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following the flow theory of plasticity. The same trend, in
terms of sensitivity of formability to strain hardening, was
confirmed for more general constitutive frameworks, as
demonstrated for instance in [4–6]. In the current work,
attention is focused on the effect of strain rate sensitivity
on the formability limit of both freestanding and substrate-
supported metal layers. This effect has been emphasized
earlier by Ghosh [7] on the basis of experimental investi-
gations carried out on various metallic materials (steel,
aluminum, brass…). Concurrently, Hutchinson and
Neale [8] analyzed numerically the influence of strain rate
sensitivity on necking for a circular bar under uniaxial
tension state. They demonstrated that a relatively small
amount of strain rate dependence leads to a substantial
increase in the magnitude of limit strains. The latter study
has been extended by the same authors [9] to the full range
of strain paths (ranging from uniaxial tension to
equibiaxial expansion). In that work, an improved version
of the initial imperfection approach, initially introduced by
Marciniak and Kuczynski [10], has been developed and
used to predict the onset of localized necking. The results
obtained in [9] confirm the conclusions drawn earlier in
[8]. Later, Neale and Chater [11] enlarged the study of
Hutchinson and Neale [9] by taking into account the
combined effects of material strain rate sensitivity and
plastic anisotropy on the limit strain prediction of thin
metal sheets with transversely isotropic properties. It is
worth noting that, in the previous theoretical investiga-
tions, the initial imperfection approach has been exclu-
sively used to predict strain localization in strain rate-
sensitive materials. More recently, other localization
criteria have been adopted to assess the effect of strain
rate sensitivity on strain localization, such as the pertur-
bation approach [12]. In the present paper, the initial
imperfection approach is again employed to analyze
the beneficial effect of strain rate sensitivity on the retar-
dation of strain localization in thin sheet metals. In this
study, finite strain versions for both the rigid-viscoplastic
flow theory and the deformation theory of plasticity are
used to describe the mechanical behavior of sheet
metals. For the sake of simplicity, elasticity, anisotropy,
and kinematic hardening are not considered in this
modeling. To validate the developed theoretical and nu-
merical tools, the obtained numerical predictions are
compared with the results reported in some pioneering
works from the literature (see [9, 11]). From these com-
parisons, it is clearly observed that both results match
very well, thus providing theoretical and numerical val-
idations for the developed tools.

& The second strategy to enhance formability is of techno-
logical nature and consists in perfectly bonding a metal
layer to an elastomer substrate. Indeed, this solution has
proven to significantly improve the stretchability of indus-
trial devices [13–17]. Consequently, it has been widely

used in several industrial applications. In this field, one
can quote Cordill et al. [18] who bonded chromium (Cr)
films to polyimide (PI) substrates. Cotton et al. [19] used
this technological solution to develop new stretchable and
multifunctional capacitive sensors made of gold thin films
embedded in silicone rubber. The mechanical compliance
of the gold films and silicone membranes allow the device
to be bent, folded, or stretched without damage, making it
a suitable candidate for electronic skin applications.
Lacour et al. [20] adopted the same technology in order
to develop a new generation of interconnects for elastic
electronic surfaces. These interconnects are made of
stripes of thin gold film patterned on elastomeric mem-
branes. Thanks to this composition, the obtained intercon-
nects display very good stretchability. Several other indus-
trial fields are concerned with the application of this tech-
nological solution, such as curved imaging surfaces [21],
sensors skins [22], and electronic textiles [23, 24]. Note
that the representation of formability limits for substrate-
supported metal layers, in the form of FLDs, has been first
attempted in [25], by using the bifurcation approach [26].
In their investigation, Jia and Li [25] used a finite strain
version of the rate-independent deformation theory of
plasticity to describe the mechanical response of the metal
layer and a neo-Hookean model for the elastomer layer.
They demonstrated that the addition of elastomer substrate
has an effect of increasing the predicted limit strains. For
comparison purposes, the investigations of Jia and Li [25]
have been extended in [6] by considering two additional
frameworks: (i) the flow theory of plasticity, as an alterna-
tive description for the mechanical behavior of the metal
layer and (ii) the initial imperfection approach, as an ad-
ditional approach to localized necking. The beneficial ef-
fect of the elastomer substrate on the formability of the
bilayer, initially shown in [25], has been confirmed in [6]
for both constitutive theories. Moreover, it has been dem-
onstrated in [6] that the FLDs determined by the initial
imperfection approach tend towards those predicted by
the bifurcation analysis in the limit of a vanishing size
for the initial imperfection. This result has been shown
to be valid for both freestanding metal layers and
substrate-supported metal layers and also for both consti-
tutive frameworks (flow theory and deformation theory of
plasticity). In the current paper, the investigations carried
out in [6] are enlarged by extending the analysis to a more
general constitutive framework, which accounts for strain
rate effects, in order to investigate the influence of the
latter on formability. It is worth noting that, because the
mechanical behavior of the metal layer is taken to be strain
rate sensitive, the use of the bifurcation theory for strain
localization prediction is precluded. Therefore, only the
initial imperfection approach is used in this paper in order
to analyze the impact of strain rate sensitivity on the



formability limits of both freestanding metal layers and
metal/elastomer bilayers. In this sense, the current contri-
bution may also be viewed as an extension of the work
carried out in [9], which was restricted to the formability
prediction of freestanding metal layers. As will be shown
in what follows, the main results of the current work are
that both the strain rate dependency of the metal layer, on
the one hand, and the addition of an elastomer layer, on the
other hand, have beneficial effects on formability, as they
both allow substantial retardation in the occurrence of lo-
calized necking.

The remainder of the paper is organized as follows:

& Section 2 is devoted to the description of the constitutive
frameworks used to model the behavior of the metal and
elastomer layers.

& In Section 3, the equations governing the initial imperfec-
tion approach are provided for the prediction of localized
necking.

& Section 4 details the numerical algorithms developed for
the FLD prediction based on the initial imperfection
approach.

& Various numerical results and predictions are presented in
Section 5, where the effects on localized necking of both
the strain rate sensitivity and the addition of an elastomer
layer are discussed in details.

