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Numerical investigation of the combined effects of curvature 
and normal stress on sheet metal formability 

Mohamed  Ben  Bettaieb1,2   &   Farid  Abed-Meraim1,2   &   Xavier  Lemoine 1

Abstract A number of parts and components involved in the 
automotive industry are made of thin bent sheets, which are 
subjected to out-of-plane compressive stresses in addition to 
traditional in-plane stresses. Unfortunately, the classical pre- 
dictions based on the conventional concept of Forming Limit 
Diagram (FLD) are no longer relevant when the strain distri- 
bution is heterogonous over the sheet thickness. Therefore, 
this conventional FLD concept is not capable of accounting 
for the effect of out-of-plane stresses on the onset of localized 
necking. The aim of the present contribution is to propose an 
extension of the well-known Marciniak–Kuczynski approach 
to simultaneously account for the effect of curvature and nor- 
mal stress on formability prediction. The new developed tool 
allows predicting the limit strains for the whole range of strain 
paths. The mechanical behavior of the studied sheets follows 
the rigid–plastic flow theory. Through numerical results, it is 
shown that both curvature and normal stress tend to increase 
the formability limit of the sheet metal. 

Keywords Forming limit diagrams . Localized necking . 
Flow theory . Out-of-plane stress . Curvature . Marciniak– 
Kuczynski approach 

Introduction 

The study of ductility of metallic components and parts is an 
ambitious challenge in both academic and industrial applica- 
tions. This ductility is often characterized by the classical con- 
cept of Forming Limit Diagram (FLD). This concept has been 
originally introduced by Keeler and Backofen [1], for 
representing the limit strains in the range of positive strain 
paths, and has been extended by Goodwin [2] to the whole 
range of strain paths. Due to the complexity of the experimen- 
tal characterization of FLDs and its relatively high cost, a 
number of theoretical and / or numerical models have been 
developed in the literature. These models generally require the 
use of an instability criterion along with a constitutive law to 
describe the evolution of the mechanical state of the studied 
sheet. In the literature, a large number of models have been 
developed to numerically determine FLDs. Among these the- 
oretical / numerical approaches, we can quote the work of 
Marciniak and Kuczynski [3], who coupled the initial imper- 
fection approach with a rigid–plastic flow theory in order to 
predict the limit strains in the range of positive strain paths. 
Later, Hutchinson and Neale [4] extended the initial imperfec- 
tion approach, originally developed in [3], to the range of 
negative strain paths. In the latter work, both the rigid–plastic 
flow theory and the deformation theory of plasticity were used 
to model the mechanical behavior of the studied sheet. In most 
of the traditional approaches proposed in the past, the predic- 
tions are generally based on three main assumptions: the ho- 
mogeneity of the deformation through the thickness and in the 
plane of the sheet, the linearity of the strain paths, and the 
absence of out-of-plane stresses (a plane-stress state is as- 
sumed). In practice, however, these assumptions are seldom 
satisfied in most sheet metal forming processes. Indeed, in 
forming processes such as deep drawing or single point incre- 
mental forming, a punch or round tipped tool exerts on the 
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sheet a force normal to its plane to deform it. In hydroforming 
processes, this force is exerted in the form of hydraulic pres- 
sure. Therefore, the effects of the magnitude of this normal 
stress and its distribution should be considered in the predic- 
tion of formability. Furthermore, the impact of curvature, cre- 
ated by the application of various forming tools, on formabil- 
ity is not taken into account, since homogeneous deformation 
through the sheet thickness is assumed in predictions based on 
the classical concept of FLDs. In the literature, few numerical 
studies have been carried out to investigate the above- 
mentioned effects on formability: 

• Effect of curvature on formability: It is not uncommon
that metallic sheets used in industrial applications (auto-
motive, aeronautic …) undergo combination of bending
and stretching deformations. Such modes of deformation
may have a substantial impact on the formability of the
studied parts. Several experimental studies revealed that
bending tends to enhance the formability of metal sheets.
In recent years, there have been a number of attempts to
develop FLD prediction models that take into account
bending effects. In this field, Shi and Gerdeen [5] integrated
the effect of strain gradient and curvature in the prediction of
FLDs for anisotropic materials. Sriram et al. [6] developed an 
empirical model to characterize fracture behavior during
forming of advanced high strength steels under bending
dominated conditions. He et al. [7] extended the initial im-
perfection approach developed in [3] to the case of combined
stretching–bending loading. However, their work was re-
stricted to the right-hand side of the FLD, where bending is
along the major stretch direction. Two different constitutive
laws were used in [7] to model the mechanical behavior of
the sheet: the flow theory and the deformation theory of
plasticity. The obtained numerical results suggested that
bending process decreases sheet metal formability when
the flow theory is used, whereas the opposite trend was ob- 
served with the deformation theory. Furthermore, the model
developed in [7] was combined with finite element analysis
in order to predict the forming limits of a sheet metal under-
going continuous bending-under-tension loading [8]. More
recently, Safdarian [9] developed a new model for predicting
FLDs of tailor welded blanks. In this model, the M–K ap-
proach developed in [4] has been enriched by taking into
account the effect of bending strain on sheet metal formabil-
ity. The flow theory of plasticity was used to describe the
mechanical behavior of the studied sheet. Contrary to the
approach developed in [6], the modified M–K model devel-
oped in [9] allows predicting the limit strains for the whole
range of strain paths. However, this model presents some
drawbacks and limitations. Indeed, in this model, the strain 
paths, both within the band and outside it, are assumed to
remain linear during deformation. Consequently, the incre- 
ment of strain components is replaced by total strain

