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Experimental investigation on the effect of load distribution on the
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A B S T R A C T

In the design procedure of a counter-rotating axial-flow stage, parameters such as the angular velocity ratio and
the repartition of the work performed by each rotors are to be chosen. In the present Article, three counter-
rotating stages are designed to meet the same working point. These stages have different repartitions of load
between the front and rear rotor, different angular velocity ratios or mean stagger angles of the blades of the
front rotors. The stage global characteristics and the unsteady features of the flow between the counter-rotating
rotors are measured and compared. The three systems all have satisfying overall performances at the design
point. Strong differences are observed in the flow field at partial flow rates, the rear rotor reducing the hub
recirculation. The behaviour at partial flow rates is thus triggered by the rear rotor characteristics. The best
compromise is obtained with a repartition of the loading of 60% for the front rotor and 40% for the rear rotor,
with almost equal angular velocities.

1. Introduction

Counter-rotating axial turbomachines such as propellers, axial-flow
pumps and low-speed fans are used in various industrial domains [1–7].
In a counter-rotating stage (CRS), the front rotor (FR) and the rear rotor
(RR) rotate in opposite directions (see Fig. 1). The rear rotor has two
functions: it converts part of the rotational kinetic energy of the flow
coming from the front rotor to static head and also supplies energy to
the fluid. A high performance and compact turbomachine can therefore
been designed, with a reduction of the rotational speed and a better
homogenization of the flow downstream of the stage, compared to a
single rotor or rotor-stator stage [8–10]. On the other hand, counter-
rotating turbomachines present some drawbacks such as an increase in
mechanical complexity, or a potential increase in noise generation.

One of the difficulties in the design of such machines is the presence
of highly unsteady flows in the mixing area between the rotors. Strong
unsteady interactions between the rotors may lead to large acoustic
noise emission [11] and may affect the performances of the stage
[12,13]. When designing a counter-rotating stage, some parameters
such as the distribution of the total work between the two rotors or the
ratio of the rotation rates have to be chosen, this choice being most
often somehow arbitrary. Few studies have been carried out about the
effects of design parameters on the stage performances and on its un-
steady flow features.

For instance, Shigemitsu et al. [1] compare two counter-rotating

pumps with the same front rotor and two different rear rotors. They
conclude that the pressure field of the front rotor is strongly influenced
by the rear rotor. The unsteady pressure fluctuations are dominated by
the rear rotor blade passing frequency, and are located close to the front
rotor. In subsequent works [2,8], they also compare a counter-rotating
pump with a rotor-stator stage and perform Laser Doppler Velocimetry
measurement, focusing on the rotor-rotor interaction at partial flow
rate. They propose that decreasing the rear rotor rotational speed and
stagger angle would be beneficial for the stable operation of the pump,
by suppressing the back flow region at the inlet tip region of the rear
rotor. They eventually observe that the blockage effect of the rear rotor
on the flow field close to the front rotor blades trailing edges seems
stronger than the effects of the front rotor wake on the rear rotor.

The effect of the axial distance between the counter-rotating rotors
of an axial-flow fan is studied by Shigemitsu et al. [5]. They conclude
that the influence of this distance on static pressure rise is stronger at
partial flow rate than at design flow rate. The axial distance exhibits a
slight influence on the static pressure rise of the front rotor, the static
pressure of the rear rotor decreasing gradually as the distance increases
above 1.25 mean chord length of the front rotor blades.

Among the few studies dedicated to the design procedure of a
counter-rotating stage one can cite the works of Cho et al. [14] who use
a conventional design method based on the simplified meridional flow
method with the radial equilibrium equation and the free vortex design
condition, and study the effect of parameters such as the hub to tip
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ratio, or the solidity. Cao et al. [15] used Computational Fluid Dy-
namics results to re-design the rear rotor of a counter-rotating pump
and obtain an increase in performances with respect to the original rear
rotor conventional design. Finally, in the Dynfluid Laboratory from Arts
et Métiers-ParisTech University, series of experiments focused on the
validation of an original design method for ducted low-speed counter-
rotating axial-flow fans have been performed [9]. Based on this work,
three different counter-rotating stages (JW1, JW2 and JW3) have been
designed to attain the same specifications, while varying the distribu-
tion of the work performed by the front and rear rotors. First results on
the global performances of the three stages close to the nominal flow
rate have been presented in Ref. [16], for different axial distances be-
tween the front and rear rotors and for various rotation rates of the rear
rotors.

In the present Article, the study of these three counter-rotating
stages is firstly extended to very partial flow rates, and is supplemented
with an analysis of local velocity profiles. The three stages are studied
at a fixed axial distance between the front and rear rotors and at their
nominal angular velocity ratios. The peculiar specifications of each of
the three stages are briefly recalled in Section 2. Then, the experimental
setup and an analysis of the uncertainty of the measurements are re-
ported in Section 3. The features of the three stages are analyzed and
compared in Section 4: the overall performances are discussed in Sec-
tion 4.1, then the time-averaged velocity profiles in between the front
and rear rotors are studied in Section 4.2, and finally unsteady features
are explored in Section 4.3. Concluding remarks are then given in
Section 5.

