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Abstract

The aim of this paper is to study, through a multiscale analysis, the viscoelastic behavior of glass reinforced sheet

molding compound (SMC) composites and SMC-hybrid composites mixing two types of bundle reinforcement: glass

and carbon fibers. SMC exhibit more than two distinct characteristic length scales, so that a sequence of scale tran-

sitions is required to obtain the overall behavior of the composite. An analytical procedure is used consisting of

properly selected well-established micromechanical methods like the Mori-Tanaka (MTM) and the composite cylin-

ders (CCM) accounting for each scale transition. After selecting a representative volume element (RVE) for each

scale, the material response of any given length scale is described on the basis of the homogenized behavior of the

next finer one. This hierarchical approach is appropriately extended to the viscoelastic domain to account for the time

dependent overall response of the SMC composite material. The anisotropic damage has been introduced through a

micromechanical model considering matrix penny-shape microcrack density inside bundles. The capabilities of the hi-

erarchical modeling are illustrated with various parametric studies and simulation of experimental data for glass-based

SMC composites.

Keywords: Micromechanics; Viscoelasticity; Inclusion Method; Multiscale Modeling; Micro-cracks.

1. Introduction

Sheet molding compounds (SMC) are fiber-reinforced thermoset polymer matrix semi-finished products obtained

by a thermocompression process (Whelan and Goff, 1990; Mallick, 2007; Orgéas and Dumont, 2012; Lamanna and

Ceparano, 2014; Schladitz et al., 2017; Shirinbayan et al., 2017). Since the last two decades, these composites repre-

sent an ideal choice for large structural automotive components due to their high strength-to-weight ratio. SMC com-

posites are considered suitable materials for many engineering applications due to their enhanced properties. They

have better mechanical performance compared to thermosetting compounds like bulk molding compounds (BMC) and
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fiber-reinforced thermoplastics. The low weight and low cost together with mechanical characteristics and versatility

allow to reach cost-efficient performances in many weight-critical applications. Because of advantages like the above,

SMC composites are employed in the manufacturing of many functional or structural components in a wide range

of industrial applications: automotive and truck industry, building constructions, electrical/electronics, transportation,

aerospace, chemical engineering, medical sectors and marine industry.

SMC composites usually include short fibers or fiber bundles impregnated in the matrix phase. Traditionally,

SMC are reinforced with glass fiber bundles. However, various types of fibrous reinforcement can be utilized: glass

fiber bundles, carbon bundles, or hybrids. The hybrid SMC composites, containing both glass and carbon bundles, is

a modern idea that very recently attracted the composite suppliers industry. The hybridization process can consider

glass and other types of fibers, like carbon (Palmer et al., 2010; Zaiß et al., 2017; Trauth et al., 2018) or natural ones

(Sanjay and Yogesha, 2017). The usual SMC glass fiber reinforced composites have been extensively studied and

have practically reached their limit in terms of mechanical performance. On the other hand, the carbon fibers, which

are generally stronger, are very expensive and lead to quasi-brittle response. Thus, a potential solution could be to

mix glass and carbon fibers in low proportion in order to increase the mechanical performance, retain ductility and

damage tolerance, while keeping also reasonable the production cost.

Modeling the overall mechanical behavior of SMC composites has received increasing attention in the past years.

Carman and Reifsnider (1992) reviewed earlier investigations and developed a method where, at a first approxima-

tion, short fibers may be characterized as continuous fibers that have undergone fiber fracture. The approximation

was improved by considering load transfer at the fiber ends. Fitoussi et al. (1998) applied a statistical micro-macro

relationship with the help of Mori and Tanaka’s model and showed that for SMC composites the predominant dam-

age is the debonding at the fiber/matrix interfaces. Derrien et al. (2000) studied the tensile behavior of SMC using

a micro-macro relationship taking into account the damage mechanisms. Morozov et al. (2003) studied the damage

behavior of SMC composites using a finite element package. Next, Jendli et al. (2004) carried out an experimental

study in conjunction with the application of well-known damage mechanics techniques in order to investigate the

strain rate influence on the mechanical behavior and the damage growth of a discontinuous-random fiber composite

(SMC-R26) subjected to a high-speed tensile loading. In addition, the same authors developed later (Jendli et al.,

2009) a micromechanical model which relies upon an experimental methodology performed according to an incre-

mental operating strategy in order to predict the constitutive law for SMC-R26. Larbi et al. (2006) investigated the

elastic behavior of SMC with a provided orientation distribution function (ODF) of the fibers acted upon by a cyclic

loading. Furthermore, Teodorescu et al. (2008) developed an approach based on an assumed periodicity of SMC and

provided bounds of the effective elastic moduli. Teodorescu-Draghicescu and Vlase (2011) applied a homogenization

method and some averaging methods to compute the upper and lower limits of the homogenized elastic coefficients.

Huang and Zhao (2012) developed an analytical approach to predict the bridging and toughening of randomly oriented

short fibers, which they use for the analysis of fiber bridging/toughening of SMC and the investigation of the effect of

fiber parameters.
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Most of the aforementioned works about SMC composites ignore the fact that SMC usually consist of fiber bundles

reinforcements. Mulligan et al. (2003) provides a comprehensive study of fiber bundling in short-fiber composites like

SMC and highlight their advantages. In the present work, it is considered that a typical SMC-R composite is reinforced

with randomly oriented bundles of (carbon or/and glass) fibers. In particular, we investigate the viscoelastic effective

properties of SMC composites which consist of substitute (filled) matrix and planar randomly oriented bundles of

randomly oriented glass fibers. In the case of SMC-hybrid composite, there are both glass and carbon fiber-bundle

reinforcements.

In order to facilitate the analysis, a hierarchical approach is followed. It enables obtaining results for the effective

moduli of each homogenization step (i.e. filled matrix, glass and carbon bundles) and the final time dependent effective

medium as well. The modeling of such a multiscale system starts at the microscale by first considering the particulate

reinforced composite of bulk matrix and fillers. In this step the classical Mori-Tanaka method (MTM) is applied (Mori

and Tanaka, 1973; Benveniste, 1987; Chen et al., 1992) for obtaining the filled matrix with certain effective properties

different than those of the bulk matrix. Another homogenization is also performed at the microscale, where the filled

matrix is reinforced by a certain volume fraction of aligned glass (carbon) fibers. Here the composite cylinders method

(CCM) is utilized (Hashin and Rosen, 1964; Christensen and Lo, 1979; Christensen, 1979, 1990). This second step

of homogenization yields the effective properties of a glass (carbon) bundle. Next, homogenized bundles are laid up

in random orientation in the filled matrix. A third step of homogenization at the mesoscale, using the generalized

MTM that takes into account the random orientation of the inhomogeneities, provides the overall behavior of the final

effective medium. In the third step additional nonlinear mechanisms can be integrated, like, for instance, damage at

the bundles.

The paper is organized as follows: In Section 2 the problem under discussion is stated. The main objective of

the present theoretical study is the micromechanical elastic/viscoelastic description of a SMC/SMC-hybrid composite

exhibiting a hierarchical structure. The constituent materials, as well as their properties and geometrical aspects (i.e.

aspect ratios, bundle orientation, etc.) are addressed. Further, the various associated volume fractions are defined.

In Section 3 the theoretical background for the constitutive response of a viscoelastic material is presented and two

approaches are examined: the integral description with the dynamic correspondence principle and the differential de-

scription with incremental formulation. The micromechanics modeling in viscoelasticity, consisting of a sequence of

scale transitions and homogenizations, is discussed in Section 4. A brief review of the classical Mori-Tanaka method

with its extension in the case of random orientation and the Composite Cylinders Method is provided. The integration

of damage mechanism at the scale of the bundles, based on a hybrid phenomenological-micromechanical approach

is also discussed. In Section 5 the study is accompanied by various examples of parametric analyses and a simula-

tion of real experimental data for SMC glass fiber reinforced composites. For the numerical applications, available

creep data from the literature were handled properly for obtaining the Prony series representation of the viscoelastic

matrix response. The conclusions of this work are summarized in the final section. The paper is accompanied by two

Appendices.
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1.1. Notation

Vectors will be denoted by lower-case Roman letters, second-order tensors by lower-case Greek letters, and fourth-

order tensors by capital Roman letters. Whenever possible, vectors and tensors are written as boldface characters.