Notations, conventions, and abbreviations The derivations
presented in this paper are carried out using classic conven-
tions. Note that the assorted notations can be combined.
Additional notations will be clarified as needed, following
related equations.

Vectorial and tensorial fields are designated by bold letters and symbols

Scalar variables and parameters are represented by thin letters and
symbols

Einstein’s convention of summation over repeated indices is adopted. The
range of the free (resp. dummy) index is given before (resp. after) the
corresponding equation

•_ time derivative of •

•T transpose of tensor •

•!⊗ •! tensor product of two vectors (=•i•j)

•I value of quantity • at the initial time

•t value of quantity • at time t (for convenience, the dependence on time is
most often omitted when the variable is expressed in the current
instant)

•(∗) quantity • associated with behavior in layer ∗
•B quantity • associated with behavior in the band

•S quantity • associated with behavior in the safe zone

I2 second-order identity tensor

FT, DT, and NH stand for abbreviations of flow theory, deformation
theory, and neo-Hookean model, respectively

2 Constitutive equations

2.1 Geometric and mechanical assumptions

For the modeling of strain localization in freestanding
metal layers or in metal/elastomer bilayers, the follow-
ing geometric and mechanical assumptions are
considered:

2.1.1 Geometric assumptions

& A1: the metal layer and the elastomer layer are assumed to
be thin.

& A2: the two layers remain perfectly bonded during the
deformation.

2.1.2 Mechanical assumptions for the metal layer

& A3: for comparison purposes, the mechanical behavior of
the metal layer will be modeled by two alternative consti-
tutive frameworks: the flow theory of plasticity and the
deformation theory counterpart.

& A4: the elasticity of the metal layer is neglected, which is
justified by the fact that strain localization occurs at rela-
tively large strains.

& A5: for both plasticity theories, the mechanical behavior is
taken to be strain rate dependent. Because attention is
restricted to materials characterized by isotropic hardening
and isotropic plasticity, plastic anisotropy and kinematic
hardening are not taken into account in the constitutive
modeling.

2.1.3 Mechanical assumptions for the elastomer layer

& A6: the mechanical behavior of the elastomer layer is as-
sumed to be incompressible and isotropic.

& A7: the mechanical response of the elastomer sub-
strate is described by a hyperelastic neo-Hookean
behavior model.

2.2 Flow theory of plasticity

Within this constitutive framework, plasticity is consid-
ered to be associative and the normality law applies.
The combination of the associative plastic flow rule



and assumption A4 in Section 2.1.2 leads to the follow-
ing relation:

ε
: ¼ λ

: ∂σeq

∂σ
; ð1Þ

where ε
:
, λ
:
, σ, and σeq are the strain rate tensor (the symmetric

part of the Eulerian velocity gradientG), the plastic multiplier,
the Cauchy stress tensor, and the equivalent stress, respective-
ly. As stated in assumption A5 (Section 2.1.2), plasticity is
assumed to be isotropic and it is described by the von Mises

criterion. Accordingly, the scalars λ
:
and σeq can be expressed

as follows:

λ
: ¼ ε

:
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
.
3

� �
ε
:
: ε
:

r
; σeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
.
2

� �
S : S

r
; ð2Þ

where S is the deviatoric part of σ.
The insertion of Eq. (2) into Eq. (1) allows deriving the

following rigid-viscoplastic constitutive relation:

S ¼ 2σeq

3
:
εeq

ε
:
: ð3Þ

Also, the equivalent stress σeq can be related to the equiv-
alent strain εeq and the equivalent strain rate ε

:
eq via the

Norton-Hoff viscoplasticity model

σeq ¼ Kεneq ε
:m
eq; ð4Þ

where K is a material parameter, n and m denote strain hard-
ening and strain rate hardening exponents, respectively. Note
that in Eq. (4), εeq is the integral of ε

:
eq with respect to time.

2.3 Deformation theory of plasticity

The original formulation of the finite strain deformation theo-
ry of plasticity has been expressed in the frame of the principal
strain directions, which coincides with the frame of the prin-
cipal stress directions, as the behavior is assumed to be isotro-
pic [5]. In this frame, the logarithmic strains εi can be related
to the principal deviatoric stresses Si by the following relation:

i ¼ 1; 2; 3 : Si ¼ 2σeq

3εeq
εi: ð5Þ

In the above equation, σeq has the same definition and the
same expression as that used in the flow theory (Eq. (2)2).
However, the definition of εeq is different from that used in
the flow theory (Eq. (2)1). Indeed, in the deformation theory,

εeq is taken to be equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þεi εi

p
.

Equation (5) has been subsequently extended in [6] to a
tensorial form, which is valid for an arbitrary coordinate sys-
tem

S ¼ 2

3
ES lnV; ð6Þ

where ES and lnV are the secant modulus and the natural
logarithmic of the left Cauchy-Green stretch tensor V, respec-
tively. The secant modulus ES is defined as

ES ¼ σeq

εeq
¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S : S

lnV : lnV

r
: ð7Þ

The Norton-Hoff model of Eq. (4) is still valid in the case
of the deformation theory. It must be noted that similarly to
εeq, the definition of ε

:
eq is different from that used in the flow

theory. Indeed, in the case of the deformation theory, ε
:
eq is

simply defined as the time derivative of εeq, the latter being

equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þεi εi

p
. In the case of proportional monotonic

loading, the expressions of εeq, respectively ε
:
eq, become

equivalent for both plasticity theories.
For the Norton-Hoff model, the secant modulus ES is given

by the following expression:

ES ¼ Kεn−1eq ε
:m
eq: ð8Þ

The Cauchy stress tensor σ can be derived from its
deviatoric part S, which is expressed in Eq. (3) for the flow
theory and in Eq. (6) for the deformation theory, by

σ ¼ Sþ p I2; ð9Þ

where p = (1/3) tr (σ) is the hydrostatic pressure.

2.4 Neo-Hookean model

Themechanical behavior of the elastomer layer is defined by a
neo-Hookean model [27, 28]

σ ¼ μV2 þ q I2; ð10Þ

where μ is the shear modulus, and q is an unknown pressure to
be determined.