2. Design and geometry of the three counter-rotating stages

2.1. Specifications and design procedure

In the design procedure of a CRS that has been developed at the
DynFluid Laboratory [9], the front rotor is first designed to achieve a
part of the total pressure rise at the design flow rate. This is done with
the in-house software MFT (Mixed Flow Turbomachinery), described in
Ref. [17]. Please note that the total pressure rise that is considered is the
difference of total pressure between the inlet and the outlet of a rotor

and thus includes the contribution of the tangential kinetic energy. In
the present case, the front rotors of the three systems are designed with
the same radial distribution of the blade loading. It consists of a
“Constant Vortex” Design [18,19], i.e. the Euler work per unit mass
increases linearly from the hub to the tip of the blades or equivalently
the blade loading that is the ratio of the Euler work to the square of the
peripheral velocity is decreasing like r1/ along the radial direction.
From the specified total pressure rise, hub and tip radii (Rtip and Rhub),
volume flow-rate and rotating speed, the velocity triangles are com-
puted for 11 radial sections, based on the Euler equation for perfect
fluid with a rough estimate of the efficiency of =η 60%est and on the
equation of simplified radial equilibrium (radial momentum conserva-
tion). The blades are then defined by the local resolution of an inverse
problem, searching for the best suited cascade to the proposed velocity
triangles. The blade cascade is defined by a NACA65-series blade of
aerodynamic camber ∞Cz 0 and stagger angle γ and by the cascade so-
lidity σ . The MFT software is based on empirical correlations of the
characteristics of NACA65-series blade cascades that have been fitted
on the results published in Ref. [20]— these correlations having been
validated for ⩽ ⩽σ0.5 1.5 and ⩽ ⩽∞C0 2.7z 0 [17].

Then, a simple 1D analysis —including semi-empirical loss models
fitted on the results published in Ref. [20] and the introduction of the
effect of the hub and casing boundary layers with velocity deficit
laws— is used to predict the axial and tangential velocity profiles at the
outlet of the front rotor. All the details are available in Ref. [17]. These
profiles are taken as the inlet conditions for the conception of the rear
rotor that is designed with two constraints: the angular velocity is set to
meet the required total pressure rise, and the profiles of camber, so-
lidity and stagger angles of the blade cascade are chosen such that the
absolute tangential velocity at the outlet of the stage vanishes (pure
axial velocity profile). The rear rotors are thus designed to realign the
outflow of the front rotors toward the axial direction which leads to not
usual shapes blade loading profiles of the rear rotors, with non-mono-
tonic stagger angle and blade camber profiles (see Fig. 3 in Ref. [16]
and Table 3 in the present Article).

The common specifications of the three stages —JW1, JW2 and
JW3— are presented in Table 1. The volumetric flow rate and total
pressure rise are the same as for the first prototype —HSN— described

Fig. 1. Sketch of the experimental set-up, with a detailed view of the counter-rotating stage. The axial distances are measured from the aft of the hub of the front rotor.
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and analyzed in Ref. [9]. All the rotors are made of blades of circular-
arc camber lines, with NACA65 profiles. The hub-to-tip radius ratio is
constant and equal to =R R/ 0.347hub tip . It has been increased with re-
spect to the HSN prototype in order to have the same radius for the fan
hub and for the driving motor casings. The radial gap between the rotor
tip and casing is 2.5mm, that is 2% of the blade span. All the rotors
have the same inner and outer radii.

2.2. Geometry of the three different CRS

The parameters that are used to design the three counter-rotating
stages are presented in Table 2, and the resulting geometries of the
blade cascades of the rotors are described in Table 3. The load dis-
tribution ratio L is defined as the ratio of the total pressure rise due to
the rear rotor to that of the counter-rotating stage at the design flow
rate:

=L
p

p
Δ

Δ
t RR

t

,

(1)

The peculiar features of each CRS are the following:
JW1 This CRS is very similar to the configuration HSN that was

studied in Refs. [9,10], with very similar parameters (load distribution
ratio ≃L 40%, rotation rates and angular velocity ratio ≃θ 1). One
difference is that the front rotor of JW1 (JW1FR) has larger stagger
angles with respect to that of HSN.

JW2 This one corresponds to the highest load distribution ratio
( =L 52%) that was compatible with the geometrical and technical
constraints of our experiments (e.g. maximum rotation rate of the mo-
tors). In this counter-rotating stage, the rear rotor transfers a little bit
more energy to the fluid than the front rotor does, and thus JW2FR
possesses the lowest pressure rise among the three front rotors. It is
furthermore designed with low stagger angles. The rear rotor rotates
1.44 times faster than the front rotor in that configuration. The
Reynolds number based on the blade chord length and on the relative
velocity is fairly low for the front rotor, which may lead to a reduced
efficiency [21].

JW3 This stage correspond to the opposite case, with the lowest
=L 23% and a rear rotor that rotates much more slowly than the front

rotor, JW3FR, which may have the highest and steepest characteristics
among the front rotors working alone.

3. Experimental setup

The test rig is built according to the ISO-5801 standard and has been

described in Refs. [9,16]. A sketch of the experimental setup is shown in
Fig. 1. The test bench consists of a cylindrical pipe of inner diameter

=D 380 mm. Two brushless PANASONIC A4 motors drive each rotor
separately and are hidden in a casing of diameter D0.32 and of length

D0.45 , with a warhead-shape end. The front and the rear motors are
bound to the tube by two rod rows (3 and 5 rods, the first row being at

D0.1 from the rotors). Please note that the flow is homogenized by a
honeycomb situated upstream of the front rotor, the rod rows being
hidden into the honeycomb. An anti gyration device is placed D2
downstream of the stage to remove the rotational component of the
flow and to homogenize the flow before the measurements of the static
pressure. It is made of eight metal sheets of thickness 1.5 mm and length

D2 , according to the ISO-5801 standard. The static pressure is measured
D1 downstream of the anti gyration device through four flush-mounted
pressure taps. A half-turn bend is then used to reduce the axial over-
crowding. The volumetric flow rate is measured with an ISO-5167
standard diaphragm, located D10 downstream of the tube bend and D5
upstream of the pipe outlet. The diaphragm has a diameter =d D0.73 .
Finally, the flow is regulated by an axial blower and an iris damper
before being discharged into the ambient atmosphere. In the present
Article, the distance between the rotors is fixed to 10mm, which cor-
responds to 8.2% of the blade span, or approximately 20% of the average
chord length of the front rotors and 15% of the average chord length of
the rear rotors.