Indicial notation is used where necessary. The symbols I and I represent the second order and the fourth order

symmetric identity tensors respectively, whose elements are given as

Ii j = δi j, Ii jpq =
1
2

(
δipδ jq + δiqδ jk

)
, (1)

where δi j is the Kronecker delta symbol defined by δi j = 1 for i = j and δi j = 0 for i , j. The following notation will

represent standard tensor algebraic operations.

Dot product: σi jn j = σ · n

Double dot product:


Li jklεkl = L:ε

Li jklTklpq = L:T

(2)

The generalized Hooke's law for a linear elastic solid is written as

σ = L:ε, ε = M:σ, (3)

where L and M are the stiffness and compliance tensors respectively and σ and ε are the Cauchy stress and infinitesi-

mal strain tensor respectively. The inverse of a fourth order tensor A that possesses minor symmetries (Ai jkl = Ai jlk =

A jikl) is defined as the tensor A−1 with the property

A: A−1 = A−1: A = I . (4)

2. Statement of the Problem

The objective of the present theoretical study is to propose a micromechanical viscoelastic hierarchical modelling

of a SMC-Hybrid composite, see Figure 1a. The composite consists of randomly oriented bundles made of unidi-

rectional aligned glass and carbon fibers. The bundle reinforcement takes place at the mesoscale of the material. It

should be noted that each bundle contains one kind of fiber (that is, either glass or carbon), see Figure 1b. The poly-

mer matrix, itself, is reinforced with randomly distributed particles (calcium carbonate CaCO3 and/or glass spherical

fillers), see Figure 1c. This reinforcement takes place at the microscale.

As it is described in more detail later, an hierarchical approach is followed enabling the estimation of the effective

moduli at each homogenization step (i.e., filled matrix, glass and carbon bundles) and the overall viscoelstic effective

medium as well (i.e., SMC-Glass, SMC-Carbon and SMC-Hybrid composite). In particular, modeling of such a

system starts at the microscale, by first considering the particulate reinforced composite of bulk matrix and fillers.

This provides a filled matrix with certain effective properties different that those of the non-filled matrix. A second

4



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

homogenization step is also performed at the microscale, where the filled matrix is reinforced by a certain volume

fraction of aligned glass (carbon) fibers. This yields the effective properties of a mesoscopic composite element;

namely, a glass (carbon) bundle. Finally, a third homogenization step at the mesoscale provides the final effective

medium. It should be noted that, in this multiscale homogenization sequence, local strain and stress fields can be

computed at all scales.

(a)

(b) (c)

�
�
�
�
��











�

A
A
A
AU

Figure 1: Schematic representation of (a) an SMC-Hybrid composite; top view, (b) a glass or carbon fiber-bundle system and (c) the filled (i.e.

particle reinforced) matrix.

In what follows, a subscript A denotes axial (i.e. fiber) direction and a subscript T denotes transverse (i.e. parallel

to the plane of rotational symmetry) direction. Regarding the labeling of the Poisson's ratios, the first subscript

indicates the direction of the uniaxial stress, whereas the second one indicates the direction normal to the loading

direction, in which the contraction takes place. In this way, νAT is the Poisson's ratio corresponding to the contraction

in the transverse direction that accompanies the uniaxial stress in the fiber direction. Further, a subscript or superscript

Gf (Cf) indicates a variable associated with the glass (carbon) fibers, whereas a subscript or superscript Gb (Cb)

indicates a variable associated with the glass (carbon) bundles. A superscript m (p) indicates a variable associated

with the matrix (particles; i.e. fillers). Additional notation will be introduced in Sections 3 and 4.
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2.1. Involved Constituent Materials and their Properties

Polymer resin is a linear viscoelastic isotropic material. Its mechanical response can be characterized by the time-

dependent bulk and shear moduli, Km(t) and Gm(t), respectively. As it is discussed later, it is possible to avoid time

domain analysis by utilizing the so-called dynamic correspondence principle (Fung, 1965; Hashin, 1983; Brinson and

Brinson, 2008). The matrix phase may be reinforced by fillers of calcium carbonate and glass. Both of these particles

are isotropic elastic materials. The glass fibers are also isotropic elastic materials whereas the carbon fibers are

transversely isotropic elastic materials. The axis of rotational symmetry of the latter coincides with their geometrical

axis of symmetry and their mechanical behavior can be characterized by five independent elastic moduli chosen among

the axial and transverse Young’s moduli, EC
A and EC

T , the axial and transverse shear moduli, GC
A and GC

T , the transverse

(plane strain for lateral dilatation without axial extension) bulk modulus, KC
T and the Poisson's ratios, νC

AT, νC
TA and νC

TT.

Damage mechanisms in this type of composites can occur at different levels (matrix, fibers, fiber bundles, interfaces)

and they can be taken into account with various ways (Fitoussi et al., 1998; Derrien et al., 2000; Morozov et al.,

2003; Jendli et al., 2004, 2009). In this study, it is chosen to incorporate damage at the glass bundles using a recently

developed hybrid phenomenological-micromechanical model (Praud et al., 2017).

2.2. Geometrical Aspects

Here, the various geometrical aspects of the constituent materials are discussed. Starting with fillers, they are

treated as spherical particles; Moreover, the length of the glass and carbon fibers is of mm order, whereas the diameter

of the fiber is of µm. This results in an extremely large aspect ratio, i.e. they can be considered as long fibers

inside a bundle. On the other hand, the bundles can be seen as ”short reinforcements” embedded in the filled matrix.

The fiber-bundle orientations inside the filled matrix is described through an orientation distribution function (ODF),

which can be implemented in the model as 2-D or 3-D function. In the examples of Section 5, a planar random bundles

distribution is assumed using a uniform distribution function representing the equal probability of orientation. This

choice is justified by the manufacturing process, in which all the fibers are mainly distributed in thermocompression

plane. In fact, this type of process may induce very low out of plane reinforcement orientation, that can be neglected,

notably, for low plate thickness.

2.3. Associated Volume Fractions

Crucial to the development of the parametric studies are the various volume fractions involved at each material

scale. In the fabrication process the pure resin is reinforced by CaCO3 and/or glass fillers. The symbol cp is reserved

for this magnitude. Next, the resulting filled matrix is further reinforced either by glass and carbon bundles of fibers

in the case of a SMC-hybrid composite or by glass bundles of fibers only in the case of a pure SMC composite.

At this point various volume fractions can be defined. First, the total fiber reinforcement volume fraction is denoted

by cR and is defined by the total volume of fiber reinforcement (i.e. glass and carbon fibers in the case of SMC-hybrid)

per total volume of the composite. This volume fraction is equal to the sum of the glass fibers volume fraction plus

6



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

carbon fibers volume fraction. The latter ones are defined, respectively, as the ratio of glass fiber reinforcement

per total volume and carbon fiber reinforcement per total volume. The symbols cG
f/t and cC

f/t are reserved for these

magnitudes. In addition, for the glass and carbon bundle, the volume fraction of glass and carbon fibers inside the

corresponding bundle are introduced as cG
f/b and cC

f/b, respectively. Lastly, the volume fraction of the glass and carbon

bundles in the total SMC-hybrid composite are introduced and they are denoted as cG
b/t and cC

b/t, respectively.

The following scheme naturally explains the introduced volume fractions and their connections with the associated

volumes:

cR =
VG

f + VC
f

Vt
=

VG
f

Vt︸︷︷︸
cG

f/t

+
VC

f

Vt︸︷︷︸
cC

f/t

=

VG
f

VG
b

︸︷︷︸
cG

f/b

VG
b

Vt

︸︷︷︸
cG

b/t

+

VC
f

VC
b

︸︷︷︸
cC

f /b

VC
b

Vt

︸︷︷︸
cC

b/t

= cG
f/bcG

b/t + cC
f/bcC

b/t (5)

Here Vt is the total volume of the final composite, VG
f and VC

f are the volumes of the glass and carbon fibers respec-

tively, and VG
b , VC

b are the volumes that the glass and carbon bundles occupy.