3 Initial imperfection approach

3.1 Generic forms for the Cauchy stress and velocity
gradient tensors

We consider a quasi-static deformation state in a thin metal/
substrate bilayer (see assumption A1 in Section 2.1.1) induced
by in-plane biaxial stretching. We define an orthogonal
Cartesian coordinate system x!1; x

!
2; x
!

3

� �
, which is fixed



to the bilayer as shown in Fig. 1, with axes x!1 and x!2 lying in
the bilayer plane, and axis x!3 normal to this plane. Because
the bilayer is sufficiently thin, it is justified to assume a plane-
stress state [29]. This assumption is expressed by the follow-
ing form of the Cauchy stress tensor σ:

σ ¼
σ11 σ12 0
σ12 σ22 0
0 0 0

0
@

1
A; ð11Þ

which is applicable to both the metal layer and the elastomer
substrate.

Relation σ33 = 0 allows us to determine the hydrostatic
pressure p, introduced in Eq. (9), as well as the unknown
pressure q involved in Eq. (10)

p ¼ S11 þ S22 ; q ¼ −μV2
33: ð12Þ

Equations (3), (6), and (10), in conjunction with Eq. (12),
summarize the constitutive frameworks for the different ma-
terial models used in this paper (i.e., flow theory, deformation
theory, and neo-Hookean model) under the plane-stress con-
dition. These equations will be coupled with those governing
the initial imperfection approach (also designated as the
Marciniak–Kuczynski (M–K) analysis in Section 3.2) to pre-
dict the FLDs of substrate-metal bilayers.

With regard to the constitutive relations of the different
material models (see Eqs. (3), (6), and (10)), the plane-stress
condition implies that the components 13, 23, 31, and 32 of
the Eulerian velocity gradientG are equal to 0. Hence, for the
different layers and material models, G can be written in the
following form:

G ¼
G11 G12 0
G21 G22 0
0 0 G33

0
@

1
A: ð13Þ

Furthermore, in this work, all of the materials used are
taken to be incompressible, which leads to

G33¼ −G11−G22: ð14Þ

By combining Eqs. (13) and (14), the velocity gradient G
can be expressed in the following generic form:

G ¼
G11 G12 0
G21 G22 0
0 0 −G11−G22

0
@

1
A: ð15Þ

3.2 Governing equations for the initial imperfection
approach

Initially, a geometric non-uniformity in the form of a narrow
band or neck is assumed to exist in the metal layer. As to the
elastomer layer, it is assumed to be initially homogeneous.
The initial configuration of the bilayer is depicted in Fig. 1.

The different notations used in Fig. 1 are explained in detail
hereafter:

& hBI : initial thickness of the metal layer M inside the band
B.

& hSI : initial thickness of the metal layer M in the safe zone S
(outside the band).

& HB
I : initial thickness of the elastomer layer E inside the

band B.
& HS

I : initial thickness of the elastomer layer E in the safe
zone S (outside the band).

& initial unit vector normal to the band.

& θI: initial orientation of the band.

As a consequence of assumption A2 in Section 2.1.1, the
velocity gradient of the metal layer remains equal to that of the
elastomer layer throughout the deformation, in both the band
and the safe zone:

GB Mð Þ ¼ GB Eð Þ ¼ GB ; GS Mð Þ ¼ GS Eð Þ ¼ GS: ð16Þ

To predict FLDs, the sheet is loaded in the two-dimensional
space (which maps the plane of the sheet) by applying in-
plane biaxial stretching along the directions of axes x!1 and

x!2, as depicted in Fig. 1. Accordingly, the in-plane compo-
nents of GS are given by the following relations:

GS
22

GS
11

¼ ρ ¼ constant ; GS
12¼ GS

21 ¼ 0: ð17Þ

The strain ratio ρ will be assigned different values ranging
from −1/2 (uniaxial tension) to 1 (equibiaxial expansion), in
order to span the complete FLD.

Fig. 1 Illustration of theM–K analysis for a bilayer (initial geometry and
band orientation)



The insertion of Eqs. (17) into Eq. (15) leads to the follow-
ing expression of the velocity gradient in the safe zone:

GS ¼
GS

11 0 0
0 ρGS

11 0
0 0 − 1þ ρð ÞGS

11

2
4

3
5: ð18Þ

In addition to Eqs. (16) and (18), the following equations
are used (which relate to compatibility, equilibrium, evolution
of imperfection and band orientation…):

& The kinematic compatibility condition between the band
and the safe zone, which allows us to express the jump in
the velocity gradient across the band

ð19Þ

where c!̇and are the jump vector and the current normal to
the band, respectively. By inserting Eq. (18) into Eq. (19), one
can derive the following expression for GB:

ð20Þ

& The expressions of the initial and current imperfection
ratios denoted as ξI and ξ, respectively, are defined by

ξI ¼ 1−
hBI
hSI

; ξ ¼ 1−
hB

hS
: ð21Þ

The current thickness hB (resp. hS) is related to hBI (resp. hSI
) by

hB¼ hBI e
εB33 ; hS¼ hSI e

εS33 ; ð22Þ

where εB33 and εS33 are the 33 components of the logarithmic
strain in the band and in the safe zone, respectively. By com-
bining Eqs. (21) and (22), the ratios ξI of ξ can be related by
the following equation:

ξ ¼ 1− 1−ξIð Þe εB33−ε
S
33ð Þ: ð23Þ

& The evolution of the band orientation is governed by the
following equation:

Tan θð Þ ¼ e εS11−ε
S
22ð ÞTan θIð Þ ¼ e 1−ρð Þ εS11 Tan θIð Þ: ð24Þ

& The equilibrium balance across the interface between the
band and the safe zone can be expressed as follows:

Note that this equilibrium equation implicitly assumes that
the stress state is uniform over each layer in each zone.

& To solve the above equations, which govern the M–K
analysis, the constitutive equations are needed. These are
given for both the metal layer and the elastomer substrate

under the plane-stress conditions (see Eqs. (3), (6), (10),
and (12)).

4 Numerical implementation and algorithmic aspects

4.1 Implicit incremental algorithm for the FLD prediction

The general algorithm used to predict the FLDs of metal/
elastomer bilayers is based on the following three nested
loops:

& For ρ = − 1/2 to ρ = 1, at user-defined intervals (here, we
take intervals of 0.1).

