Where  is the damping coefficient and X* denotes the 

conjuguate of X. In a second step, the functions 
l

nS and v0 are 

recomputed with the functions
l

nR  supposed to be known. 

Then, for each k[min:max], we have: 
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The two steps are repeated until convergence of all 

functions
l

nR , 
l

nS  and v0 with l={v, A, u}. The number of 

modes M used to approximate the solutions is not known a-

priori by the user. Then, a criterion is defined to stop the 

enrichment process. For example, this criterion can be based 

on the norm of the nth mode with respect to the norm of the 

first mode  [1] or on quantities of interest [5][7][10]. The 

convergence of the enrichment process can be improved by 

introducing an update step of the frequency functions after 

each calculation of the new mode. This step enables to 

recompute an optimal subspace of functions orthogonal to the 
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residual [1]. It consists in recomputing the functions l

jS for 

j[1:n] with l={v, A, u} and v0 with respect to the functions 
l

jR . 

IV. APPLICATION 

In term of application, we consider the device presented in 

Fig. 1 and detailed in [10]. The 2D mesh is composed of 3283 

nodes and 6525 triangles. The frequency interval is fixed at 

[104;105]Hz with 401 equidistributed values. The aim is to 

study the device coupled with an electrical load when the 

magnetic flux  is imposed. The quantities of interest are the 

voltage between the two electrodes (i.e. equal to 2v0) and the 

maximal deformation along x and y. Then, an Offline/Online 

approach is used. On the Offline step, a reduced model of the 

device without load is built applying the PGD presented in 

section III. On the Online step, the reduced model is coupled 

with an electrical load in order to study the influence of the 

load parameters on the quantities of interest. 

A. Offline Step: determination of the PGD reduced model  

The reduced model is determined by taking advantage of the 

superposition principle. Two specific configurations of the 

problem are considered. For each case, approximations of the 

solutions under the forms given by (10) are computed. For the 

first configuration, the magnetic flux  is imposed and the 

charge Q is fixed to zero. Then, the PGD formulation 

presented in the section III is applied. We obtain the PGD 

approximations: v0, 
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Figure 2 presents the evolutions of the relative error on the 

electric potential v0 and the maximal deformations defx and 

defy along x and y as functions of the number of modes. The 

relative error is given by 
 

2ref

2pgdref

r
X

XX
X


ε

 (18) 

 

with X the vector of discrete values of quantity of interest (i.e., 

v0, defx or defy). With a low number of modes, the 

magnitude of v0 versus the frequency is close to the 

reference. With M=5, the relative error is close to 0.01% and 

the speed up versus the full model is equal to 8. To obtain 

good approximations of the maximal deformations, the 

number of modes must be greater, for M=16, we have 

rdefx<0.01% and rdefy<0.01% with a speed up equal to 

2.5. Figures 3 and 4 present the evolutions of the voltage 

magnitude and of the maximal deformation along x and y 

versus the frequency obtained from the PGD approximations 

for M=16. We can observe a phenomenon of resonance on v0 

and defx or defy. 
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Fig. 2. Relative errors on the electric potential v0 and on the maximal 

deformations defx and defy versus the number of modes  
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Fig. 3. Magnitude of the voltage versus the frequency. 
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Fig. 4. Maximal deformations along x and y versus the frequency. 
 

For the second configuration, the magnetic flux  is fixed to 

zero, the charge Q is imposed and the PGD approach is 

applied. The convergence of the PGD is similar to this of the 

first configuration. As the electric charge Q depends on the 

electrical load connected to the device, the approximations of 

the solutions are expressed as functions of Q such as: 
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ωxRu
. From two specific configurations of 

the problem, we can build a reduced model of the device 

depending on the electric charge. By applying the 

superposition theorem, the voltage U between the two 

electrodes, v, A and u are expressed by  
 

 Q2v2vv2U 0Q00  
  (a), 

Qvvv  
  (b), 

QAAA  
  (c) and 

Quuu  
(d). 

 

(19) 

B. Online Step: PGD reduced model of the device coupled 

with electric load 

We consider the device coupled with a load composed of a 

resistor R and of an inductance L (Fig. 5).   
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Fig. 5. Magnetoelectric device coupled with an electrical load 
 

The  device is modeled by the reduced model depending on 

the electric charge Q. Due to the load, a new coupling 

equation is added: 
 

QjI   with 0)I jL(RU  ω . (20) 
 

Then, by combining (19-a) and (20), for each 

k[min:max], Q(k) is computed by 
 

kk0Q

0
k

)j jL(R2v

2v-
)Q(

ωω
ω


   (21) 

 

By using (19-b), (19-c) and (19-d) and Q(k), we can 

calculate v, A and u. E, B and S can be also deduced from (7), 

(8) and (9). Figure 6 presents the real part of the deformation 

obtained from the reduced model at the mechanical resonance 

(f=73.9kHz). Three cases are considered such as the open 

circuit, R=4k and R=50 with L=10mH. Figures 7 and 8 

present the evolutions of the voltage magnitude and of the 

maximal deformation versus the frequency. Then, the maximal 

magnitude of the voltage decreases when the modulus of the 

load increases. For the last case (R=50, L=10mH), an 

electric resonance can be observed on Fig. 7 for a frequency 

equal to 27.8kHz. This resonance influences the maximal 

deformations. For all cases, the relative errors on v0,  defx or 

defy between the full and PGD models are smaller than 0.01% 

and the speed up is equal to 53. We can see also that, at the 

contrary to an equivalent electric circuit based on lumped 

parameters, the link with the full model is kept. In fact, the 

field distributions can be determined very quickly if necessary 

from the reduced model. This is not the case with an 

equivalent circuit which requires, if the field distributions are 

needed, the solution of the full model.  

V. CONCLUSION 

The Proper Generalized Decomposition has been applied to 

a magnetoelectric problem to build a reduced model (Offline 

stage). Then, the PGD reduced model has been coupled with 

an electric load in order to study the device in its environment 

during an Online stage. The PGD approach and the use of a 

reduced model enable to reduce the computational times 

compared with a full model while maintaining good accuracy 

and an access to any local and global quantity. 

 
Fig. 6.  Real part of the deformation for f=73.9kHz. 
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Fig. 7. Magnitude of the voltage versus the frequency for different values 

of electrical load. 
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Fig. 8. Maximal deformations along x and y versus the frequency for 

different values of electrical load. 
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