3.1. Measured and derived quantities

3.1.1. Measured quantities and accuracy
The atmospheric pressure pa is measured with an accuracy of

100 Pa.
The dry temperature Tad and the wet temperature Taw are measured

with a Fluke 51 Series II thermometer with an accuracy of
0.05%+0.3 K.

The static pressure rise without correction pΔ v is the pressure dif-
ference between the four pressure taps downstream of the anti-gyration
device and the atmosphere. It is measured with a Furness Control dif-
ferential pressure transmitter FCO318, scaled at ± 2.5 kPa, with an ac-
curacy of 0.25% of reading.

The volumetric flow rate is measured with an ISO-5167 orifice
plate. The pressure drop through the orifice plate pΔ q is measured with
the same differential pressure transmitter.

In order to eliminate the pressure drop caused by the experimental
facilities such as the honeycomb, the driving motor housing and the
anti-gyration device, the static pressure drop has been measured
without rotors, using the axial blower at the outlet of the test rig to
create the flow. Then this pressure drop pΔ drop is modelled as a function
of the orifice plate pressure drop pΔ q.

The torques applied to the rotors τ are measured by the Panasonic
Minas A4 servo-controllers of the brushless AC motors. The value given
by the servo-controllers has been calibrated against a HBM TW20N
rotating torquemeter of accuracy 0.02 Nm. The agreement between the
two values is within 0.1%. The measured value is corrected by the
torque measured when the rotors are removed from the shaft.

The angular velocity of the two rotors ω is regulated within ± 2 rpm.

3.1.2. Derived quantities
The actual density of air ρa is evaluated according to the ISO-5801

standard, by measuring the atmospheric pressure pa, the dry tempera-
ture Tad and the wet temperature Taw, from which the partial pressure of
the water vapour pwv is computed:

=
−

ρ
p p

T
0.378

287a
a wv

ad (2)

The volumetric flow rate is deduced from the measurement of the
pressure drop through the orifice plate pΔ q according to the ISO-5167
standard:

Table 1
Common specifications of the three CRS: geometrical constraints and design point. D
stands for the diameter of the pipe, Rhub and Rtip for the radii of the rotors at hub and tip,

pΔ t for the total pressure rise, pΔ s for the static pressure rise according to the ISO-5801
standard and Qv for the volumetric flow rate. The values correspond to air with a density

=ρ 1.21a kgm−3.

D (mm) Rhub (mm) Rtip (mm) pΔ t (Pa) pΔ s (Pa) Qv (m3 s−1)

380 65 187.5 420 373 1

Table 2
Design parameters of the three CRS. The rotation rates of the front rotor and rear rotors
are respectively NFR and NRR. The nominal angular velocity ratio is =θ N N/RR FR0 . The
parameter L is the load distribution ratio at design point (see text). The number of blades
of the Front Rotor and rear rotors are respectively ZFR and ZRR.

L % N N|FR RR (rpm) θ0 Z Z|FR RR

JW1 41 2300|2200 0.96 10|7
JW2 52 1800|2600 1.44 13|7
JW3 23 2600|1100 0.42 10|7

F. Ravelet et al.
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In this equation, the coefficient ∊ takes into account the effects of
compressibility and is here ⩽ ∊ ⩽0.998 1. The coefficient α depends on
the ratio of the diaphram diameter to the pipe diameter, and depends
slightly on the Reynolds number. In the range that is explored here,

⩽ ⩽α0.726 0.732.
The static pressure rise of the CRS pΔ s is the difference between the

static pressure downstream of the CRS and the inlet total pressure and is
a combination of different measured quantities:

= + − ⎛
⎝

⎞
⎠

p p p ρ Q
πD

Δ Δ Δ 1
2 /4s v drop a

v
2

2

(4)

The total power consumed by the CRS is defined as:

= + = +P P P τ ω τ ωstage FR RR FR FR RR RR (5)

Finally, the static efficiency is defined as:

=η
p Q

P
Δ

s
s v

stage (6)

3.2. Estimation of the uncertainties

The uncertainty are first estimated according to ten measurements
that have been performed at the same rotation rates and for a fixed
diameter of the iris damper. The final uncertainty that is given hereafter
takes into account the accuracy of the measuring devices and the pro-
pagation of uncertainties.

3.2.1. Density of air ρa
According to the repetition of measurements and simple propaga-

tion of uncertainty rules, the relative uncertainty of ρa is ± 0.3%. Please
note that all the presented results are rescaled to a reference density

=ρ 1.21a kgm−3.

3.2.2. Volumetric flow rate Qv
As presented previously, the volumetric flow rate is measured by an

ISO-5167 orifice plate at more than D15 downstream of the CRS.
According to the repetition of measurements and to the accuracy of the
transducers, the uncertainty of Qv is ± 0.4% at the design flow rate.

3.2.3. Correction for the losses
At the design point, the uncertainty of pΔ drop is about ± 0.9%, which

means ± 1.0 Pa.

3.2.4. Static pressure rise pΔ s
The uncertainty of pΔ s is then ± 4 Pa close to the design flow rate,

that is a relative uncertainty of ± 1% for the CRS.

3.2.5. Power consumption Pstage
The uncertainties of the total power consumption is ± 4.5 W that is

0.8% of the power at the design point.