components in the constructive equations governing the as- 
sociated modified M–K model. This assumption is not rele- 
vant in the band zone, where it is known that the strain path is 
constantly changing along deformation. Besides, the shear 
stresses have been withdrawn in the formulation of the equi- 
librium equations. This point represents the second limitation 
of the model. Indeed, the shear stresses cannot be neglected, 
especially when the band is not perpendicular to the major 
strain direction. In the present paper, a new modified M–K 
model is developed to address the above-mentioned issues. 
The main result of this paper is that the addition of bending 
effects tends to enhance sheet metal formability for the whole 
range of strain paths. This result confirms the numerical pre- 
dictions reported in [8]. It must be noted that in all the pre- 
vious studies dedicated to the investigation of curvature ef- 
fects on the enhancement of formability, the plane-stress as- 
sumption has been adopted in the constitutive models used. 

• Effect of normal stress on formability: Several classical
localization criteria have been extended in the literature to
take into account the effect of normal stress on formability.
In this regard, one can quote Gotoh et al. [10] who extend-
ed both the Swift diffuse necking criterion [11] and the
Hill localized necking criterion [12] to a 3D stress state,
where the effects of normal stress on the onset of diffuse
and localized necking have been accounted for. More re-
cently, Allwood and Shouler [13] extended the initial im-
perfection approach to consider the effect of normal stress
components on the prediction of limit strains. In the latter
contribution, an isotropic rigid–plastic flow theory has
been used to describe the mechanical behavior of the stud-
ied sheet. As a result of this investigation, a new general-
ized forming limit diagram has been proposed, which
highlights the influence of normal stress components on
the formability limits. The numerical approach developed
in Allwood and Shouler [13] has been extended by Fatemi
and Dariani [14] by taking into account the plastic anisot-
ropy of the sheet via the use of the Hill’48 yield criterion.
In both of these contributions, the strain and stress distri-
butions have been assumed to be homogeneous through
the thickness of the sheet during the deformation. In the
current investigation, the M–K extension that accounts for
bending effects is further extended to take into account the
effect of a heterogeneous distribution of compressive nor-
mal stresses over the thickness of the sheet. The magni-
tude of this stress distribution is assumed to be maximal in
the inner surface of the sheet (which is assumed to be in
contact with the tool) and zero in the outer surface of the
sheet. To the authors’ best knowledge, this is the first time
the effects of curvature and normal stress on formability
are simultaneously investigated within an extended M–K
model specifically designed to this purpose.

The remainder of the paper is organized as follows: 
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– The equations governing the newly modified M–K exten-
sion will be detailed in the second section.

– In the third section, the numerical and algorithmic aspects
relating to the model will be presented.

– Various numerical results obtained by application of the
developed model will be presented and discussed in the
fourth section.

Notations

The following notations and abbreviations are adopted in 
this paper: 

σ ¼ S þ p I2; ð3Þ 

where p is the hydrostatic pressure equal to 1/3 tr(σ) and I2 is 
the second-order identity tensor. 

The equivalent stress σeq is related to the equivalent strain 
εeq by the Hollomon isotropic hardening law 

σeq  ¼ Κ εn  ; ð4Þ 

where K and n are two material hardening parameters. 
By combining Eqs. (2) and (4), one obtains 

2 Κ εn 
  

– ●T: transpose of tensor ●. 
S 

3 ε̇eq
ε: ð5Þ 

– ●B: quantity ● associated with the band. 
– ●H: quantity ● associated with the zone located outside 

the band. 
– ●ST: the stretching part of quantity ●. 
– ●BE: the bending part of quantity ●. 
– ●(t): value of quantity ● at time t. 
– tr(●): trace of tensor ●.
– ●i: quantity ● associated with the integration point i. 

These notations can be combined. For instance, the 
stretching part of the strain tensor in the band is denoted by 
ST. 