– For θI spanning the admissible range of inclination
angle (i.e., between 0° and 90°), at user-defined inter-
vals (here, we take intervals of 1°).
& For each time interval [tn, tn + 1] (with a time in-

crement Δt = tn + 1−tn), apply the implicit incre-
mental algorithm described in appendix • to inte-
grate the governing equations pertaining to the
metal and elastomer layers both in the safe zone
and in the band. The application of this incremen-
tal integration scheme is stopped when the follow-
ing criterion is satisfied:

GB
33

.
GS

33≥crit; ð26Þ

where “crit” is a positive threshold value set to 50 in the
current investigation. The strain component εS11, thus obtained
once criterion (26) is satisfied, is considered to be the critical
strain ε*11 corresponding to the current band inclination θ and
strain-path ratio ρ.



The lowest critical strain ε*11, solution of the above
algorithm, over all initial angles θI and the correspond-
ing current angle define, respectively, the necking limit
strain εL11 and the necking band orientation for the cur-
rent strain-path ratio ρ.

The present algorithm has been implemented using the
multi-paradigm numerical computing environment Matlab
(R2015).

5 Numerical results

This section is divided into two subsections. The first one is
dedicated to the freestandingmetal layer results, where we revisit
some well-known literature results [9, 11]. The second subsec-
tion is devoted to the bilayer results, which represent the main
novelties in this paper. For the different simulations, the harden-
ing parameter K of the metal layer is set to 1000 MPa.

0.00 0.15 0.30 0.45

1.0

1.5

2.0

2.5

3.0

m=0.05
m=0.01

m=0.03

εB

11/ε
S

11

εS

11

 FT

 DT

m=0

ρ=−0.5, θΙ=20°, n=0.1

0.0 0.4 0.8 1.2 1.6

1.0

1.2

1.4

1.6

ρ=−0.5, θΙ=20°, n=0.4

εB

11/ε
S

11

m=0; 0.01;
 0.03; 0.05

m=0.03
m=0.01

m=0.05

εS

11

 FT

 DT

m=0

(a) (b)

(c) (d)

(e) (f)

0.0 0.1 0.2 0.3 0.4

1.2

1.5

1.8

ρ=0, θΙ=0°, n=0.1

εB

11/ε
S

11

m=0.05

m=0.01
m=0.03

εS

11

 FT

 DT

m=0

0.0 0.2 0.4 0.6 0.8

1.0

1.2

1.4

1.6

ρ=0, θΙ=0°, n=0.4

εB

11/ε
S

11

m=0.05

m=0.01

m=0.03

εS

11

 FT

 DT

m=0

0.00 0.15 0.30 0.45 0.60

1.0

1.2

1.4

1.6

1.8 ρ=1, θΙ=0°, n=0.1

εB

11/ε
S

11

m=0.05
m=0.03

m=0.01
m=0

m=0.05

m=0.01

m=0.03

εS

11

 FT

 DT

m=0

0.0 0.2 0.4 0.6 0.8

1.2

1.5

1.8
ρ=1, θΙ=0°, n=0.4

εB

11/ε
S

11

m=0.05
m=0.03

m=0.01

m=0

m=0.05

m=0.01

m=0.03

εS

11

 FT

 DT

m=0

Fig. 2 Evolution of the ratio εB11
=εS11 as a function of εS11 for a
freestanding metal layer (ξI=5 ×
10−3): a ρ = − 0.5, θI = 20

°, and
n = 0.1; b ρ = − 0.5, θI = 20

°, and
n = 0.4; c ρ = 0, θI = 0

°, and n =
0.1; d ρ = 0, θI = 0
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°, and n = 0.4



5.1 Freestanding metal layer

Reference to the metal or elastomer layer is obviously omitted
in this section, as only a freestanding metal layer is studied
here. To first emphasize the respective effects of hardening
exponent n and strain rate sensitivity m on necking retarda-
tion, the evolution of the ratio εB11=ε

S
11 as a function of the

strain component εS11 is depicted in Fig. 2 for two different
values of n (0.1 and 0.4) and four different values of m (0,
0.01, 0.03, and 0.05). Three representative strain paths (ρ = −
1/2, ρ = 0, and ρ = 1) are used in the simulations reported in
Fig. 2. The initial band orientation θI is set to 20

° for the first
strain path and to 0° for the two other strain paths. It should be
clarified that these values do not necessarily correspond to the
initial band orientations that are associated with the limit
strains. This is especially the case for the uniaxial tension state
in Fig. 2a, b. The initial geometric imperfection ratio ξI is set
to 5 × 10−3 for all of the simulations reported in Fig. 2. The
computations are stopped when the necking criterion (26) is
satisfied. Accordingly, the cross tagged at the end of each
curve indicates the magnitude of the predicted critical strain
ε*11. As can be seen in Fig. 2, at the beginning of deformation,

the ratio εB11=ε
S
11 is very close to 1. At the incipience of

localized necking, εB11 increases rapidly compared to εS11. It
is clear from the different curves that the predicted critical
strain ε*11 substantially increases both with the strain rate sen-
sitivity parameter and with the strain hardening exponent.
Other conclusions can be drawn from Fig. 2, which are spe-
cific to the strain path considered:

& Uniaxial tension state: it can be seen that, for a strain hard-
ening exponent n equal to 0.1, the critical strains predicted
by the flow theory of plasticity are finite and are always
higher than their counterparts predicted by the deformation
theory (see Fig. 2a). However, when the hardening expo-
nent n is set to 0.4 (Fig. 2b), the critical strains predicted by
the flow theory are infinite. Indeed, εS11 remains close to εB11
and the threshold value, determined by the numerical crite-
rion (26), cannot be reached in this case.