3.2.6. Static efficiency ηs
The relative uncertainty of ηs is ± 2% (about ± 1.3 percentage points

at the nominal flow rate).

3.3. Velocity measurements

The axial and tangential components of the velocity along the radial
direction are measured on 25 positions from =r 65 mm to =r 185 mm
using a one-component Laser Doppler anemometry LDA system through
a thin and flat window, integrated to the duct. The LDA system consists
of a Innova Coherent 70S continuous argon ion laser, a Dantec
Dynamics Fiberflow 60mm probe system with a beam expander and a
Dantec Dynamics BSA enhanced 57n20 for burst spectrum analysis. The
main characteristics and dimensions of the system are given in Table 4.
The flow is seeded with a fog generator that generates 1–5μm particles.
The inlet and outlet of the test-rig are enclosed in a 12m3 room where
the fog is generated.

The LDA measurements are performed at three axial position: 5 mm

Table 3
Blade cascade parameters of the rotors. R is the radius, γ the stagger angle, Lchord the chord length, σ the solidity andD the Lieblein’s diffusion factor. The blade profile is a NACA65(xx)
yy with xx standing for the relative camber and yy representing the relative thickness. The Reynolds number Re is based on the relative velocity and chord length at each radius at the
design flow rate =Q 1v m3 s−1, for air with a density =ρ 1.21a kgm−3 and a dynamic viscosity = × −μ 1.8 10 5 Pa s.

R γ Lchord σ D Profile Re
(mm) (°) (mm)

FR of JW1 hub 65 40.7 47.2 1.2 0.55 NACA65(15)11 ×5.9 104

Midspan 126.5 63.5 54.6 0.7 NACA65(08)09 ×1.2 105

tip 187.5 71.6 62.0 0.5 0.37 NACA65(06)08 ×1.9 105

FR of JW2 hub 65 27.6 42.5 1.4 0.57 NACA65(21)12 ×4.5 104

Midspan 126.5 55.2 44.3 0.7 NACA65(14)11 ×7.7 104

Tip 187.5 66.4 46.1 0.5 0.52 NACA65(10)11 ×1.1 105

FR of JW3 Hub 65 42.9 43.0 1.1 0.62 NACA65(17)12 ×5.8 104

Midspan 126.5 65.5 51.1 0.6 NACA65(09)10 ×1.2 105

Tip 187.5 73.1 59.2 0.5 0.39 NACA65(07)08 ×2.1 105

RR of JW1 hub 65 75.3 49.2 0.8 0.68 NACA65(04)12 ×9.3 104

Midspan 126.5 68.1 67.3 0.6 NACA65(04)09 ×1.7 105

tip 187.5 76.9 85.4 0.5 0.37 NACA65(03)07 ×3.0 105

RR of JW2 Hub 65 74.9 48.6 0.8 0.52 NACA65(03)12 ×9.5 104

Midspan 126.5 70.8 67.1 0.6 NACA65(03)09 ×1.9 105

tip 187.5 78.3 85.6 0.5 0.31 NACA65(02)07 ×3.5 105

RR of JW3 Hub 65 66.9 53.6 0.9 0.44 NACA65(04)11 ×8.3 104

Midspan 126.5 55.3 70.1 0.6 NACA65(10)09 ×1.1 105

Tip 187.5 68.6 86.6 0.5 0.63 NACA65(07)07 ×1.9 105

F. Ravelet et al.



upstream of the FR, half-way between the two rotors and 5mm
downstream of the rear rotor, i.e. at = − =Z Z46, 5p p and =Z 50p mm
(see Fig. 1 for the =Z 0 reference). These positions corresponds to 4% of
the blade span upstream of the front rotors, downstream of the front
rotors and downstream of the rear rotors, or to 10% (7.5%) of the average
chord length of the front (rear) rotors.

4. Comparison of the three stages

4.1. Overall characteristics

The characteristics of the three stages and of the three front rotors
working alone are shown in Fig. 2. Closed symbols stand for the front
rotors working alone and open symbols stand for CRS at their nominal
angular velocity ratios θ0. The specification point is displayed with the
magenta star ( ). Two or three series of experiments performed at
different days are plotted for each configuration, with variation in air
density up to 3%. Once rescaled to the reference density

=ρ 1.21a kgm−3, the data fairly collapse, the discrepancy between the
different series being less than 1%, i.e. below the estimated un-
certainties. The characteristics of the rear rotors working alone are
plotted in Fig. 3.

The power consumption of the different rotors working alone or in a
CRS are plotted in Fig. 4. The values of the static pressure rise, static
efficiency and of the power consumed by the front and rear rotors at the
design volumetric flow rate =Q 1v m3 s−1 are reported in Table 5. Fi-
nally, the ratios of the power consumed by the rear rotor to the power
consumed by the whole stage for the three CRS are plotted in Fig. 5.

At first sight, the main global features that are observed are very
similar to the results reported in Refs. [9,10]. First of all, the static
efficiency peak of the CRS are significantly greater than that of the front
rotors working alone (see Fig. 2b). The gain in static efficiency that is
observed for the CRS with respect to the FR alone is of roughly + 19
percentage points for JW1, + 27 for JW2, and + 14 for JW3. The three
CRS are thus very efficient, the typical maximum static efficiency of a
traditional rotor-stator stage being of the order of 55% according to Ref.
[22], and up to 60% for exceptional stages (see also Refs. [10,19,23]).
Shigemitsu et al.[8] also reported a small increase in maximum total
efficiency—that is based on total pressure rise or “ head”– for a counter-
rotating axial pump, with respect to a rotor-stator pump working under
the same conditions.