3. Theoretical Background for viscoelastic materials

Before describing the micromechanical framework, it is important to identify the constitutive laws of the various

material constituents of SMC or SMC-hybrid composites. In these composites, at low or moderate stress levels the

matrix material usually posseses viscoelastic behavior, while the particles and the fibers behave almost elastically.

Viscoelastic materials show hereditary behavior, i.e., their response at a given time depends on their previous load

history. The constitutive equation for a linear viscoelastic material can be written in terms of Stieltjes integral equation

of the form (Christensen, 1982)

σ =

∫ t

−∞

L(t − ξ):
dε(ξ)

dξ
dξ, (6)

where L is the time-dependent modulus of the material and σ and ε are the stress and strain tensors, respectively. In

order to capture properly the material’s response at a large range of frequencies, the modulus is often written in terms

of a Prony series expanded form (Brinson and Brinson, 2008)

L(t) = L∞ +

N∑
j=1

L je−t/τ j , (7)

where L∞ corresponds to the modulus tensor at very long (infinite) time, τ j are the relaxation characteristic times and

L j are the Prony series moduli tensors1. Two approaches can be considered for studying a linear viscoelastic material:

1Several studies (Fisher and Brinson, 2001; Krairi and Doghri, 2014) allow different relaxation times and number of Prony series components

in bulk and shear moduli. Without loss of generality and for simplifying the subsequent discussion, this work assumes that the whole viscoelastic

modulus tensor L is described by a fixed number of Prony series components and one set of relaxation times.
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Dynamic correspondence principle

The constitutive response (6) can be represented in a linearized form by taking advantage of the half-sided Fourier

or Laplace-Carson transform (Fung, 1965; Hashin, 1983; Matzenmiller and Gerlach, 2004; Brinson and Brinson,

2008).

The time-dependent stress and strain tensor can be generally written in terms of deviatoric (s, e) and spherical

(trσ, trε) components,

σ = s +
1
3

trσ I, ε = e +
1
3

trε I, (8)

where tr denotes the trace of a second order tensor. Substituting equation (8) in equation (6), the constitutive law

for a linear, isotropic viscoelastic material is expressed in terms of the time-dependent bulk modulus K(t) and shear

modulus G(t) as follows:

trσ =

∫ t

−∞

3K(t − ξ)
d(trε(ξ))

dξ
dξ, s =

∫ t

−∞

2G(t − ξ)
de(ξ)

dξ
dξ,

K(t) = K∞ +

N∑
j=1

K je−t/τ j , G(t) = G∞ +

N∑
j=1

G je−t/τ j . (9)

It is common practice in viscoelasticity to employ the dynamic correspondence principle in order to avoid time domain

analysis of the problem. This tool permits the formulation of the original viscoelastic problem as a fictitious quasi-

static linear elastic problem in terms of complex transformed properties in the transformed domain. The definition

of the appropriate complex phase moduli are derived below for the case of isotropic phase materials. Imposing the

displacement histories

u(t) = u(ω)eiωt, (10)

with ω denoting the frequency, strain fields can be determined using the strain-displacement relationship

ε =
1
2

(
∇u + (∇u)T

)
= ε(ω)eiωt. (11)

In this way, equations (9) are reduced to

s = 2iωG(ω) e(ω) = 2G∗(ω) e(ω), trσ = 3iωK(ω) trε(ω) = 3K∗(ω) trε(ω), (12)

where G and K are the half-sided Fourier transforms of the moduli, e.g.,

G (ω) =

∫ ∞

0
G(t)e−iωtd t, K (ω) =

∫ ∞

0
K(t)e−iωtd t. (13)

The complex moduli G∗ and K∗ are given, respectively, by

G∗(ω) ≡ iωG(ω) = G′(ω) + iG′′(ω), K∗(ω) ≡ iωK(ω) = K′(ω) + iK′′(ω). (14)

A single-primed quantity indicates a storage modulus whereas a doubled-primed one indicates a loss modulus. The

storage modulus is a measure of the energy stored and recovered by a viscoelastic material per cycle of sinusoidal

8
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Figure 2: Rheological scheme of a spring and N Maxwell models (Maxwell branches) connected in parallel.

deformation, whereas the loss moduli is a measure of the energy dissipated as heat for a similar cycle (Brinson and

Brinson, 2008). Both storage and loss moduli are real quantities.

Taking the half-sided Fourier transform of equations (9)3,4 and in view of equations (14) one obtains (Brinson and

Brinson, 2008)

K′(ω) = K∞ +

N∑
j=1

K j ω
2

1
τ2

j
+ ω2

, K′′(ω) =

N∑
j=1

K j
ω
τ j

1
τ2

j
+ ω2

,

G′(ω) = K∞ +

N∑
j=1

G j ω
2

1
τ2

j
+ ω2

, G′′(ω) =

N∑
j=1

G j
ω
τ j

1
τ2

j
+ ω2

.

(15)

While the linear form of the constitutive law in the space of frequencies permits fast calculations in a homogeneous

viscoelastic material, in composites certain difficulties are imposed, related to the complex nature of the viscoelastic

moduli. Indeed, in mean field theories like Mori-Tanaka, identifying complex Eshelby and concentration tensors is

not a trivial task and most of the commercially available micromechanical softwares do not include such capability.

Incremental formalism

In linear viscoelasticity the integral formulation (6), combined with the Prony series representation of the vis-

coelastic moduli (7), can be represented through a rheological scheme that involves a sum of N Maxwell models

(Maxwell branches) (Figure 2). Each Maxwell branch j (1 ≤ j ≤ N) consists of a linear elastic modulus L j and a

3-D dash-pot H j and is assigned with a viscoelastic strain tensor εv
j. For this rheological scheme the overall stress is

provided by the equation

σ =

L∞ +

N∑
j=1

L j

 :ε −
N∑

j=1

L j:εv
j = L0:ε −

N∑
j=1

L j:εv
j, (16)

where L0 = L∞ +

N∑
j=1

L j is the instantaneous modulus. Moreover, the evolution of each viscoelastic strain is given by

H j: ε̇v
j + L j:εv

j − L j:ε = 0, j = 1, ...,N. (17)

In isotropic linear viscoelasticity all L and H are isotropic fourth order tensors. When L j and H j are isotropic, and

assuming that they have the same ”Poisson's ratio” (which may be different from one Maxwell branch to another), one

9
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obtains L−1
j : H j = τ jI . Under such conditions, it can be shown that the formalisms (17) and (9) are equivalent (see

for instance Lévesque et al., 2008).

The evolution law (17) produces six equations with six unknowns (the viscoelastic strains) for each Maxwell

branch, which need to be solved simultaneously. For calculation purposes, it is more convenient to introduce a

viscoplasticity-like multiplier ṡ j for each branch which is equal to the norm of the viscoelastic strain rate ε̇v
j. Then

(17) can be re-expressed in a plasticity-type manner

ε̇v
j = Λ j ṡ j, Λ j =

H−1
j : L j:[ε − εv

j]∥∥∥∥H−1
j : L j:[ε − εv

j]
∥∥∥∥ , Φ j =

∥∥∥H−1
j : L j:[ε − εv

j]
∥∥∥ − ṡ j = 0, (18)

where Λ j denotes the direction of the viscoelastic flow and Φ j plays the role of the viscoelastic activation criterion.

The symbol ‖ {•} ‖ denotes the usual norm of a second order tensor. Such formalism can be treated computationally

using an incremental numerical scheme equivalent with those described in plasticity and viscoplasticity (Simo and

Hughes, 1998; Qidwai and Lagoudas, 2000; Achour et al., 2015; Chatzigeorgiou et al., 2018). The advantage of these

incremental methods is that they allow the identification of appropriate tangent modulus at each calculation increment,

which is very useful in micromechanics schemes to estimate the overall response of a composite. Details about the

numerical implementation of the linear viscoelastic model with N Prony series branches are given in Appendix A.