& Plane-strain tension state: both plasticity models provide
the same results for this particular strain path, regardless of
the values of the strain rate sensitivity m and the strain
hardening exponent n, as demonstrated by Fig. 2c, d.
Indeed, the evolution of the ratio εB11=ε

S
11 as a function of

εS11 is exactly the same for both plasticity theories.
Accordingly, for this particular strain path, the predicted
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limit strains are independent of the plasticity theory used
to model the material behavior (i.e., flow theory or deforma-
tion theory). This is due to the fact that the strain path remains
linear (a plane-strain state) along deformation in both zones
(i.e., the safe zone and the band). Because the initial band
orientation θI is set to 0, the current band orientation θ and
the unit vector normal to the band remain equal to 0 and
(1, 0, 0), respectively, during the deformation. Hence, the
equilibrium Eq. (25) reduces to

hBσB
11¼ hSσS

11: ð27Þ

Because the strain path is linear, σB
11, respectively, σ

S
11 has

the same expression for the flow theory and the deformation
theory

σB
11 ¼

2ffiffiffi
3

p
� �nþmþ1

K εB11
� �n :

εB11
� �m

;

σS
11 ¼

2ffiffiffi
3

p
� �nþmþ1

K εS11
� �n :

εS11
� �m

:

ð28Þ

Accordingly, Eq. (27) can be rewritten as

hBI e
εB33 εB11
� �n

ΔεB11
� �m ¼ hSI e

εS33 εS11
� �n

ΔεS11
� �m

: ð29Þ

Making use of Eq. (21)1, and taking into account the plane-
strain character of the strain path (i.e., εB33 and ε

S
33 being equal

to −εB11 and −εS11, respectively), Eq. (29) can be rewritten as

1−ξIð Þe−εB11 εB11
� �n

ΔεB11
� �m ¼ e−ε

S
11 εS11
� �n

ΔεS11
� �m

: ð30Þ

This latter relation is valid for both the flow theory and the
deformation theory of plasticity. The results reported in
Fig. 2c, d are obtained by incrementally solving Eq. (30), in
which the input increment ΔεB11 is set to 10−3 and the main

unknown is ΔεS11.
The predicted evolutions are in agreement with the previ-

ously reported literature results [8, 9]. Furthermore, it is worth
noting that, in the case of no strain rate sensitivity (i.e., m = 0),
the corresponding evolutions coincide with those obtained
with the rate-independent version of the above-described con-
stitutive models [6].

& Equibiaxial tension state: much larger differences be-
tween the predictions of the flow theory and those of the
deformation theory are observed in Fig. 2e, f. Indeed, the
limit strains predicted by flow theory are substantially
higher than those based on the deformation theory of
plasticity.
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To further investigate the impact of strain rate sensitivity on
the onset of localized necking, the necking retardation factor

δ ε11, defined as δε11¼ εL11−εL11
		
m¼0

, normalized by
ffiffiffi
n

p
, is

plotted as a function of the m exponent in Fig. 3. Obviously,
δ ε11 is equal to 0 for strain rate-independent materials. For
most common sheet metals at room temperature, the typical
values for m range between 0 and 0.05. Accordingly, values of
m in the same range are considered in the present simulations.
In order to investigate the respective effects of strain rate sen-
sitivity and initial imperfection on necking retardation, three
values for ξI are used in the simulations: 10−3, 5 × 10−3, and
10−2. The simulation results obtained by the developed nu-
merical tool are represented by solid curves in Fig. 3, in com-
parison with the available results published in [11], which are
represented by dotted graphs with symbols (•). It is clear that
both results match very well, thus providing at least a partial

validation of the developed tool. The different curves plotted
in Fig. 3 confirm the trends observed in Fig. 2 with regard to
the substantial role of strain rate sensitivity in increasing the
potential of straining prior to necking. Indeed, small values for
m are sufficient to produce noticeable retardation of necking.
Figure 3a, b show that, for the case of plane-strain tension,
both plasticity theories predict exactly the same evolution for
δε11=

ffiffiffi
n

p
as a function of m. Also, all the curves in Fig. 3

demonstrate that, for both strain paths and plasticity theories
considered, the necking retardation increases as the strain
hardening exponent n decreases. As to the impact of the initial
geometric imperfection ξI on necking retardation, it can be
clearly seen that factor δε11=

ffiffiffi
n

p
is inversely proportional to

ξI. In other words, δε11=
ffiffiffi
n

p
becomes infinite when ξI ap-

proaches 0. This latter result is consistent with the fact that
without introducing an initial geometric imperfection, the
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Table 1 Values of the predicted
limit strains εL11 in the case of a
sheet metal with no initial
imperfection (ξI = 0)

ρ = − 1/2 ρ = 0 ρ = 1/2 ρ = 1

Flow theory m = 0 n/(1 + ρ) = 0.8 n/(1 + ρ) = 0.4 ∞ ∞
m = 0.05 ∞ ∞ ∞ ∞

Deformation theory m = 0 0.54 n/(1 + ρ) = 0.4 0.37 0.36

m = 0.05 ∞ ∞ ∞ ∞



numerical predictions of limit strains based on a strain rate-
dependent model lead to infinite values [9, 11]. These prelim-
inary results will be carefully analyzed and commented in the
following section.

The effect of the initial geometric imperfection ξI on
the limit strain εL11 for four representative strain paths
(ρ = − 1/2, ρ = 0, ρ = 1/2, and ρ = 1) is reflected in
Fig. 4. In these simulations, the hardening exponent n
is set to 0.4 and two different values for m are consid-
ered: 0 and 0.05. From the different curves depicted in
Fig. 4, it can be seen that a relatively small imperfec-
tion significantly reduces the magnitude of the limit
strains. Indeed, a geometric imperfection has a
destabilizing role, which precipitates the occurrence of
strain localization. Furthermore, as revealed by the dif-
ferent curves, the necking retardation factor δ ε11 de-
creases as the initial imperfection ξI increases, thus
confirming the results of Fig. 3. By comparing both
plasticity theories, it appears that the predictions obtain-
ed with the flow theory of plasticity are more sensitive
to the initial geometric imperfection than those given by
the deformation theory, especially in the biaxial loading
range. Other important conclusions, related to strain rate
sensitivity, can be drawn in what follows:

& Strain rate-independent material (m = 0): for the uniaxial
tension state, the limit strain εL11 approaches a finite value
when the initial imperfection ratio tends to zero. In this
case, the obtained limit strain value is 0.8 (resp. 0.54) for
flow theory (resp. deformation theory). Furthermore, it
can be noted that for plane-strain tension, both the flow
theory and the deformation theory predict the same evo-
lution for εL11 as a function of ξI (see Fig. 4b). These trends
confirm the results obtained in Fig. 2c, d. Besides, when ξI
vanishes, the limit strain εL11 determined by the flow theory
satisfies the relation εL11 ¼ n= 1þ ρð Þ, in the case of uni-
axial tension and plane-strain tension. It is worth noting
that the latter result is consistent with the theoretical pre-
dictions given byHill’s localized necking criterion [3]. For
positive strain paths (ρ = 1/2 and ρ = 1), when the flow
theory is applied, the introduction of an initial imperfec-
tion is required to obtain finite values for εL11, as demon-
strated in Fig. 4c, d. Indeed, in this case, εL11 tends to
infinity as ξI tends to zero. By contrast, when ξI vanishes,
the strain rate-independent deformation theory of plastic-
ity predicts finite values for εL11, even in the range of pos-
itive strain paths. This latter result is the consequence of
the destabilizing vertex effects, which are inherent to the
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deformation theory of plasticity [4, 5]. It is nowadays
well-known that these yield surface vertex effects have a
destabilizing role in promoting and precipitating early
plastic instabilities.

& Strain rate-dependent material (m = 0.05): in this case, the
predicted limit strains show high sensitivity to the initial
imperfection factor ξI, because, as stated earlier, εL11 be-
comes infinite when ξI tends towards zero. In other words,
bifurcation is ruled out in rate-sensitive materials, and this
result applies for all strain paths and for both theories of
plasticity.

Table 1 reports the predicted values for εL11, in the case of a
sheet metal with no initial imperfection (ξI = 0), as determined
by both plasticity theories.

Figure 5 shows the evolution of the critical strain ε*11 as a
function of the band orientation θ (at the onset of necking) for
the uniaxial tensile state. The crosses reported on the different
curves indicate the value of the limit strain εL11 and the asso-
ciated necking band orientation. It should be recalled that the
limit strain εL11 is obtained by minimizing the critical strains
ε*11 over all possible band orientations. It can be observed that,
regardless of the strain rate sensitivity value m, the critical
strains predicted by the flow theory of plasticity are much

more sensitive to the variation of θ than those obtained with
the deformation theory. Indeed, the critical strains predicted by
the deformation theory are rather unaffected by small changes
in θ. Furthermore, it can be seen that, for both plasticity the-
ories, the value of the necking band orientation θ that mini-
mizes the critical strain ε*11 increases as the strain rate harden-
ing exponent increases. The effect of the initial imperfection
ξI on the necking band orientation is not very noticeable from
the curves in Fig. 5.

Further investigations on the effect of strain rate sensitivity
on the necking band orientation are reported in Fig. 6. In this
figure, the evolution of θ as a function of the strain path ρ is
plotted for two hardening exponents (0.22 and 0.5) and for
two initial imperfection ratios (10−3 and 10−2). In the biaxial
tension range (ρ ≥ 0), the band orientation θ that minimizes
the critical strain is equal to 0. In other words, the necking
band is always perpendicular to the major strain direction for
positive strain paths. Accordingly, the evolution of θ is only
presented for the negative range of strain paths. It is revealed
that the dependence of the necking band orientation on the
strain rate sensitivity is generally function of the strain-path
range considered. For strain paths in the neighborhood of the
uniaxial tensile state, the value of necking band orientation
increases with m. The opposite trend is observed for strain
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paths close to plane-strain tension. Also, the necking band
orientation increases when the initial imperfection ratio de-
creases, as demonstrated in Fig. 6.

The respective effect of strain rate sensitivity and initial
imperfection ratio on the shape and location of the predicted
FLDs is investigated in Fig. 7. More specifically, a compara-
tive analysis is conducted for the predictions given by both
plasticity theories for two values of m (0 and 0.05) and two
values of ξI (10

−3 and 10−2). In view of these results, the
following conclusions may be drawn:

& Compared to the case of strain rate-independent material
behavior (m = 0), the strain rate sensitivity substantially
increases the value of the predicted limit strain εL11 for all
of the strain paths considered (i.e., ranging from uniaxial
tension to equibiaxial expansion). Indeed, it can be seen
that the effect of strain rate sensitivity is essentially to shift
the FLD monotonically upwards, and thus to significantly
enhance the ductility of the freestanding metal layer.

& With respect to the reference FLD associated with strain
rate-independent material behavior, the shape of the FLD
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is slightly altered by strain rate sensitivity, especially in the
range of positive strain paths.

& The FLDs predicted by the deformation theory of
plasticity are less sensitive to initial imperfections
as compared to those predicted by the flow theory,
especially in the range of positive strain paths. This
trend confirms the results previously discussed in
Fig. 4.

& Contrarily to the flow theory of plasticity, the FLDs
predicted by the deformation theory correspond to
more realistic strain levels, irrespective of the value
of strain rate sensitivity.

& In the particular case of plane-strain tension (ρ = 0),
the limit strains based on the deformation theory of
plasticity coincide with those predicted by the flow
theory. Moreover, this result holds for both strain
rate-dependent and strain rate-independent materials.

& Comparisons between the predictions of the devel-
oped model (with solid lines) and reference results
reported in [9] (with dotted graphs) reveal perfect
agreement, thus validating the developed numerical
tools.

5.2 Metal/elastomer bilayer

In this subsection, we investigate the ductility limits of
substrate-supported metal layers. For comparison pur-
poses, two combinations of constitutive models will be
considered; namely, a metal layer modeled by the flow
theory of plasticity supported by a neo-Hookean elasto-
mer substrate and a metal layer modeled by the defor-
mation theory of plasticity supported by a neo-Hookean
elastomer substrate. In what follows, shorthand notations
will be adopted for the above-described metal/elastomer
bilayers, which will be designated as FT/NH and DT/
NH, respectively. Note that in both cases, the elastomer
substrate is modeled by a neo-Hookean law. Unless ex-
plicitly stated otherwise, the hardening exponent n of
the metal layer and the shear modulus μ of the elasto-
mer layer are taken equal to 0.22 and 22 MPa, respec-
tively. This choice for the elastomer material parameters
is based on data for polyurea [30].