Governing equations 

Mechanical behavior 

Elasticity is neglected in the subsequent constitutive equa- 
tions. This assumption is justified, because strain localization 
occurs at relatively large strains. Moreover, the plastic flow is 
assumed to be isotropic and incompressible. The rigid–plastic 
flow theory is then used to model the mechanical behavior of 
the studied sheet metal. Hence, the strain rate tensor ε̇ is de- 
rived by using the normality flow rule 

 ∂σ eq

Modified M–K approach 

Assumptions related to the Bending–Stretching process 

The sheet is assumed to be initially flat, with X and Y the two 
in-plane principal directions and Z the through-thickness di- 
rection, as illustrated in Fig. 1. It should be understood that the 
X-Y-Z coordinate system represents a material coordinate 
frame, which will rotate as material deforms. The following 
assumptions and choices are made in the development of this 
modified M–K approach: 

– The sheet is first subjected to a bending moment M ap-
plied in Y-direction, resulting in the sheet being curved
along X-direction, with a uniform curvature R. Hence,
there is a single curvature along X-direction, while the
sheet remains straight along the Y-direction (see Fig. 1).

– The neutral axis is assumed to remain located at the mid-
layer of the sheet metal during deformation.

– The studied sheet is assumed to be wide enough (along
the Y-direction) relative to its thickness. Consequently, the
strain component εyy can be neglected during the bending
process.

– The sheet is initially submitted to a heterogeneous distri-
bution of out-of-plane stress through its thickness. This
out-of-plane stress distribution is assumed to take a con-
stant value during the deformation for each surface locat-

ε̇  ¼ λ̇ ∂σ ; ð1Þ 
ed at a given distance from the mid-layer of the sheet.

where λ̇ is the plastic multiplier (equal here to the von Mises 
equivalent strain rate ε̇eq ), σ is the Cauchy stress tensor, and 
σeq is the von Mises equivalent stress. By using the definition 
of σeq, the rigid–plastic constitutive law can be derived from 
Eq. (1) 

– After the bending stage, an axial major strain along X and
a minor strain along Y are then applied to the sheet under a
constant strain-path ratio ρ, while the bending radius is
kept constant equal to R.

ε̇  ¼ 
3 ε̇eq 

2 σeq
S⇔S ¼ 2 σeq 

3 ε̇eq 
ε̇ ; ð2Þ Modified M–K equations

where S is the deviatoric part of σ. These two tensors are 
linked by the following relation: 

The M–K approach is based on the assumption of the preex- 
istence of an initial geometric imperfection in the form of a 
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The stretching part ε̇ H 
 

is assumed to be uniform over the 
thickness of the sheet and is given by the following expres- 
sion: 

ε̇ ST ¼ 
H εST xx 0 

! 
H ; ð8Þ 

0 ρ ε̇ST xx

where the strain-path ratio ρ is varied in the range −1/2 ≤ ρ ≤ 1 
to span the  complete  FLD. 

Fig. 1  Initial imperfection approach for the sheet metal 
The stretching part of the strain rate in the band ε̇ B   is 

related to that outside the band ε̇ H by the following kinematic 

band across the thickness of the sheet, as illustrated in Fig. 1.
compatibility condition: 

 T\ 
This band is defined by its normal unit vector !n . The angle ε ̇B H 

(
→̇   !

(
→̇ 

between vector !n and the major strain direction X is denoted
θ. The initial thickness of the band (resp. zone outside the 

ST  ¼ ε ̇ST þ ð1=2Þ c ⊗ n þ  c ⊗!n ; ð9Þ 

band) is equal to hB (resp. hH ). where !ċ is the jump vector. Vectors !ċ and !n are assumed to
0 0 be uniform over the thickness of the sheet. 

The sheet illustrated in Fig. 1 is subjected to biaxial 
stretching in the X and Y directions. Additionally, a non-zero 
principal stress σzz acts in the out-of-plane direction (i.e., in 

The evolution of the band orientation θ is given by the 
following relation: 

the Z-direction). The distribution of this stress component is 
assumed to be homogeneous through the plane of the sheet 

θ ¼ arctan
l
tanðθ0Þ expð1−ρÞ εH 

l
; ð10Þ 

(i.e., σzz is independent of x and y coordinates), but heteroge- 
neous over the thickness of the sheet. The value of σzz is taken 
constant for each surface located at a given distance from the 
mid-layer of the sheet. For example, σzz is equal to −α at the 

where θ0 is the initial value of the band orientation. 
The global equilibrium equation across the band can be 

expressed as follows: 

inner surface of the sheet (where α is a non-negative pressure, 
constant during the deformation), while it is equal to 0 at the 