4. Multiscale framework for SMC and SMC-hybrid composites

A SMC-hybrid composite possesses more than two clearly distinct characteristic length scales and, as a result, a

sequence of scale transitions is required in order to obtain its overall behavior through micromechanics methods. The

whole procedure consists of various homogenizations accounting for each scale transition. In brief, after selecting a

Representative Volume Element (RVE) for each scale, the material response of any given length scale is described on

the basis of the homogenized behavior of the next finer one.

This hierarchical approach, which can be viewed as involving a sequence of scale transitions and homogeniza-

tions, is used in each step in order to give the ”building blocks” at any level within hierarchical schemes. At each

homogenization step well established methods are used, such as the Mori-Tanaka method (MTM) and the composite

cylinders method (CCM). Figure 3 summarizes the procedure of the micromechanical modeling.

4.1. ‘Zeroth’ Homogenization

In this step an effective medium from the homogenization of a composite material consisted of pure (viscoelastic)

matrix and randomly distributed (elastic) spherical particles is determined, see Figure 3a. It is assumed that no coating

exists between the fillers and the matrix. Due to the existing isotropic response of both the matrix and the fillers and

owing to the geometrical isotropy of the fillers (considered as spherical particles), the homogenized filled matrix

exhibits an isotropic overall behavior.
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(a) “Zeroth” homogenization: Effective properties of filled matrix. Application of Mori-Tanaka

Method.
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(b) First homogenization: Effective properties of a fiber-bundle system. Application of Composite

Cylinders Method.
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(c) Second homogenization: Effective properties of SMC composite. Application of Mori-Tanaka

Method.

Figure 3: Homogenization of an SMC/SMC-Hybrid composite: Multiscale hierarchical modeling.
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According to equations (12), there is a direct analogy between elasticity problems in the time domain and vis-

coelasticity problems in the frequency domain. Thus, it is straightforward to extend available micromechanics tools

and methods of elasticity, such as the Mori-Tanaka solution, for composites with viscoelastic phases, by simply substi-

tuting complex moduli in place of elastic moduli in the final expressions (Brinson and Lin, 1998; Fisher and Brinson,

2001).

As is well known (Benveniste et al., 1991; Qu and Cherkaoui, 2007; Lester et al., 2011; Dvorak, 2013; Hossain

et al., 2015) the effective stiffness tensor of a composite material with M different types of inhomogeneities can be

expressed in terms of the stiffness tensors of the constituent materials, their corresponding volume fraction and the

global strain concentration tensor through the equation

Leff = Lm +

M∑
r=1

cr (Lr − Lm)
: Ar, (19)

where Leff denotes the effective (i.e. overall) stiffness tensor, Lm is the stiffness tensor of the matrix phase, Lr and cr

are, respectively, the stiffness tensor and the volume fraction of the r−inhomogeneity (particle or fiber). Moreover, Ar

is the global strain concentration tensor which gives, essentially, the ratio between the average inhomogeneity strain

and the corresponding average in the composite.

According to Fisher and Brinson (2001), when the constituents of a composite are viscoelastic, equation (19) can

be formulated in the frequency domain as

Leff∗ = Lm∗ +

M∑
r=1

cr (Lr∗ − Lm∗) : Ar∗, (20)

where the superscript ∗ denotes complex quantity in the form of (14).

To find the effective viscoelastic moduli of the filled matrix, the Mori-Tanaka two-phase model is utilized. From

Qu and Cherkaoui (2007) one has the following analytical closed-form expressions for the complex effective bulk and

shear moduli (KFM∗ and GFM∗ respectively) of the filled matrix

KFM∗ = Km∗ +
cp (Kp∗ − Km∗) (3Km∗ + 4Gm∗)

3Km∗ + 4Gm∗ + 3 (1 − cp) (Kp∗ − Km∗)
, (21)

GFM∗ = Gm∗ +
5cpGm∗ (Gp∗ −Gm∗) (3Km∗ + 4Gm∗)

5Gm∗ (3Km∗ + 4Gm∗) + 6 (1 − cp) (Gp∗ −Gm∗) (Km∗ + 2Gm∗)
. (22)

It is recalled that the superscript p denotes a quantity related with the particles. These complex moduli are transformed

to the time (i.e. real) domain corresponding moduli with the help of the expressions (14), (15). In addition, the

computation of the moduli of all Maxwell branches is extensively explained in the examples section.

Once the frequency to time domain transformation is performed, one can proceed to the next step that provides

the effective properties of the homogenized bundles of glass fibers and/or the homogenized bundles of carbon fibers.

This homogenization, which also takes place at the microscale, is the subject of the following subsection.
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4.2. First Homogenization

In this step the overall elastic behavior of a homogenized bundle is obtained. The bundle is made of of aligned glass

or carbon fibers reinforcing the filled matrix whose effective properties are provided from the ‘zeroth’ homogenization.

(Figure 3b). However, it is worth mentioning that the bundles usually have a fibers volume fraction that exceeds

70%. Due to this high fiber content, even though the matrix surrounding the fibers is viscoelastic, one could expect

that the bundle exhibits an overall quasi-elastic behavior, that can be coupled to damage caused by microcracks.

Similar approximation has been considered in Praud et al. (2017) and the comparisons with experimental data showed

excellent accuracy in the direction parallel to fibers, and quite satisfactory representation of the response normal to

the fibers direction. This observation permits to simplify this step of homogenization, by assuming that, only for this

case, the matrix also behaves elastically inside the bundle before damage occurs. The ”elastic properties” of the filled

matrix can be considered as the properties of its instantaneous response.

A. Elastic response of bundles

In order to obtain the effective elastic properties of the bundles, the Composite Cylinders Method (CCM for

brevity) is utilized in the manner employed by, among others, Seidel and Lagoudas (2006); Seidel (2007); Chatzige-

orgiou et al. (2012). The length of the fibers is of mm order, whereas the diameter of the fibers is of µm. This results

in an extremely large aspect ratio, i.e. they can be considered as long fibers.

It should be noted that the classical Mori-Tanaka scheme can provide also closed-form expressions in the case of

long fibers. However, the CCM provides better estimations in the case of higher volume fractions. Also, the classical

Mori-Tanaka is not applicable in the case of coated fibers and special methodologies are required (Hori and Nemat-

Nasser, 1993; Cherkaoui et al., 1995), in contrast to CCM where multiple coatings can be added in a straightforward

manner. For these reasons, the CCM as the mean of homogenization in the current step has been selected here.

The homogenized bundles have a transversely isotropic behavior inasmuch as an isotropic (filled) matrix has been

reinforced by aligned isotropic fibers (in the case of glass bundles) or by aligned transversely isotropic fibers (in the

case of carbon fibers). Of course the axis of rotational symmetry coincides with the geometrical axis of symmetry

of the bundle. It should be mentioned that the homogenization process provides the overall behavior of the bundles

in their respective (local) coordinate system. Transformation from the local to the global (i.e. SMC or SMC-hybrid

composite) coordinate system, according to the rules of tensor algebra, must take place before proceeding to the next

homogenization, which gives the overall behavior of the whole composite.

The Composite Cylinders Method, originally developed by Hashin and Rosen (1964), treats the problem of long

fiber composites by considering an RVE of concentric cylinders, the interior being the fiber and the exterior the matrix

phase. Since such a composite behaves as a transversely isotropic medium, five independent material properties are

sufficient for constructing the complete stiffness tensor. Estimations for those properties are provided by the solution

of five specific boundary value problems (BVPs) of Figure 4, which have analytical solutions. After solving these
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(a) in plane bulk modulus (b) axial shear modulus (c) axial stiffness coefficient

(d) axial Young’s modulus (e) in plane shear modulus

Figure 4: Boundary value problems for the evaluation of the five overall elastic moduli, for a transversely isotropic fibrous composite.
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BVPs, the application of the Hill-Mandel energetic principle allows to compute accurately all the properties but the in

plane shear modulus, for which the original CCM of Hashin and Rosen (1964) provides only bounds. To resolve this

issue, Christensen and Lo (1979) have proposed for this property the use of the generalized self-consistent method.