Then, the slopes of the characteristics are steeper for the CRS than
for the FR alone (see Fig. 2a), as reported also in Ref. [8]. The shapes of
the static pressure rise curves of the CRS are moreover fairly well
correlated to the behavior of the rear rotors, as can be seen in Figs. 3
and 4b that represents the power consumption of the rear rotors. This
feature has also been reported on the two counter-rotating axial pumps
studied in Ref. [2], and on the very small axial fan studied in Ref. [5].

Next, on a more quantitative point of view, the results are very
satisfying. For the front rotors working alone, the measured values that
are reported in Table 5 match within ± 3% the predictions of the design
in-house code, for the three cases. When coupling the front rotors to
their rear rotors to form the three CRS that are studied here, the static
pressure rise at the design flow rate is also quite well achieved for the
three CRS: the third stage JW3 has a pressure rise that is 12% lower

than the target, as the very first counter-rotating stage studied in Ref.
[9], while the static pressure rise for JW1 is only 3% below the design
value of 373 Pa.

Finally, one can observe a slight tendency for the power consumed
by the FR of each CRS to increase with respect to the same isolated rotor
(please compare dash-dotted lines and solid lines in Fig. 4b, and the
data reported in Table 5). The magnitude of this increase is hardly
greater than the uncertainty close to the nominal flow rate: it is of the
order of 5W. This effect is more significant at partial flow rate, where
the increase is of the order of 30–40W for the three CRS at volumetric
flow rates lower than ⩽Q 0.4v m3 s−1. It is also more pronounced for
JW2 in which the rear rotor rotates the fastest. These last two ob-
servations are consistent with the conclusions reported in Refs. [1,2].

Looking now at the ratio of the power consumed by the rear rotor to
the power consumed by the whole stage that is plotted in Fig. 5, one can
notice that this ratio is very close to the design load distribution L at the
design point: it is 39% for JW1, 50% for JW2 and 19% for JW3 at

=Q 1v m3 s−1 when the values of L are respectively =L 41%, =L 52%
and =L 23% (see also Table 2). One could thus infer that the total ef-
ficiencies of the rear and front rotors are very close. The ratio of the
powers is fairly constant at partial flow rates, with a small peak value at

≃Q 0.6v m3 s−1 for the three CRS. On the other hand, it decreases

Table 4
Characteristics of the LDA system.

Laser power: 12 W
Wavelength: 488 nm
Beam diameter: 1.5 mm
Beam expander ratio: 1.85
Focal length: 310 mm
Meas. vol. length: 590 μm
Meas. vol. thickness: 70 μm

Fig. 2. Overall characteristics of the counter-rotating stages (open symbols) and of the
front rotors working alone (closed symbols). (a) Static pressure rise pΔ s vs. volumetric

flow rate Qv and (b) static efficiency ηs vs. volumetric flow rate Qv. (∘: JW1), ( : JW2), (

: JW3). ( : specification point). The insets correspond to a zoom close to the design flow
rate and the data in the insets are plotted with vertical and horizontal errorbars as dis-
cussed in Section 3.2. The solid and dashed lines are smoothing splines and are used as
eye guides.

F. Ravelet et al.

105



rapidly at overhead flow rates. This is consistent with the fact that the
pressure rise of the CRS rapidly decreases to a value close to the FR
working alone and that the power consumed by the FR is barely af-
fected by the RR at overhead flow rates. One would thus expect stronger
interactions or influence of the rear rotors at partial flow rates. This will
be confirmed by comparing LDA measurements of the velocities in a
single rotor stage (FR working alone) to a the counter-rotating stage for
the three CRS (see Section 4.2).

Let us now study each CRS in more details.

— JW1 (• in Figs. 2, 4 and 5). This counter-rotating stage presents the
best static efficiency among the three stages, reaching ±66.5 1% at

=Q 0.97v m3 s−1. The front rotor working alone presents a mono-
tonous characteristic curve. The static efficiency curve is quite flat
around the design flow rate. For the counter-rotating stage, one can
observe a pronounced break in the slope at ≃Q 1v m3 s−1. The shape
of the static efficiency curve is also modified with a sharp decrease
of the efficiency at small overhead flow rates.

— JW2 ( in Figs. 2, 4 and 5). Surprisingly enough, the characteristic
curves of the CRS are very close to that of JW1, although the values
of θ0 strongly differ between the two stages —the rear rotor rotating
much faster in JW2— and although the front rotors JW1FR and
JW2FR behave in a very different way. Indeed, the front rotor JW2FR
presents very low static efficiency and the static pressure rise curve
is flat or even has a slightly positive slope. This is consistent with the
low stagger angles of JW2FR. At the design flow rate, the increase of
the power consumption of the front rotor when coupled to the rear
rotor corresponds to a 3% increase and is greater than the un-
certainty of the power measurement, contrary to the JW1 case were
the 1% increase it is of the order of the uncertainty.

— JW3 ( in Figs. 2, 4 and 5) The front rotor JW3FR exhibits the best
performance, with a static efficiency of ±48.3 1% at

≃Q 0.98v m3 s−1. The corresponding static pressure rise curve is
quite steep and almost parallel to that of JW1FR. Concerning the
counter-rotating stage JW3, it has a lower performance at partial
flow rates than the two other CRS with a pressure rise of the order of

Fig. 3. Overall characteristics of the rear rotors working alone. (a) Static pressure rise pΔ s
vs. volumetric flow rate Qv and (b) static efficiency ηs vs. volumetric flow rate Qv . (∘:
JW1RR), ( : JW2RR), ( : JW3RR). The solid lines are smoothing splines and are used as
eye guides.