( hH =2 H 
∫−hH =2σ dz  

hB   2 

: ¼   ∫−hB =2σ  dz :!n ; ð11Þ 

outer surface. Also, σzz  is assumed to evolve linearly, as a 
function of the z coordinate, between the two external surfacesof the sheet. The distribution and the magnitude of σzz  are

where hH and hB are the current thicknesses of the sheet out- 
side and in the band zone, respectively. These thicknesses areexpressed as functions of their initial values hH B 

assumed to be the same both in the homogeneous zone and  the components of ε̇ H ˙ B 0  and h0  and of 

in the band. As a consequence of the assumptions made inBAssumptions  related  to  the  Bending– Stretching  process
hH  ¼ hH

ST and εST
−ðεST xxþεST yyÞ ¼ h  e−ðεST xx  εST yyÞ 

section^ and the spatial distribution of σzz, it can be shown H H 

0 e ; h 
B B      þ B

0 
: ð12Þ 

that the different mechanical variables (strain, stress…) are 
independent of the x and y coordinates, both inside and outside 
the band. These mechanical variables only depend on the z 
coordinate. Under the incompressibility condition, it is more 
convenient to rewrite in what follows the governing equations 
in the form of an in-plane formulation (i.e., in the plane (X Y)). 

It appears to be difficult to determine analytical expressions 
providing exact values for the two integrals introduced in Eq. 
(11). Therefore, these integrals are rather numerically approxi- 
mated by the trapezoidal method, after a geometric 
discretization of the sheet thickness is performed 

The total strain ε is additively decomposed into a bending h  =2 

∫ 
z  

 \ 
þ i iþ1 i 

part εBE and a stretching part εST 
H 

−hH =2σ 
i¼Ν p −1 zH H H H 

dz ¼ ∑ 
i¼1 

13Þ 

hB =2 B

i¼Ν p −1 zB B B B ð 

ε ¼ εBE þ εST: ð6Þ ∫−hB

=2σ 
dz ¼ ∑ 

i¼1 
z 

 \ 
þ i iþ1 i ; 2 

The above decomposition is valid both inside and outside 
the band. 

Also, the bending part εBE of the deformation tensor has 

the same expression in both zones 



where Np is the number of integration points used in the numer- 
ical quadrature, which is assumed, for convenience, to be the

same for both zones. In Eq. (12), zH  (resp. zB  ) represents the 
i i 

current position of the ith integration point through the thickness 
H     H   

Lnð1 þ z=RÞ   0 
\

 in the zone outside the band (resp. in the band). Hence, z1 , zN p 
, εBE ¼ 0 0   : ð7Þ zB     B H H B B

1 , zN p   
are equal to −h  /2, h  /2, −h /2, h /2, respectively. 



i 0 

Δε =Δε 

0 

x
 

x
 

x
 

ST zz 

x
 

x
 

B 

Furthermore, zH  (resp. zB  ) is related to its initial value zH integration of the governing equations section^ to inte- 

(resp. zB 
i  i 

) by 
i 0 

grate the governing equations detailed in BGoverning 
equations section^. The application of this incremental

zH H −ðεH
 þεH 

Þ ; zB B    −ðεB
 

ε Þ:  14 integration scheme is stopped when the following criteri-
i   ¼ zi 0 e ST xx ST yy

i   ¼ zi 0 e ST xxþ ST yy ð   Þ 
on is satisfied: 

Algorithmic aspects 

Bending process 
B 
ST zz 

H 
ST zz 

≥ 10: ð17Þ 

Before the stretching loading is applied, the sheet metal is first 
bent by applying a bending moment M. During this bending 
stage, the curvature radius decreases from +∞ (which corre- 
sponds to a flat sheet) to a finite value R. This bending is 
moderate compared to stretching (typically the ratio hH=R 
does not exceed 0.2). Therefore, it is legitimate to consider 
the distance z of any integration point to the neutral axis as a 
constant value, which is taken equal to its initial value z0. At 
the end of this bending process, the equivalent strains corre- 
sponding to the different points located inside and outside the 

The strain component εH , thus obtained once the criterion 
(17) is satisfied, is considered as being the critical strain ε* 

corresponding to the initial band inclination θ0 and strain-path 
ratio ρ. The factor 10 in Eq. (17) is rather arbitrary and any 
other relatively large positive value can be used without loss 
of accuracy. Indeed, the impact of this value on the predicted 
critical strain is minimal, since the absolute value of the band 
thickness strain rate ε̇B increases very rapidly towards in- 
finity at incipient necking. 

The smallest critical strain ε* , over all initial angles θ0, and 
the corresponding current angle, define the necking limit 

band are computed strain εL and the necking band orientation, respectively, for 
8 

2 
εH H 

the current strain-path ratio ρ. 