In order to emphasize the respective effects of strain rate
sensitivity and elastomer relative thickness on localized
necking, the evolution of the ratio εB11=ε

S
11 as a function of
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the major strain εS11 is plotted in Fig. 8. In this figure, three
representative strain paths are considered: ρ = − 1/2 (with
θI = 15°), ρ = 0 (with θI = 0°), and ρ = 1 (with θI = 0°). The
initial imperfection ratio ξI is set to 10−2. The ends of the
curves in Fig. 8 correspond to the points where criterion (26)
is satisfied. It is observed from this figure that bonding an
elastomer substrate to a metal layer significantly increases
the value of the critical strain ε*11 of the resulting metal/
elastomer bilayer. More interestingly, the positive role of
the elastomer layer in improving the ductility of the bilayer
is enhanced when the mechanical behavior of the metal lay-
er is strain rate sensitive. Another observation is that the
modeling based on flow theory of plasticity is more sensitive
to the addition of an elastomer layer than the DT/NH bilayer
combination. This is especially remarkable in the particular
case of uniaxial tension (ρ = − 1/2), where the presence of
the elastomer substrate may even guarantee the immunity of
the FT/NH bilayer against localized necking when the be-
havior of the latter is strain rate sensitive (Fig. 8a). Similar to
the case of a freestanding metal layer, for the plane-strain
tension loading path (ρ = 0), the evolution of εB11=ε

S
11 as a

function of εS11 is exactly the same, whatever the constitutive

modeling combination considered for the bilayer (FT/NH or
DT/NH). For this particular strain path, a relation, similar to
Eq. (30), can be derived to describe the evolution of εB11=ε

S
11

as a function of εS11.
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The respective effect of strain rate sensitivity and elastomer
relative thickness on the necking retardation is further inves-
tigated in Fig. 9. To quantify this necking delay, the evolution

of the retardation factor λε11¼ εL11−εL11
		
HI¼0

, normalized byffiffiffi
n

p
, as a function of the initial thickness ratio HI/hI is plotted

in Fig. 9. In this figure, the shear modulus of the elastomer
substrate is kept equal to 22MPa for all simulations, while the
initial thickness ratio HI/hI is varied between 0 and 3. The
obtained results reveal that the necking retardation is nearly
proportional to the thickness of the elastomer layer. Therefore,
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it is possible to prevent localized necking in metal/elastomer
bilayers by increasing the elastomer relative thickness. This
result is due to the fact that elastomer materials exhibit high
immunity against localized necking. From a technological
point of view, this conclusion is very important for the design
of parts and components made of substrate-supported metal
layers. Indeed, when allowed by the design constraints of
these parts, bonding thin metal layers by (relatively) thick
elastomer substrates allows substantially enhancing the duc-
tility of the resulting bilayers, which is desirable in applica-
tions involving high stretchability levels. Similar analysis has
been carried out to investigate the effect of the elastomer sub-
strate stiffness on the necking retardation in the bilayer. We
demonstrated, through this analysis, that bonding a thin but
sufficiently stiff elastomer substrate to a metal layer allows
retarding or even avoiding, in some special configurations,
localized necking in the bilayer. For the sake of brevity, the
numerical results corresponding to this analysis are not pre-
sented in this paper.

Figure 10 shows the evolution of the critical strain ε*11 as a
function of the band orientation θ of the bilayer, in the case of
the uniaxial tensile state. Whenever possible, three values for
the initial thickness ratio HI/hI are used in the different

simulations; namely, 0, 0.5, and 1. Similar to the case of a
freestanding metal layer, the critical strains predicted using
the FT/NH constitutive modeling for the bilayer are more
sensitive to the variation of the band orientation than their
counterparts corresponding to the DT/NH combination.
Also, it is observed that the necking band orientation (i.e.,

the band orientation that minimizes the critical strain ε*11 ) is
almost independent of the initial thickness ratio HI/hI.
Moreover, this trend seems to hold regardless of the bilayer
constitutive combination (FT/NH or DT/NH) and of the initial
imperfection ratio ξI (10

−2 or 2 × 10−2).
The respective effect of the strain rate sensitivity parameter

m and the initial thickness ratio HI/hI on the shape and the
location of the forming limit diagrams is depicted in Fig. 11. It
is observed that for both constitutive combinations of bilayers
(FT/NH and DT/NH), the effect of adding an elastomer sub-
strate is essentially to shift the FLD monotonically upwards,
thus enhancing the ductility of the bilayer. This result demon-
strates the important practical interest of using elastomer sub-
strates in order to retard the necking limit of functional com-
ponents and parts. As already observed in Fig. 8, the effect of
the elastomer layer is more significant when the mechanical
behavior of the metal is strain rate dependent.
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6 Conclusions

The respective as well as the combined effects of metal strain rate
sensitivity and the addition of an elastomer substrate on the oc-
currence of localized necking in metal/elastomer bilayers has
been carefully investigated in this paper. For comparison pur-
poses, the mechanical behavior of the metal has been modeled
successively by the large-strain rigid-viscoplastic flow theory and
the deformation theory counterpart. However, a neo-Hookean
constitutive law has been used to model the elastomer behavior.
Themetal and the elastomer layers are assumed to be sufficiently
thin with an isotropic and incompressible mechanical response.
The onset of localized necking is predicted by using the initial
imperfection approach. The different predictions correlate well
with experimental observations. From the simulation results, key
findings may be summarized as follows:

& Strain rate sensitivity substantially retards the occurrence
of strain localization in both freestanding metal layers and
substrate-supported metal layers.

& The beneficial role of the addition of an elastomer sub-
strate in the enhancement of the ductility of substrate-
supported metal layers is more important when the me-
chanical behavior of the metal layer is strain rate depen-
dent than when it is strain rate independent.

& In the range of positive strain paths, the predicted limit
strains are noticeably high when the mechanical behavior
of the metal layer is described by the flow theory of
plasticity.

The theoretical and numerical tools developed in the current
contribution can be used, in an industrial context, to provide
guidelines and assistance in the design of new generations of
electronic devices.

Appendix

Implicit incremental integration of the equations
governing the initial imperfection approach

The aim of this section is to integrate the equations governing
the initial imperfection approach over a typical time step
[tn, tn + 1]. The material parameters are assumed to have been
determined for both layers. Also, the following quantities are
assumed to be known at tn:

& FB (resp. FS): the deformation gradient in the band (resp.
in the safe zone).