Fig. 4. Power consumption of the rotors vs. volumetric flow rate Qv: (a) total power
consumption in the three CRS. (•: JW1), ( : JW2), ( : JW3). (b) Power consumed by the

front rotors included in a CRS (closed symbols) and by the rear rotors (open symbols). The
solid lines are smoothing splines and are used as eye guides. The dash-dotted line are
smoothing splines of the data obtained for the front rotors working alone.

Table 5
Characteristics of the three front rotors working alone and of the three counter-rotating
stages at the design volumetric flow rate =Q 1v m3 s−1.

pΔ s (Pa) ηs (%) Power (W)

(FR) (RR)

FR1 ±154 3 ±46.7 1 ±331 2.5
JW1 ±362 4 ±66.4 1 ±335 2.5 ±211 2

FR2 ±99 2 ±37.8 1 ±263 2
JW2 ±349 4 ±64.5 1 ±271 2 ±270 2.5

FR3 ±204 3 ±48.3 1 ±422 2.5
JW3 ±329 4 ±62.5 1 ±427 2.5 ±100 1.5

Fig. 5. Ratio of the rear rotor power consumption to the CRS power consumption vs.
volumetric flow rate Qv. (•: JW1), ( : JW2), ( : JW3). The solid lines are smoothing

splines and are used as eye guides.
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80 Pa lower than that of JW1 and an efficiency 8 percentage points
lower than that of JW1 for ⩽ ⩽Q0.4 0.8v m3 s−1. A break in the
slope of the static pressure rise curve can still be observed around

≃Q 1.08v m3 s−1, however it is less pronounced than for JW1 and
JW2. Moreover, the efficiency curve is more flat at overhead flow
rates.

4.2. Averaged velocity profiles

LDA measurements of the axial and tangential components have
been performed along the spanwise direction at three different flow
rates. The results are plotted in Fig. 6 for =Q 1v m3 s−1, in Fig. 7 for

=Q 0.6v m3 s−1 and Fig. 8 for =Q 0.37v m3 s−1. The measurements that
are discussed in the present Article have been performed 5mm (4% of
the blade span and 10% of the average chord length) downstream of the
front rotor. In each figure, the open symbols stand for the front rotors
working alone, and the closed symbols stand for the counter-rotating
stages. These measurement allow thus to analyse the effects of the
presence of a rear rotor onto the average flow that is discharged by the
front rotors, at the design flow rate, at a moderate partial flow rate and
at very low flow rate.

For the design flow rate =Q 1v m3 s−1, the overall shape of the
velocity profiles are in much better agreement with the profiles pre-
dicted by the in-house code than what has been reported in Ref. [9] for

the first prototype (HSN). The axial velocity profiles are indeed more
flat and do not present any recirculation close to the hub for the three
stages, contrary to the HSN case. This may be due to the fact that the
radii of the rotor hubs have been increased from 55mm for HSN to
65mm for JW1, JW2 and JW3, in order to match the radius of the
casing that support the motor.

For the three stages, one can notice a decrease of the axial velocity
close to the hub when the rear rotor is present (closed symbols in
Fig. 6a-c-e), compared to the case of a front rotor working alone (open
symbols in Fig. 6a-c-e). This is compensated by a small increase of the
axial velocity in the blade tip region, in order to have a constant flow
rate. This characteristic is more pronounced for JW3.

In the main part of the blade span (between 20% and 90%), the rear
rotors only marginally slow down the flow gyration downstream of the
front rotors. However, though the average velocity profiles are hardly
affected in this part of the blade, the fluctuations are twice as large —of
the order of 20% of the average velocity for the counter-rotating stages,
and of 10% for the front rotors alone. The tangential velocities are
substantially affected by the presence of the rear rotors close to the hub
and in the tip region. The strongest modifications of the average tan-
gential velocity are observed close to the hub. This velocity is of the
order of 10m s−1 for the front rotors working alone, while it is close to
zero for the three counter-rotating stages and substantially slowed
down up to 20% of the blade span. A smaller decrease of the order of
3–5m s−1 is observed in the tip region, between 90% and 97% of the

Fig. 6. LDA measurements at =Z 5p mm downstream of the front rotor. =Q 1v m3 s−1.

(a-c-e): axial velocity Vz ; (b-d-e): tangential velocity Vθ. (a-b): ∘—JW1FR, •—JW1. (c-d):
—JW2FR, —JW2, —JW3FR, —JW3.

Fig. 7. LDA measurements at =Z 5p mm downstream of the front rotor. =Q 0.6v m3 s−1.

(a-c-e): axial velocity Vz ; (b-d-e): tangential velocity Vθ. (a-b): ∘—JW1FR, •—JW1. (c-d):
—JW2FR, —JW2, —JW3FR, —JW3.
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blade span. This feature is strongly correlated to the rear rotor rotation
rate: it is negligible for JW3 ( =N 1100RR3 rpm), then it corresponds to a
small variation for JW1 ( =N 2200RR1 rpm) and is strong for JW2
( =N 2600RR2 rpm). An opposite effect is observed for the upper part of
the blade tip and in the gap between the rotor and the casing (above
97% of the blade span): while the tangential velocity downstream of the
front rotor rotating alone is very close to zero in this region, it is
strongly increased for the counter-rotating stages.