In this technique, a third external layer is added to the RVE, which is the effective medium itself (Figure 4e). This

permits to identify analytical solutions as a function of the unknown property, which is calculated with the help of

energetic criteria. Computational details for the application of the composite cylinders method can be found in various

papers (Christensen and Lo, 1979; Christensen, 1990; Seidel and Lagoudas, 2006; Seidel, 2007; Chatzigeorgiou et al.,

2012).

B. Bundles containing microcracks

When dealing with polymeric composites, damage mechanisms very often occur at various scales. Damage can

appear at the matrix phase, at the interfaces between matrix and fibers or matrix and bundles, or at the fibers them-

selves. As mentioned in the introduction, this work attempts to integrate damage that is observed at the level of the

bundles by using a hybrid phenomenological-micromechanical model, developed by Praud et al. (2017). It should

be pointed out that the damage model in this work is a ”brick” that can be easily interchanged with another damage

model. Since the Praud et al. (2017) damage law is quite complicated and has already been published elsewhere,

only the general description of the model is presented here. In fact, this constitutive law for fiber bundles has been

experimentally validated in natural fibers multi-directional laminate composites.

bundle

+
MTM

C0 γc

micro-cracks

C0-D(γc)

damaged bundle

Figure 5: The bundle initially is transversely isotropic elastic material. At damaged state micro-cracks appear with density γc (void volume

fraction). The stiffness reduction tensor D of the damaged bundle is computed using Mori-Tanaka.

In unidirectional fiber composites damage commonly appears in the transverse direction of the fibers. Micro-

cracks are initiated due to the debonding of the fiber-matrix interface and propagate by coalescence. The hybrid

model of Praud et al. (2017) considers that initially the unidirectional composite is elastic, whose elasticity tensor

C0 is provided by any micromechanics approach (in this work the CCM is considered for the bundles). Then, as the

loading increases, penny-shape micro-cracks start to be formed (Figure 5). The density of these cracks is denoted by

γc and they are considered as voids. Using the Mori-Tanaka homogenization scheme, the damaged fiber composite

is substituted by a homogenized medium whose material properties depend on the density γc (Figure 5). In this
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homogenized medium, the stress-strain constitutive law is written as

σ =
[
C0 − D(γc)

]
:(ε − εs), (23)

where C0 is the initial elasticity tensor of the bundle (considered as elastic unidirectional composite), D is the fourth

order reduction tensor due to the presence of the micro-cracks and εs is the anelastic strain linked with the damage

(for instance, due to micro-cracks non-closure and the resultant sliding with friction). The tensor D is a function of γc

and is computed analytically through the Mori-Tanaka scheme:

C0 − D(γc) = (1 − γc)C0: A0(γc). (24)

In the above expression, the bundle and the voids-cracks are assumed to form a two-phase composite. The bundle’s

strain localization tensor A0 and the void inclusions’ strain localization tensor Ac respect the consistency condition

for two-phase media,

(1 − γc)A0 + γc Ac = I . (25)

The anelastic strain εs follows an evolution law similar to plastic-like materials:

ε̇s = Λs(σ)γ̇c. (26)

The form of Λs and the evolution criterion for γc are extensively detailed in Praud et al. (2017). This anisotropic

damage constitutive law influences the stiffness only in the direction normal to the micro-cracks, namely the transverse

and shear components. The material behavior in the direction of fibers remains elastic. To keep the manuscript in

a concise form, the theoretical framework and the numerical implementation are not presented here. The reader is

referred to Praud et al. (2017) for more details.

4.3. Second Homogenization

Next, the overall behavior of a SMC-Hybrid composite consisting of filled matrix (whose viscoelastic properties

are taken from the ‘zeroth’ homogenization) and randomly oriented glass and carbon bundles (whose elastic properties

have been computed in the first homogenization) is obtained, see Figure 3c. Obviously, if carbon bundles are absent,

the overall behavior reduces to that of a pure SMC composite. The homogenization process utilizes the Mori-Tanaka

method taking into account the randomly oriented bundles, as it is described below. It should be noted that, considering

the fabrication process, randomness exists in almost parallel planes. In this way, the final composite possesses a

transversely isotropic elastic behavior, where the axis of rotational symmetry is normal to the aforementioned planes of

randomness. In order to give more generality to the current work, a brief discussion about the Orientation Distribution

Function (ODF) is included in this subsection.

As already pointed out in Section 3, working on the frequency domain implies the appearance of complex numbers

in the computations. While in the case of ‘zeroth’ homogenization analytical expressions have been derived, in the
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case of the total SMC and SMC-hybrid composite the presence of short bundles at different orientations require

cumbersome computations. Also, the presence of microcracks alter the linear representation of the global problem

in the frequency domain. To overcome these difficulties, the time domain with incremental formalisms is instead

adopted, which is easily applicable through available softwares for micromechanics methods.

An incremental Mori-Tanaka is used in order to obtain the overall viscoelastic response of the final composite.

The homogenized bundles are treated as short fibers, considering their low aspect ratio and they are assumed to

possess ellipsoidal cross section. For ellipsoidal inclusions, analytical evaluations of the Eshelby tensor are available,

in amenable form, for isotropic matrices (Clyne and Withers, 1995; Mura, 2012). In the present paper the numerical

algorithm of Gavazzi and Lagoudas (1990) is utilized (see also Desrumaux et al., 2001) for the calculation of the

Eshelby tensor. This is a robust algorithm which has enjoyed a wide range of applications in, e.g., the prediction of

the elastoplastic behavior of metal-matrix composites (Lagoudas et al., 1991) and the damaged behavior of random

oriented fiber composites (Meraghni et al., 2002). It has also been successfully implemented in numerical platforms

for micromechanics tools and thermomechanical behavior studies, such as SMART+ (SMART+ development team,

2012).

Mori-Tanaka method (MTM), (Mori and Tanaka, 1973; Benveniste, 1987), is a popular tool for the analysis of

multi-phase materials. It has been used by a wide range of researchers to model the effective behavior of composites,

and allows the average stress fields and overall effective stiffness of a composite with non-dilute concentration of

inclusions to be determined. The method, its range of applicability and the connection of stiffness and compliant

tensors estimations with classical variational bounds (e.g. Hashin-Shtrikman) are discussed in depth in Dvorak (2013).

Numerous applications have appeared in the literature with different ways of applying the Mori-Tanaka model,

accounting for linear and nonlinear overall behavior. For example, Chen et al. (1992) derived explicit formulas for

estimates of the effective moduli for many typical composite systems; Meraghni and Benzeggagh (1995) applied a

modified Mori-Tanaka model to study the effect of matrix degradation on the overall behavior of randomly oriented

discontinuous-fiber composites; Tucker and Liang (1999) compared the predictions of MTM (as well as other mi-

cromechanical estimation schemes) with finite-element calculations for uni-directional short-fiber composites; Tan

et al. (2005) investigate the effect of nonlinear interface debonding on the macroscopic behavior of composite materi-

als; Despringre (2015) has developed a multi-scale approach, using a modified incremental Mori-Tanaka method with

2N+2 phases, including coated reinforcements and the evolution of micro-scale damage processes in order to study

the cyclic visco-damage behavior of short glass fiber reinforced polyamide (PA66/GF30). Many other references

related to MTM can be found in the recent work of Liu and Huang (2014).

Without going into details, the Mori-Tanaka method, which takes into account inhomogeneity interactions, as-

sumes that the average strain in the interacting inhomogeneities can be approximated by that of single inhomogeneity

embedded in an infinite matrix subjected to the uniform average matrix strain; in other words, within a composite

each homogeneity ‘sees’ a far-field strain equal to the average strain in the matrix.