∀i ¼ 1; …; Ν p  : <> eq i  ¼ pffi
3
ffi Ln 1 þ zi

0=R 2 
ð15Þ The above-developed algorithm and the associated algo- 

rithmic aspects have been implemented in a standalone code 
εB   B

:> eq i  ¼ pffi
3
ffi Ln  1 þ zi 0=R  :

Simultaneously to this bending loading, a normal stress, 
which is constant during the loading and heterogeneous, is 
applied on both the safe zone and the band. As previously 
discussed, this normal stress is linearly distributed through 
the thickness of the sheet, as defined by the following rela- 
tions: 

developed using the multi-paradigm numerical computing en- 
vironment Mathematica. This implementation is carried out 
independently of any FE code. The input data for this code are 
all parameters related to the material (isotropic hardening), 
geometry (thickness of the sheet and curvature radius), me- 
chanical state (amount and distribution of the normal stress) 
and numerical choices (number and position of the different 
integration points). On the other hand, the output results are 
the limit strain εL and the necking band orientation corre- 

σH α   H     α sponding to the strain-path ratio ρ. 
∀i ¼ 1; …; N p  : zz   i ¼

hH zi  − 2 ð16Þ 
σB α   B     α 

zz    i  ¼ 
hB zi  − 2 :

Algorithm for the FLD prediction 

The general algorithm developed for the FLD prediction is 
based on the following three nested loops: 

• For each strain-path ratio ρ ranging from −1/2 to 1 (with
increments Δρ of 0.1).

– For each initial band orientation θ0, spanning the admissi-
ble range of inclination angles (i.e., between 0° and 90°), at
user-defined intervals (here, we take intervals of 1°).

For each time interval [t0, t0+Δt], apply the implicit in- 
cremental algorithm described in BIncremental 

Incremental integration of the governing equations 

The main purpose of this incremental algorithm is to integrate 
the equations governing the modified M–K approach over a 
typical time increment [t0, t0 + Δt]. In this aim, we assume 
that, at each integration point located in the zone outside the 
band or in the band, the following quantities are known at time 
t0: 

– The coordinate through the thickness direction z (see Eq.
14). 

– The equivalent strain εeq (see Eq. 15)
– The normal stress σzz (see Eq. 16).

In order to simplify notations, the argument t0+Δt will be 
omitted hereinafter, with the implied understanding that the 
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corresponding quantity is evaluated at t0 + Δt, unless other- 
wise indicated. 

The increment over [t0, t0 + Δt] of the strain tensors εH and 
εB at the different integration points located outside and in the 

The increment ΔεB is chosen as loading parameter over band zone is finally determined as follows: 
[t0, t0 + Δt]. It is typically set to −0.001.   

ΔεH 
 ΔεH 

 ΔεH

The increment ΔεH is derived from the integration of Eq. (8): ∀i ¼ 1; …; Ν p  : i   ¼ ΔεB ST þB 
BE i ; ð26Þ 

i   ¼ ΔεST þ ΔεBE i
H \ 

ΔεH ΔεST xx 0 
¼ 

: ð18Þ  where the expressions of ΔεH  , ΔεH  , ΔεB  , and ΔεB  are 
ST H ST xx ST BE i ST BE i 

On the other hand, the components of the increment ΔεB 
are derived from the integration of Eq. (9) 

given by Eqs. (18), (19), (22), and (25), respectively. 
Accordingly, for a given strain-path ratio ρ, the strain incre- 
ments ΔεH and ΔεB are functions of three scalar unknowns: 

i i 

ΔεB ¼ ΔεH þ Δc1 n1
H 
ST xx , Δc1 and Δc2. 

ST xx 
B 
ST xy 

ΔεB

ST xx 
B 
ST yx 

¼ ρ ΔεH
¼ ð1=2Þ ðΔc1   n2 þ Δc2   n1Þ 

þ Δc2  n2: 

ð19Þ 
The expression of the deviatoric stress S at the different 

integration points inside and outside the band is derived from 
Eq. (5) 

ST yy ST xx 
2 Κ εn 

It is noteworthy that Eq. (19) has been derived from Eq. (9) 
by implicitly assuming that, all along the time increment, the 

S ¼ 
3 Δε Δε: ð27Þ 

components of vector !n keep their initial values at t0.
Furthermore,  Eq.  ( 19 )  in  c onjunctio n  w ith  the  

incompressibility condition leads to the following relation: 

The Cauchy stress tensor σ can be expressed as follows: 
0 

σxx 0 0 
1

ð1 þ ρÞ ΔεH þ Δc1   n1 þ Δc2 n2 ¼ −ΔεB : ð20Þ
σ ¼ 
@ 

0 σyy 0 
0 0 σzz

A: ð28Þ 

In the band, the position of the different integration points 
at t0 + Δt can be easily expressed in terms of ΔεB 