For partial flow rates =Q 0.6v m3 s−1 in Fig. 7 and =Q 0.37v m3 s−1

in Fig. 8, the three systems behave differently, and the interactions
between the front and rear rotors are enhanced. Concerning the case
when only the front rotor is working, The JW1FR (∘) and JW3FR ( ) give
very similar velocity profiles. They both present negative axial velo-
cities, corresponding to a recirculation respectively below 17% and
22% of the blade span at =Q 0.6v m3 s−1, and below 45% of the blade
span for JW1 ,51FR % of the blade span for JW3FR at =Q 0.37v m3 s−1. On
the contrary, the axial velocity downstream of JW2FR ( ) does not
present recirculation at =Q 0.6v m3 s−1 and a relatively small re-
circulation bubble extending to 31% of the blade span at

=Q 0.37v m3 s−1. The same grouping —JW1FR and JW3FR vs. JW2FR—
can be made for the shape of the tangential velocity profiles. This is
consistent with the fact that the shapes of the different curves —static
pressure rise and static efficiency vs. volumetric flow rate in Fig. 2 and
power consumed vs. volumetric flow rate in Fig. 4b— are similar for

JW1FR (∘) and JW3FR ( ), while quite different for JW2FR ( ). This may
be linked to the values of the stagger angle, that is large for JW1FR and
JW3FR and significantly smaller for JW2FR (see Table 3).

When coupling now the rear rotors to form a counter-rotating stage,
one can notice large modifications at partial flow rates, for the three
stages. The most salient feature is that the recirculation bubble close to
the hub disappears: the axial velocity is positive all along the blade span
—it is reduced in the blade tip region in that case to compensate for
constant the flow rate. This could be thought as an “aspiration effect” of
the rear rotor.

The slowing down of the tangential velocity that is starting at the
hub extend to higher blade span as the flow rate is decreased. In the
lower part of the blades, the blade span at which the axial and tan-
gential velocity profiles for a front rotor working alone and for the
counter-rotating stage get close is similar for both components for the
three stages at the three flow rates: the effects of the interaction be-
tween the rotors seem to be well correlated in the lower part of the
blades. This is different for the upper part of the blade and in the tip
gap, where the decrease of tangential velocity seems this time to be
correlated to the rotation rate of the rear rotor at the three flow rates.

4.3. Unsteady flow features

The wall pressure fluctuations are measured at a distance
=Z 5p mm downstream of the front rotor, i.e. halfway between the two

counter-rotating rotors (see Fig. 1). The microphone is a G.R.A.S 40BP
1/4″ polarized pressure microphone of sensitivity 1.65 mv Pa1, with a
G.R.A.S 26AC preamplifier and a G.R.A.S 12AG power supply module.
It is flush-mounted on the casing. The signals are amplified with a gain
of + 30 dB and high-pass filtered with a three-pole Butterworth filter
with cut-off frequency of 20 Hz. The signals are then digitalized using a
NI Data Acquisition Card (PCI 6123S, 16 bits) at a sample rate of 6 kHz.
The power spectral density (PSD) of these fluctuations for the three
systems working at three different volumetric flow rates are plotted in
Fig. 9.

The different peaks that are visible in the spectra correspond to
three different origins: the blade passing frequency of the front rotor
( fFR) and its harmonics ( ), the rear rotor blade passing frequency ( fRR)
( ) and finally, the frequencies corresponding to linear combinations of
the front and rear rotor blade passing frequencies ( ). Please note that,
for each column—each CRS— the amplitudes of the symbols in the first
line of Fig. 9 —that correspond to =Q 1v m3 s−1— are reported in the
lines below in order to better visualize the changes in the spectra for
different flow rates. The front and rear rotor blade passing frequencies
are:

• =f 383FR1 Hz & =f 257RR1 Hz;

• =f 390FR2 Hz & =f 303RR2 Hz;

• =f 433FR3 Hz & =f 128RR3 Hz

The amplitude of the peaks corresponding to the front rotor blade
passing frequency, to the rear rotor blade passing frequency and to the
dominant linear combination of these frequencies are reported in
Table 6 for the three stages.

At the design flow rate, several common features can be noticed.
First, the amplitudes of the peaks corresponding to the blade passing
frequency of the rear rotor and its harmonics ( ) are significantly
higher than that of the front rotors ( ). The influence of the rear rotor
propagates upstream through a potential effect and is stronger than that
of the front rotor, usually attributed to the wakes of the blades. This is
the case for the three stages, though the rear rotor of JW3 rotates much
more slowly than the front rotor and though the load distribution ratio
of this CRS is quite low ( =L 21%). Then, one can notice that high rank
harmonics contribute more to the pressure variance in the case of the
rear rotor than in the case of the front rotor: up to harmonic f10 RR1 vs.
f5 FR1 for JW1; f9 RR2 vs. f2 FR2 for JW2 and f8 RR3 vs. f5 FR3 for JW3. Finally,

Fig. 8. LDA measurements at =Z 5p mm downstream of the front rotor. =Q 0.37v m3 s−1.

(a-c-e): axial velocity Vz ; (b-d-e): tangential velocity Vθ. (a-b): ∘—JW1FR, •—JW1. (c-d):
—JW2FR, —JW2, —JW3, —JW3.
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there is a strong interaction between the two rotors that give rise to
important peaks at various linear combinations of the two base fre-
quencies ( ) at the design volume flow rate. If one writes the linear
combination +mf nfFR RR, the dominant interaction peak corresponds to
a ( = =m n1, 1) combination for JW1 (640 Hz) and JW3 (561 Hz) and
to a ( = =m n1, 2) combination for JW2 (997 Hz), the ( = =m n1, 1 —
697 Hz) contribution being the second peak with a value of 6.5 dBHz−1.
The counter-rotating stage JW2 presents the highest amplitude for fRR
and the lowest for fFR among the three CRS. This is consistent with the

ratio of rotational speeds. One can moreover notice a strong correlation
between the levels of peaks at the blade passing frequencies and the
rotation rates of the rotors. Finally, the total level of the pressure
fluctuations is obviously the lowest for JW3, and is almost similar for
JW1 and JW2. This last characteristic may be correlated to the sums of
the two rotation rates that are of the same order for JW1 and JW2
(4500 & 4400 rpm) and much lower for JW3 (3700 rpm).