In the case of M different types of unidirectional aligned inhomogeneities within the matrix, using the equivalent
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inclusion method and the assumptions of Mori-Tanaka, it can be seen that the concentration tensor Ar of the r-th

inhomogeneity can be written as

Ar = Tr :


1 − N∑

q=1

cq

I +

N∑
q=1

cqTq


−1

, Tr =
[
I + Sr : (LFM)−1 :

(
Lr − LFM

)]−1
, (27)

while for the filled matrix the concentration tensor is expressed as

AFM =


1 − N∑

q=1

cq

I +

N∑
q=1

cqTq


−1

. (28)

In the above expressions L denotes the tangent modulus of a phase, i.e. the elastic modulus for the bundles and the

algorithmic modulus for the viscoelastic filled matrix. Moreover, T r is called interaction tensor and relates the uniform

strain in the r-th ellipsoidal inhomogeneity, if it was solely embedded in the filled matrix, to the average filled matrix

strain. Also Sr is the Eshelby tensor of the r-th inhomogeneity. Combining (27) and (19) yields

LSMC = LFM +

M∑
r=1

cr
(
Lr − LFM

)
:Tr :


1 − N∑

q=1

cq

I +

N∑
q=1

cqTq


−1

. (29)

Due to the nonlinear nature of the problem, incremental methodology is required in which at every step the average

stresses and strains of each phase are corrected until convergence is achieved. Such numerical schemes, in various

forms, are available in the literature. In Appendix B the essential steps of an incremental Mori-Tanaka method are

presented.

In composites such as SMC, preferential fiber orientation may be induced by the thermocompression process.

The detection of the actual distributions is not an easy task; see, e.g., Le et al. (2008) for SMC and Arif (2014); Arif

et al. (2014a,b) for injected reinforced polyamide. When they are available, they can be related to overall material

symmetry of the composite by certain orientation distribution functions (ODFs).

Let g(θ, φ, ψ) be such an ODF with respect to the Euler angles θ, φ, ψ which connect the local (i.e., inhomogeneity)

coordinate system, (x1, x2, x3), and the global (i.e., composite) coordinate system, (X1, X2, X3). A fourth order tensor

Ci jkl in the (X1, X2, X3) coordinate system is related to the tensor C̃pqrs in the local inhomogeneity coordinate system

(x1, x2, x3) through the transformation rule of fourth-order tensors as

Ci jkl = aipa jqakralsC̃pqrs, (30)

where ai j are the directional cosines of angles relating the global to local coordinate systems. In terms of the Euler

angles θ, φ, ψ the transformation matrix [ai j] is given in Qu and Cherkaoui (2007). To incorporate the contribution from

all possible orientations, Ci jkl is multiplied by the ODF and integrated over all orientations. Lengthy computations

can be avoided by utilizing the Voigt/Nye notation. Matrices in this notation are transformed using the (6 × 6) matrix

X generated from the products of the directional cosines in agreement with the rules of transformations of first and

second order tensors and the summation and contraction rules. This matrix can be found in Dvorak (2013).
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For a multi-phase and matrix-based composite, reinforced by randomly oriented but otherwise identical ellipsoidal

inhomogeneities, one may extend (29) as follows (Entchev and Lagoudas, 2002; Seidel, 2007; Dvorak, 2013)

LSMC = LFM +

M∑
r=1

cr
〈(

Lr − LFM
)

:Tr
〉

:


1 − N∑

q=1

cq

I +

N∑
q=1

cr 〈Tq〉


−1

, (31)

where the symbol 〈{•}〉 denotes averaging over all possible orientations. The LFM in the above expression is pro-

vided in a global coordinate system, while cr denotes the total volume fraction of the r-th inhomogeneity. Among

others, Norris (1989); Ferrari (1991); Benveniste et al. (1991); Christensen et al. (1992); Schjødt-Thomsen and Pyrz

(2001); Dvorak (2013), discuss the restrictions on constituent shape alignment in the application of equation (31). As

discussed in these references, for general ellipsoidal fiber shape the obtained macroscopic tensor LSMC may not be

symmetric and proper regularization is required for symmetrize it. In this work, a regularization of the final stiffness

response is considered whenever the symmetry of the macroscopic tensor is not satisfied.

In numerical methods, integrals that appear in the averaging procedure are written in a discretized form by consid-

ering a large but finite number of possible orientations. In the SMC composite, each bundle orientation is considered

as a new inhomogeneity with its own volume fraction. An ODF designed for SMC composites should contain infor-

mation about the in-plane angle (i.e., the plane in which the bundles are distributed). The tangent modulus L and the

interaction tensor T of each bundle orientation are transformed to the global coordinate system. Then, one can apply

directly the expression (29) for the extended number of ”inhomogeneities”.

5. Numerical examples

This Section presents various examples and parametric studies for SMC and SMC-hybrid composites. The elastic

properties of the glass particles/fibers and the carbon fibers are provided in Table 1.

glass particles/fibers

property value

EG (MPa) 81000

νG 0.25

carbon fibers

property value

EC
A (MPa) 241000

EC
T (MPa) 14500

GC
A (MPa) 22800

GC
T (MPa) 4800

νC
AT 0.27

Table 1: Elastic properties of glass fibers/particles and carbon fibers. The carbon fibers are transversely isotropic.

With regard to the matrix phase, the CaCO3-filled polyester of Jerina et al. (1982). In this work the authors have

performed creep tests and they have obtained an appropriate creep compliance. At reference temperature 366.3 K, the
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Figure 6: Evolution with time of (a) the creep compliance for the CaCO3-filled polyester of Jerina et al. (1982), (b) the relaxation modulus of

the same material, computed with the procedure described in the Appendix I of Park and Kim (1999). The figures also illustrate the numerical

simulation using Prony series (material parameters are provided in Table 2, columns 3 and 4).

master curve for the creep compliance Dm(t) is given by the expression

Dm(t) = 1.62·10−4 + 1.82·10−5t 0.18 MPa−1,

where the time is expressed in seconds. The Poisson's ratio is reported to be νm = 0.35. In the sequel all the numerical

examples are considered to be performed under isothermal conditions at temperature 366.3 K.

The Prony series formalism of equation (9) is usually calibrated with the help of relaxation tests. Assuming

constant Poisson's ratio, unidirectional relaxation tests provide the relaxation modulus Em(t), from which the bulk

modulus Km(t) and the shear modulus Gm(t) are computed with the usual formulas

Km =
Em

3(1 − 2νm)
, Gm =

Em

2(1 + νm)
. (32)

Since in this case relaxation tests are not available, one needs to utilize the relation between creep compliance and

relaxation modulus (Christensen, 1982; Park and Kim, 1999)∫ t

0
Em(t − τ)Dm(τ)dτ = t, (33)

in order to identify Em(t). The convolution integral of equation (33) can be solved numerically in terms of the unknown

relaxation modulus with the help of the numerical procedure presented in the Appendix I of Park and Kim (1999).

Both the creep compliance and the relaxation modulus of the matrix phase are presented in Figure 6.

After obtaining the relaxation modulus, its Prony series representation is written in the temporal space as

Em(t) = Em
∞ +

N∑
j=1

Em
j e−t/τm

j .

One can choose a sufficient discrete number N of relaxation times, spanning the time interval of the experimental

curve, and then utilize the least squares method for identifying the E∞ and the E j for j between 1 and N. The Prony
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matrix filled matrix
Prony series relaxation time bulk modulus shear modulus bulk modulus shear modulus
number j τm

j (s) Km
j (MPa) Gm

j (MPa) Km
j (MPa) Gm

j (MPa)

∞ – 3673.976 1224.659 3925.393 1352.835

1 1·10−3 34.038 11.346 35.733 12.280

2 3.1622·10−3 46.845 15.615 49.192 16.906

3 1·10−2 56.010 18.670 58.821 20.215

4 3.1622·10−2 68.769 22.923 72.242 24.829

5 1·10−1 81.912 27.304 86.059 29.578

6 3.1622·10−1 99.461 33.154 104.544 35.933

7 1 116.974 38.991 122.964 42.265

8 3.1622 140.768 46.923 148.091 50.908

9 1·101 162.140 54.047 170.567 58.633

10 3.1622·101 194.473 64.824 204.868 70.439

11 1·102 212.698 70.899 223.945 76.990

12 3.1622·102 259.588 86.529 274.032 94.249

13 1·103 264.648 88.216 278.840 95.870

14 3.1622·103 336.314 112.105 356.246 122.591

15 1·104 226.383 75.461 237.969 81.785

16 3.1622·104 708.031 236.010 751.770 258.793

Table 2: Relaxation times and prony series coefficients and for a) CaCO3-filled polyester of Jerina et al. (1982) (3rd and 4th column) and b) glass

particles filled matrix (5th and 6th column). The filled matrix coefficients have been obtained from the ’zeroth’ homogenization step.