Tensor σ is related to its deviatoric part S by 

S ¼ σ−ð1=3Þ trðσÞ I2: ð29Þ 
∀i ¼ 1; …; N p  :   zB  ¼ zBðt0Þ  eΔεST     zz : ð21Þ Therefore, the components of tensor S are given by the 

i i 

By using Eqs. (7) and (21), the increment of εB over [t0, following relations:

t0 + Δt], for the different integration points within the band, 
can be expressed as Sxx ¼ 

2 σxx−σyy−σzz
3 2 σyy−σxx−σzz0 

∀i ¼ 1; …; Ν p :   ΔεB ¼ @ Ln 
R þ zB \

R þ zBðt0Þ 
1 

0 A: ð22Þ
Syy ¼ 3  2 σ zz − σ xx− σ yy  

ð30Þ 

0 
i

0 Szz ¼ 3 : 

The position at t0 + Δt of the integration points located 
outside the band can be determined by the following equation: 

∀i ¼ 1; …; Ν p  :   zH  ¼ zHðt0Þ eΔεST zz ; ð23Þ 

By inverting the above relations, one can obtain the expres- 
sions of σxx and σyy as functions of Sxx, Syy and σzz

σxx  ¼ 2 Sxx þ Syy  þ σzz ; σyy  ¼ 2 Syy þ Sxx þ σzz:  ð31Þ 
i i 

where ΔεH 

condition 
is determined by applying the incompressibility The distribution of the normal stress σzz over the thickness 

of the sheet is given by Eq. (16). 
Combining Eqs. (3), (27) and (31), one can easily derive 

H 
ST zz ¼ −ð1 þ ρÞ ΔεH : ð24Þ the expression of the Cauchy stress tensor σ at the different 

integration points over the thickness of the sheet. 
The increment of εH over [t0, t0 + Δt] for the different Once determined, the expression for σ is then inserted in 

integration points located outside the band is determined by 
a relation very similar to Eq. (22) 

the approximation (13), which in turn is inserted in the equi- 
librium Eq. (11). Analyzing the previous developments, Eq. 
(11) may be regarded as a system of two equations with three 0 

∀i ¼ 1; …; Ν p :  ΔεH ¼ Ln R þ zH \
 1 0 : ð25Þ scalar unknowns: ΔεH , Δc1 and Δc2. By considering Eq.

BE i 
@ R þ zHðt0Þ A 

0 0 
(11) along with Eq. (20), a system of three scalar equations 
with the three above unknowns is obtained. This system 
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should be solved iteratively by using the Newton–Raphson a 
method in order to determine the above-mentioned scalar un- 
knowns. Ultimately, the determination of these unknowns al- 
lows computing the different quantities at t0 + Δt: namely, the 12 
distance of the different integration points to the neutral axis of 
the sheet, the distribution of the equivalent strain through the  9 
thickness in both zones, and the band orientation. In particular, 

R mm R  10 mm 
R  100 mm Flat sheet 

the values of the strain components ΔεH H 
ST xx (the 

latter being equal to εH ðt0Þ þ ΔεH ) are of special inter- 6 
est; the former being required for the application of the neck- 
ing criterion (17), while the latter is needed in the algorithm of 3 
BAlgorithm for the FLD prediction section^. 

Prediction results 

The current section is divided into four subsections: 

• The material and geometric data are briefly presented in
the first subsection.

• The effect of curvature on the enhancement of formability
is demonstrated in the second subsection through several
numerical simulations (under plane-stress assumption).

• The third subsection is dedicated to the investigation of the
effect of normal stress on the formability of a flat sheet.

• The combined effects of curvature and normal stress on
formability are depicted in the fourth subsection.

0 
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Fig. 2  Illustration of the onset of localized necking: evolution of the ratio 
Material and geometric data 

A DP600 sheet steel with the hardening parameters K = 
945 MPa and n = 0.16 is used in the following simulations. 
The initial thicknesses hH  and hB  are set to 1 mm and 

ΔεB H H 
ST zz=ΔεST zz as a function of εST xx: (a) plane strain tensile state (ρ =

0); (b) equibiaxial tensile state (ρ = 1) 

0 0 radius is almost the same as that corresponding to a flat sheet, 
0.99 mm, respectively. The number of integration points Np 

is taken equal to 11. 
as observed in Fig. 2. 