Then, for =Q 0.6v m3 s−1 and =Q 0.37v m3 s−1, the overall level of
pressure fluctuations are strongly increased with respect to the previous
nominal flow rate. The same hierarchy between the overall level and
the contribution of the first blade passing frequencies is observed.
However, one can notice a remarkable change in the spectral content:
the peaks corresponding to the interactions are dramatically atte-
nuated, and in contrast, the amplitudes corresponding to both fFR and
fRR are increased. For the CRS JW1 and JW2, the interaction peaks that
barely remain are the ( = =m n1, 1) peaks.

5. Conclusion

Three different counter-rotating stages have been designed to meet
the same pressure rise at a given flow rate. These three stages have
different load distribution ratios at design point, ranging from =L 23%
(low contribution of the rear rotor) to =L 52% (equal contribution of
the two rotors). They also have very different angular velocity ratios,
between =θ 0.420 and =θ 1.440 (the rear rotor rotates faster than the
front one). The three front rotors have different characteristics, with
either very flat curves or steep ones, and very low or quite high effi-
ciency. Surprisingly enough the three CRS have similar characteristics,

Fig. 9. PSD of the wall pressure fluctuations measured at =Z 5p mm, for JW1 (left column), JW2 (middle column) and JW3 (right column). The volumetric flow rates are: =Q 1v m3 s−1

for the first line; =Q 0.6v m3 s−1 for the second line and =Q 0.37v m3 s−1 for the third line. ( ): mfFR, ( ): nfRR, and ( ): +mf nfFR RR with ≠m 0 and ≠n 0. The symbols that are

displayed in the first line are reproduced in the second and third line, in order to highlight the evolution of the amplitudes of the peaks with the flow rate.

Table 6
Amplitude of the peaks at f f,RR FR and +mf nfFR RR, for JW1, JW2 and JW3, at various
volumetric flow rates. Std( ′p ) represents the power of the total signal.

fRR fFR (m,n) value Std( ′p )
(dB/Hz) (dB/Hz) (dB/Hz) (dB)

=Q 1v m3 s−1

JW1 36.5 17.4 (1,1) 14.1 40.9
JW2 38.5 12.6 (1,2) 10.9 42.9
JW3 29.8 20.2 (1,1) 6.2 35.1

=Q 0.6v m3 s−1

JW1 39.8 25.0 (1,1) 15.0 45.3
JW2 43.0 19.3 (1,1) 12.9 47.8
JW3 30.7 25.5 (1,1) 5.6 37.6

=Q 0.37v m3 s−1

JW1 39.0 27.7 (1,1) 15.8 46.0
JW2 42.7 23.0 (1,1) 14.0 47.8
JW3 28.3 25.5 (1,1) 9.3 36.7
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with a pressure rise curve that present large negative slope at all flow
rates and a high static efficiency at the design flow rate. The slope of the
characteristic seems correlated to the behavior of the rear rotor. The
characteristic curves of JW1 and JW2 are even almost superimposed.
The best stage in terms of static pressure rise and static efficiency is
JW1 with a static pressure rise only 3% below the target value and an
efficiency of 66.4% for a load ratio =L 41% and an angular velocity
ratio =θ 0.960 . The same pressure rise can be achieved with the two
other CRS by modifying the angular velocity of the rear rotors.

The best efficiency at =Q 1v m3 s−1 and =pΔ 363s Pa is obtained for
JW2 with =N 1740FR rpm and =N 2695RR rpm ( =θ 1.55) that gives

=η 65.8s % and =L 45%; it is obtained with =N 2455FR rpm and
=N 1470RR rpm ( =θ 0.6) for JW3 leading to =η 64.6s % and =L 37%.

The relative poor performance of JW3 could thus be greatly improved
by accelerating the rear rotor by a factor 1.4. This is consistent with the
velocity measurements that reveal a significant negative incidence
angle for the rear rotor of JW3 under the design conditions. Another
solution would have been to decrease the stagger angle of its blades.

At the design flow rate, the time-averaged flow downstream of the
front rotor is barely modified by the presence of the rear rotor, with a
small displacement of the discharging flow towards the blade tip, and a
small slow-down of the tangential velocity close to the tip. The effect is
stronger for partial flow rates: the recirculation close to the hub
downstream of the front rotor is suppressed in the three CRS and this
could explain the good performance at partial flow rates.

The power spectral densities of the wall pressure fluctuations be-
tween the rotors show that the dominant frequency corresponds to the
blade passing frequency of the rear rotor and that the zone between the
two counter-rotating rotors is a zone of high interactions between in-
stationary flows. This feature should also be taken into account for
better design and optimization. It would be very interesting to better
characterize these interactions with phase-locked time-resolved mea-
surements such as described in Refs. [12,13]. The effect of the number
of blades in each rotor may also be addressed in forthcoming experi-
ments, with JW1 rotors of same blade cascade parameters but different
blade numbers, and focusing on acoustical behaviour of the counter-
rotating stages.

The design of the rear rotor is in conclusion of great importance
since it triggers the working stability of the system and the level of
fluctuations. For a given design point, the choice of the angular velocity
ratio and of the blade loading have a direct impact on the stagger angle
of the rear rotor. In our case a too few loaded rear rotor leads to a poor
results (JW3) and the maximum loading of the rear rotor (JW2) gives
good performances but with more noise. The best compromise is a load
ratio of 40% with an angular velocity ratio of the order of 1.
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