21



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

series coefficients and relaxation times for the matrix bulk and shear moduli are shown in Table 2. The simulation of

the relaxation modulus and the creep compliance using Prony series is presented in Figure 6, where it is observed an

excellent match between experimental and numerical results.

5.1. ‘Zeroth’ Homogenization

The polyester of Jerina et al. (1982) is already reinforced with CaCO3 fillers, so the ‘zeroth’ homogenization

could be omitted. Still, for demonstrating the full extent of the proposed multiscale methodology, in the following

examples the matrix in the SMC composite or SMC-hybrid composite is considered to be also filled with 5% glass

particles, whose properties are provided in Table 1. Figure 7 illustrates the storage and loss moduli for the bulk and

shear components of the filled matrix stiffness tensor as a function of the frequency and the comparison with the

corresponding moduli of the ”pure” matrix. The filled matrix results have been obtained with the use of formulas

(21).

In order to pass to higher scales, it is essential to identify an ”analytical-type” constitutive law for the filled matrix.

This can be achieved by considering that in the frequency domain the bulk and shear moduli (both storage and loss)

for the filled matrix can be written in Prony series form as

KFM′ (ω) = KFM
∞ +

N∑
j=1

KFM
j ω2

1
τ2

j
+ ω2

, KFM′′ (ω) =

N∑
j=1

KFM
j

ω
τ j

1
τ2

j
+ ω2

,

GFM′ (ω) = GFM
∞ +

N∑
j=1

GFM
j ω2

1
τ2

j
+ ω2

, GFM′′ (ω) =

N∑
j=1

GFM
j

ω
τ j

1
τ2

j
+ ω2

.

To simplify the identification procedure, the relaxation times are considered to be the same with those of the matrix

phase. Then, the least squares method can be utilized in the frequency domain, where experimental data are considered

the results obtained from the ‘zeroth’ homogenization. Both the storage and the loss moduli are utilized for identifying

the KFM
j coefficients for the bulk and the GFM

j coefficients for the shear modulus. The obtained coefficients are shown

in Table 2. Moreover, the Prony series results in the frequency domain are compared with the homogenization results

of Figure 7, demonstrating that this analytical representation captures accurately the filled matrix response.

5.2. First Homogenization

As already discussed in Section 4, the glass and carbon bundles are considered to behave elastically. The ”elastic”

properties of the filled matrix are assumed to be those of its instantaneous response. Using Table 2 the instantaneous

bulk and shear moduli are

KFM
0 = KFM

∞ +

16∑
j=1

KFM
j = 7101.276 MPa, GFM

0 = GFM
∞ +

16∑
j=1

GFM
j = 2445.098 MPa.

Considering fiber content of 80% volume fraction inside a glass or carbon bundle, the homogenized properties for the

bundles obtained by the Composite Cylinders Method are summarized in Table 3.
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Figure 7: Bulk and shear moduli (both their storage and loss parts) as a function of logω, ω in 1/s. Comparison between the matrix of Jerina et al.

(1982) and the filled matrix results obtained by the ‘zeroth’ homogenization. The figures also illustrate the numerical simulation using Prony series

for the field matrix (material parameters are provided in Table 2, columns 5 and 6).

glass bundles

property value

EGb
A (MPa) 66130

EGb
T (MPa) 35160

GGb
A (MPa) 13215

GGb
T (MPa) 13210

νGb
AT 0.266

carbon bundles

property value

ECb
A (MPa) 194120

ECb
T (MPa) 12480

GCb
A (MPa) 11330

GCb
T (MPa) 4140

νCb
AT 0.284

Table 3: Elastic properties of glass and carbon bundles, obtained by the first homogenization.
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5.3. Second Homogenization

In the second homogenization step the glass and/or carbon elastic bundles are embedded in a planar randomly

oriented way (with a uniform ODF) inside the viscoelastic matrix to produce the final SMC or SMC-hybrid composite.

As already explained in the Section 3, transforming the problem in the Fourier space provides a linear form of all the

implicated constitutive laws, but the calculations involve complex numbers that cannot be easily adopted in existing

micromechanics schemes. Moreover, addition of other nonlinear mechanisms, like for instance damage at the interface

between the bundles and the matrix, introduce material behaviors without analytical representation in the Fourier

space. These limitations do not exist in the differential representation of the viscoelastic constitutive law, described

in Section 3. Thus, for this homogenization step the incremental Mori-Tanaka presented in Appendix B is utilized,

where the stress and the tangent modulus of the viscoelastic matrix are computed with the numerical procedure of

Appendix A.

bundles of carbon fibers
bundles of glass fibers

Figure 8: Uniaxial stretching (displacement controlled conditions) is SMC-hybrid composite.

In all the numerical examples of this subsection, the composite is subjected to a rapid uniaxial in-plane stretching

(Figure 8), in which at 0.01 s the strain reaches the value of 0.001. Then the strain is kept constant for 1000 s, causing

a stress relaxation response.
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Figure 9: Stress relaxation responses of (a) the filled matrix and (b) a SMC-hybrid composite with 20% glass and 20% carbon cylindrical fibers.
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The first parametric analysis aims at identifying the impact of the combination between glass and carbon bundles in

the SMC-hybrid response. In these numerical examples, the total fiber reinforcement volume fraction is kept constant

to 40%. Since the volume fraction of the fibers inside a carbon or glass bundle is 80%, the total bundle volume fraction

inside the filled matrix is equal to 50% (see equation (5)). Varying the total glass fiber content from 0 to 40%, the total

carbon fiber content is reduced analogously. The bundles are considered cylindrical and long (length/diameter equal

to 1000). The stress relaxation, as a function of time, for an SMC-hybrid composite with 20% glass fibers and 20%

carbon fibers is illustrated in Figure 9 and is compared with the corresponding response of the filled matrix. As it is

observed, the presence of glass and carbon bundles enhance significantly the response of the composite, compared to

the filled matrix, but on the same time it reduces drastically its viscous behavior: the filled matrix has a stress reduction

of 20.5% between 1 and 1000 s, while the analogous reduction for the SMC-hybrid composite is only 2.3%. Figure

10 presents the obtained stress as a function of the total glass fiber volume fraction at time t =1000 s. As expected,

the increase of carbon glass content increases the overall strength of the composite. From the results it is shown that,

varying the ratio between carbon and glass bundles, the stress response can be between 45 and 22 MPa at 1000 s.
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Figure 10: Stress versus total glass fiber volume fraction at time t =1000 s for a SMC-hybrid composite.

The second parametric analysis investigates the role of the bundle length in the SMC-hybrid behavior. In this

study, the SMC-hybrid composite has 50% volume fraction of filled matrix and equal volume fractions of glass and

carbon bundles, which are assumed cylindrical. The bundles length/diameter ratio varies between 10 and 1000. Figure

11a illustrates the evolution of the stress with time for length per diameter ratios 20 and 200, while Figure 11b shows

the stress as a function of the length per diameter ratio at time t =1000 s. As the latter Figure depicts, the fiber

length/diameter ratio influences the response of the composite as well as it is below 200. Above 200 the bundles can

be considered as long.