Figure 3 depicts the evolution of the ratio ΔεB H 
ST zz 

Effect of curvature 

Figure 2 shows the evolution of the ratio ΔεB H 
ST zz as a 

as a function of εH   (the major deformation of the outer surface 
of the sheet) for both cases of plane strain tensile state (ρ = 0) 
and equibiaxial tensile state (ρ = 1). It must be noted that the 
strain component εH   is the strain that is actually measurable 

function of εH for both cases of plane strain tensile state during the deformation. It is clearly shown from this figure 
(ρ = 0) and equibiaxial tensile state (ρ = 1). In this figure, three 
bending radii are considered: R = 3 mm; R = 10 mm; R = 
100 mm. The results corresponding to a classical flat sheet 
are also included in this figure. The occurrence of strain local- 

that the limit strain εH   decreases with the bending radius. This 
means that bending tends to retard the occurrence of localized 
necking and, thus, to enhance formability, especially when the 
bending radius is small. The difference in the trends between 

ization is predicted when the ratio ΔεB H 
ST zz exceeds Figs. 2 and 3 is due to the contribution of the bending part to 

10, as stated by criterion (17). It is clear from this figure that the strain measure: only the stretching contribution εH 
xx has 

the value of εH at the onset of strain localization increases been used in Fig. 2, while the total strain component εH   is 
with the bending radius R. For large values of the bending 
radius R (e.g., more than 100 mm), bending effect is very 
limited. In such conditions, the prediction with high bending 

used in Fig. 3. As the bending strain component (which is 
equal to the difference between εH   and εH ) significantly 

xx ST xx 
decreases with the bending radius (see Eq. 25), this explains 
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a The effect of bending radius on the evolution of the 
stretching critical strain ε* , as a function of the initial band 
orientation θ0, is investigated in Fig. 5 for the case of uniaxial 
tensile strain path. Note that the necking band is not perpen- 
dicular to the major strain direction, whatever the value of the 
bending radius R. Indeed, the stretching critical strain ε* 

decreases with the initial band orientation θ0 until reaching its 
lowest value, which corresponds to the stretching limit strain 
ST xx, and then it increases afterwards. This result is common 
to all negative strain paths, as demonstrated in Fig. 6. 
However, for positive strain paths, the necking band is per- 
pendicular to the major strain direction. These observations 
are classical for flat sheets when bending effects are not con- 
sidered. Note that the effect of bending radius on the necking 
band orientation θ is not very significant, as shown in Fig. 6. 

b The results presented in Fig. 5 for the particular case of 
uniaxiale tensile strain path are extended in Fig. 7 to the whole 

a 

Fig. 3  Illustration of the onset of localized necking: evolution of the ratio 
B 
ST zz 

H 
ST zz as a function of εH : (a) plane strain tensile state (ρ = 0); 

(b) equibiaxial tensile state (ρ = 1) 

the opposite trends observed between Fig. 2 and Fig. 3. It must 
be noted that the evolution of the ratio ΔεB ST zz  is b 
presented in Fig. 3 during the stretching phase only (i.e., the 
bending stage is not shown in this figure). This fact explains 
why the initial value of εH (which correspond to the onset of 
the stretching phase) is not always equal to zero (especially for 
small to moderate bending radii, see Fig. 3 (a)). 

To further investigate the effect of curvature on the onset of 
strain  localization,  the  stretching  limit  strain  εL (the 
stretching strain determined at the onset of plastic strain local- 
ization) and the total limit strain εL (the sum of the stretching 
strain and the bending strain, as predicted at the beginning of 
localized necking) are plotted as functions of the inverse of the 
bending radius R in Fig. 4 (a) and Fig. 4 (b), respectively. In 
both figures, four representative strain paths are considered: 
ρ = − 0.5; ρ = 0; ρ = 0.5; and ρ = 1. The results of Fig. 4 (a) 
(resp. Fig. 4 (b)) confirm the observations displayed in Fig. 2 

Fig. 4  Effect of curvature on the onset of localized necking: (a) 
Evolution of the stretching limit strain εL as a function of the ratio 

(resp. Fig. 3). 1/R; (b) Evolution of the total limit strain εL as a function of the ratio 1/R 



ST xx 

plotted in terms of the stretching strain components only, 
and the one represented in terms of the total strain compo- 
nents) coincide exactly when the curvature radius is taken 
very large (e.g., R = 100 mm, or a flat sheet). 