& εBeq (resp. ε
S
eq ): the equivalent strain in the band (resp. in

the safe zone).
& hB (resp. hS): the thickness of the metal layer in the band

(resp. in the safe zone).
& HB (resp. HS): the thickness of the elastomer layer in the

band (resp. in the safe zone).

Due to assumption A2 in Section 2.1.1, the values of GB,
GS, FB, FS, εBeq, and εSeq in the metal layer are equal to their

counterparts in the elastomer layer.

The component GS
11 of the velocity gradient in the safe

zone is fixed to 1 over [tn, tn + 1] and, more generally, during
the whole deformation. By using Eq. (18), the other compo-
nents of GS can easily be deduced as follows:

GS ¼
1 0 0
0 ρ 0
0 0 − 1þ ρð Þ

2
4

3
5: ð32Þ

In order to simplify notations, subscript tn + 1, indicat-
ing that the corresponding variable is expressed at time
tn + 1, will be omitted hereinafter, unless otherwise
indicated.

Knowing the values ofGS and the other variables at time tn,
it is possible to determine the Cauchy stress tensor σ in both
layers of the safe zone (at time tn + 1):

& Flow theory of plasticity (metal layer): due to the symmet-
ric form ofGS in Eq. (32), the strain rate εs takes the same
expression. The equivalent strain rate εseq is computed

from εs by using Eq. (2)1. This allows the equivalent strain
at tn = 1. to be determined by the following relation:

εSeq¼ εSeq tn þΔtε
:S
eq: ð33Þ

The equivalent stress σS
eq Mð Þ is then determined from εSeq

and εSeq by using Eq. (4), which allows the deviatoric stress

tensor SS Mð Þ to be computed via Eq. (3). The Cauchy stress
tensor σS Mð Þ is finally derived from the deviatoric stress

tensor SS Mð Þ by using Eqs. (9) and (12)(1).

& Deformation theory of plasticity (metal layer): in this case,
the deformation gradient is first computed (at time tn + 1)
using the following relation:

FS¼ eΔtGS

FS
tn
: ð34Þ

Then, the left Cauchy-Green stretch tensor VS, which is

equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FS FST

p
, and the associated logarithmic tensor ln



V are calculated. This allows the equivalent strain εSeq to be

determined as follows:

εSeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
.
3

� �
lnV : lnV

r
: ð35Þ

Thus, the equivalent strain rate ε
:S
eq is derived from εSeq and

εSeq tn by using the following relation:

ε
:S
eq ¼

εSeq−εSeq tn
Δt

: ð36Þ

The secant modulus ES is then computed by inserting ex-

pressions (35) and (36) for εSeq and ε
:S
eq into Eq. (8). Finally,

Eq. (6) is used to determine SS Mð Þ and, similarly to the flow
theory case, the Cauchy stress tensor σS Mð Þ is derived from

the deviatoric stress tensor SS Mð Þ by using Eqs. (9) and
(12)(1).

& Neo-Hookean model (elastomer layer): the left Cauchy-
Green stretch tensor VS is computed from the expression
of FS. Then, the Cauchy stress tensorσS Eð Þ is determined
from tensor VS by using Eqs. (10) and (12)(2).

Also, the current orientation of the band θ (at time tn + 1)
should be computed by using Eq. (24)

Tan θð Þ ¼ e 1−ρð Þ∫tnþ1
0 GS

11 dt Tan θIð Þ: ð37Þ

Because the value of GS
11 is held constant and is fixed to 1

during the deformation, Eq. (37) can be rewritten equivalently as

Tan θð Þ ¼ e 1−ρð Þ tnþ1 Tan θIð Þ: ð38Þ

Hence, the current orientation of the band, which is func-
tion of the strain-path ratio ρ, is known at the end of the time
increment. Therefore, the normal to the band, which is
equal to (cos(θ), sin(θ), 0), is also known at tn + 1.

The velocity gradient in the band is obtained fromEqs. (20)
and (32), which reads

ð39Þ

Accordingly,GB only depends on two scalar unknowns: ̇c1
and ̇c2. Following the same procedures as those used for the
determination of the Cauchy stress tensors in the safe zone, the
Cauchy stress tensorσB in the different layers of the band can
be easily expressed as function of ̇c1 and ̇c2.

On the other hand, the current thicknesses of the metal and
elastomer layers, both in the safe zone and in the band, can be
written in the following incremental forms:

hS¼ hStn e
Δt GS

33 ; hB¼ hBtn e
Δt GB

33 ; HS¼ HS
tn
eΔt GS

33 ; HB¼ HB
tn
eΔt GB

33 : ð40Þ

Considering the expressions of GS
33 and GB

33 given

by Eqs. (32) and (39), the expressions of hS; hB; HS;

and HB in Eq. (40) can be expressed more explicitly
as

ð41Þ

thus revealing that hS and HS are readily computed in

terms of the known quantities hStn , HS
tn
, Δt, and ρ.

However, thicknesses hB and HB are still unknown, as

they depend on c1 and c2.

The equilibrium Eq. (25) can be expressed in the following
indexform:



ð42Þ

As the unit vector normal to the band lies in the plane of the
sheet, as illustrated in Fig. 1, its third component is equal to 0.

Furthermore, by virtue of the plane-stress conditions, σB
i3 and σ

S
i3

are equal to 0. Therefore, Eq. (42) is reduced to a 2D relation

ð43Þ

This formulation for the equilibrium equation
restricted to the sheet plane may be regarded as a
system of two scalar equations with two unknowns
̇c1 and ̇c2

R ̇c1; ̇c2Þ ¼ 0;ð ð44Þ

where the components of the residual vector R are de-
fined by

Equation (45) represents a set of nonlinear equations,
which are iteratively solved by the Newton-Raphson method.
The function fsolve in Matlab is used to find the roots of
Eq. (45) and then to compute the unknowns ̇c1 and ̇c2.
Ultimately, the determination of ̇c1 and ̇c2 allows the compu-
tation of the different mechanical and geometric quantities at
tn + 1.
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