Effect of normal stress 

Fig. 5 Effect of the bending radius on the evolution of the stretching 
critical strain ε* as a function of the initial band orientation θ0 for 
uniaxial tensile strain path 

range of strain paths, where the effect of bending radius on the 
location and shape of FLDs is analyzed. In Fig. 7 (a), the 
major stretching limit strain (simply denoted εST xx) is plotted 
as a function of its minor counterpart εST yy. In Fig. 7 (b), 
however, the major total limit strain at the outer surface of 
the sheet (simply denoted εxx) is plotted as a function of its 
minor counterpart εyy. It should be noted that, as bending is 
not considered in the y-direction, εST yy is identically equal to 
εyy for the different strain paths. It appears from Fig. 7 (b) that 
the bending effect is more significant in the left-hand side of 
the FLD than in its right-hand side. The predictions reported in 
this figure confirm once again that the classical curvature has a 
beneficial effect on the formability of thin sheets. By compar- 
ing the results displayed in Fig. 7 (a) and Fig. 7 (b), one can 
easily observe that the two FLD representations (i.e., that 

Fig. 6 Effect of the bending radius on the necking band orientation θ for 
negative values of the strain-path ratio ρ 

The effect of normal stress on the formability of a flat metal 
sheet is investigated in Fig. 8. The curvature effect is not 
considered in the results of Fig. 8, since the sheet is assumed 
to be flat. In this figure, two different values of maximal nor- 
mal pressure α are used: α = 0 MPa (which correspond to the 
traditional case of plane-stress state) and α = 200 MPa. When 
α is set to 0 MPa, the results displayed in Fig. 7 are naturally 
recovered. The results of Fig. 8 demonstrate that the applica- 
tion of compressive normal stresses on a sheet allows its form- 
ability to be enhanced, especially in the range of positive strain 
paths. These results are consistent with several earlier investi- 
gations (see, e.g., [10, 13, 14]). 

a 

b 

Fig. 7 Effect of the bending radius on the location and the shape of 
FLDs: (a) FLDs only in terms of stretching strain components; (b) 
FLDs in terms of total strain components 



and plane-stress state), for the prediction of formability of 
some parts and components involved in various industries 
may lead to inaccurate and inconsistent conclusions. 

Concluding remarks 

Fig. 8  Effect of normal stress on the location and the shape of FLDs 

Combined effects of curvature and normal stress 

The combined effects of bending and normal stress on the 
enhancement of formability are highlighted in Fig. 9. For in- 
stance, the limit strain for a plane strain tensile state is approx- 
imately equal to 0.2 when the curvature R and the maximal 
pressure α are set to 3 mm and 200 MPa, respectively. 
However, the limit strain for the same strain path is equal to 
only 0.1 when the sheet is taken to be flat and under plane- 
stress condition (i.e., the classical assumptions for the deter- 
mination of traditional FLDs). The results of this figure high- 
light the importance of considering the effects of both curva- 
ture and normal stress in the modeling and the prediction of 
the onset of localized necking. Indeed, the use of classical 
tools, which are developed under the traditional assumptions 
(i.e., homogeneity of the deformation through the thickness 

Fig. 9 Combined effects of curvature and normal stress on the location 
and the shape of FLDs 

A numerical tool has been developed in this paper for the 
prediction of localized necking in sheet metals undergoing 
combined bending–stretching loadings and submitted to out- 
of-plane compressive stresses. This model may be useful to 
help understand how the respective and combined effects of 
bending and normal stresses, which are commonly involved in 
forming processes, would affect sheet metal formability. 
Contrary to some existing models, where the effects of curva- 
ture and normal stress on formability are investigated sepa- 
rately, the current work allows the two effects to be taken into 
consideration within the same model. Furthermore, the pres- 
ent model is capable of considering a heterogeneous distribu- 
tion of normal stresses through the thickness of the sheet. In 
the current contribution, the mechanical behavior of the sheet 
metal has been described by the rigid–plastic flow theory, 
while localized necking prediction is based on the imperfec- 
tion approach. From the numerical predictions obtained by 
applying this tool, it is concluded that the addition of bending 
loading to traditional stretching and/or the consideration of 
out-of-plane compressive stresses allows significantly 
delaying the occurrence of localized necking and, thus, en- 
hancing the formability of the studied sheet. The use of the 
proposed tool, instead of traditional available tools based on 
the classical assumptions, is believed to provide more accurate 
predictions for the formability of a number of industrial parts 
and components. 

It is also worth noting that the current work is a first step in 
a wider project, which aims to investigate the effects of bend- 
ing and normal stress on the formability of thin metal sheets. 
In future work, the developed numerical tool will be extended 
in order to take into account more advanced constitutive 
models, which would allow a better description of the me- 
chanical behavior of the studied materials. Such elaborate 
models will include the effects of elasticity, strain-rate sensi- 
tivity, plastic anisotropy and kinematic hardening. Besides, 
the compatibility condition given by Eq. (9) will be written 
in a local form, accounting for the heterogeneity of the jump 
vector through the thickness of the sheet. Indeed, in the current 
version of the model, the jump vector is assumed to be homo- 
geneous through the thickness and independent of the position 
of the integration points relative to the neutral axis of the sheet. 
The consideration of the heterogeneity of the jump vector 
would allow a more precise description of the bending– 
stretching process and thus a more accurate prediction of the 
forming limit diagrams. 
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