The third parametric analysis examines the influence of the bundles shape. For the needs of the micromechanics

analysis, the bundles are assumed as general ellipsoids with axes a1, a2 and a3 (Figure 12). To simplify the discussion,

it is considered that the principal fiber axis is the a1, the axis normal to a1 and in the fibers plane is the a2, and the
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Figure 11: (a) Evolution of stress with time for two length/diameter ratios. (b) Stress versus bundles length/diameter ratio at time t =1000 s. In

both figures the SMC-hybrid composite contains 20% glass and 20% carbon cylindrical fibers.

a1

a2
a3

Figure 12: Schematic representation of a short non-cylindrical fiber as an ellipsoidal.
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axis normal to the fibers plane is the a3. The SMC-hybrid composite has 50% volume fraction of filled matrix and

equal volume fractions of glass and carbon bundles, whose aspect ratio a1/a3 is 100. The ratio a2/a3 varies between 1

(cylindrical fiber) and 100. Figure 13 presents the results of this parametric analysis. As it is observed, the ”flatness”

of the bundle reduces the stress but not significantly, since the drop of stress in the extreme case of a2/a3 ratio does

not exceed 10% compared to the cylindrical bundles.
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Figure 13: (a) Evolution of stress with time for two bundle shapes, (b) stress as a function of the bundles ellipsoidal shape (a2/a3 ratio) at time

t =1000 s. The SMC-hybrid composite has 20% glass and 20% carbon fibers and the bundles have a1/a3 ratio equal to 100.

5.4. Second Homogenization including damage in glass bundles

To illustrate the capability of the present multiscale method to incorporate additional inelastic mechanisms, the

following examples consider that the glass bundles are experiencing damage that is taken into account with the hybrid

model described in subsection 4.2.

The first example is based on real experimental data for conventional SMC glass fiber reinforced composites. The

material has been provided by Owens Corning. The matrix phase is polyester, reinforced with calcium carbonate

(CaCO3) spherical fillers. The total reinforcement of the glass fibers in the SMC composite is 45%. The glass bundles

are considered cylindrical, whose dimensions are experimentally identified as: 25 mm length and 0.189 mm diameter.

Thus, the length per diameter aspect ratio is 132.28.

Due to lack of additional information, some hypotheses about material parameters and volume fractions are nec-

essary. With regard to the filled matrix, no experimental data were available in terms of the filler content and the

viscous characteristics of the specific polyester. The analysis performed here assumes that the filled matrix has the

same characteristics with the material of Jerina et al. (1982), whose parameters are provided in Table 2, columns 1, 2,

3 and 4. Moreover, the volume fraction of fibers inside bundles is fixed to 80%. Using equation (5), one obtains that

the bundles inside the SMC occupy a volume fraction of 56.25%. For this conventional SMC composite, a uniform

random distribution of the bundles is assumed.
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With these data, the numerical simulation can be performed as explained in the previous sections. Since the

matrix of Jerina et al. (1982) is already filler-reinforced, the ’zeroth’ homogenization step is unnecessary. The first

homogenization step with the glass fibers and the matrix material give the following values for the glass bundles:

EGb
A =66.014 GPa, EGb

T = 33.591 GPa, GGb
A =12.48 GPa, GGb

T =12.57 GPa and νGb
AT =0.266. With regard to the damage

response, the damage-related properties for the glass bundles have been identified using inverse engineering methods

from the total composite response, and are included in Table 4. Explanations about the parameter identification and

the physical meaning of the material constants are provided in Praud et al. (2017).

configuration of the void inclusions flattening ratios shape ratio

δ1 = a1
a2

δ3 =
a3
a2

δc = δ1
δ3

= a1
a3

crossing micro-cracks along ~x1 400000 400 1000

Feature Parameter value unit

Pure transverse tension (22) threshold R22 8 MPa

Pure in-plane shear (12) threshold R12 6 MPa

Weibull length parameter S 8.54 −

Weibull exponent parameter β 3.86 −

Micro-cracks saturation γ∞c 0.025 −

Sliding parameter in transverse tension (22) a22 8.222 −

Sliding parameter in in-plane shear (12) a12 3.054 −

Table 4: Damage related parameters for the glass bundles. The physical meaning of each parameter and their effect on the stiffness tensor have

been presented in detail in Praud et al. (2017).

Three specimens have been subjected to uniaxial tensile loading (Figure 8). The experimental tests have been

performed under quasi-static conditions (strain rate of 10−3 s−1), which in the numerical analysis are represented with

a rate of 1% strain per 10 s. The specimens response and the model simulation are shown in Figure 14. As it can

be seen, the model is capable of capturing quite accurately the nonlinear overall response. A small deviation on the

elastic regime is due to the high modulus of the matrix viscoelastic constitutive law given by Jerina et al. (1982). A

thorough experimental investigation of the pure resin could provide a better representation of the filled matrix, which

will permit to capture the initial part of the curve. Such task though is out of the scope of the present manuscript.

After demonstrating the model’s ability to simulate results from real experimental data, a parametric analysis can

show its capacity in complicate studies of SMC composites. The hybrid composite of the second example contains

30% filled matrix, 60% glass bundles and 10% carbon bundles. Both glass and carbon bundles are long, cylindrical

and randomly oriented on a plane. Since the fiber content inside the bundle is equal to 80%, the glass fibers and
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Figure 14: Macroscopic stress-strain response of SMC glass fiber reinforced composite: comparison between experimental results on three speci-

mens and numerical simulations with the proposed model.

the carbon fibers in the overall SMC composite have volume fractions 48% and 8% respectively. The viscoelastic

properties of the filled matrix are those summarized in Table 2, columns 1, 2, 5 and 6, while the elastic properties of

the glass and carbon bundles are those given in Table 3. As in the previous case, the damage-related properties for the

glass bundles are those of Table 4. The bundles are considered long, cylindrical with length per diameter ratio equal

to 10000.
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Figure 15: Macroscopic stress-strain response of SMC-hybrid including damage in the glass bundles. The analysis was performed at three different

overall time steps: 500 steps (time increment 2 s), 800 steps (time increment 1.25 s) and 1250 steps (time increment 0.8 s).

In this numerical example, the composite is subjected to a uniaxial in-plane stretching (Figure 8), in which at 1000

s the strain reaches the value of 0.0032. Figure 15 demonstrates the obtained stress-strain response in the direction of

stretching considering three different overall time steps for the analysis: 500 steps (time increment 2 s), 800 steps (time

increment 1.25 s) and 1250 steps (time increment 0.8 s). The curves illustrate the convergence rate of the proposed

method. It should be mentioned that the most demanding analysis of 1250 steps, including saving the microscopic

and macroscopic information, required a computational time (actual time) of approximately 7.5 minutes in a personal
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computer with Intel Core i7, 2.7 GHz CPU and 8GB RAM.

Figure 16 summarizes the microscopic stress-strain response at three different material phases: the filled matrix,

the glass bundles parallel to the applied stretching (0◦) and the glass bundles normal to the applied stretching (90◦).

The local strain and stress components illustrated in the Figure 16 are those corresponding at the global direction of

the loading. The 90◦ glass bundles experience significant damage, while the 0◦ glass bundles remain elastic. It is

worth mentioning that the current model does not take into account activation of additional damage mechanisms in

the filled matrix or in the carbon bundles.
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Figure 16: (a) Schematic of SMC-hybrid, showing bundles at 0◦ and at 90◦ with respect to the loading direction. (b)-(d) Microscopic stress-strain

response of filled matrix and glass bundles at 0◦ and 90◦.

Another remark is that the damage mechanism at the glass bundles is the one that mainly causes the nonlinearity

in the macroscopic stress-strain curve (Figure 15). The filled matrix viscous behavior presents very reduced nonlinear

response (Figure 16b).

6. Concluding Remarks

The present paper has studied the response of SMC and SMC-hybrid composites from a micromechanical point

of view, by considering a hierarchical multiscale approach, in which the finer scale provides information to the higher
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scale. The special geometrical aspects (spherical fillers, bundles consisting of long fibers, short bundles at the larger

scale) and the viscoelastic nature of the matrix have enforced different homogenization techniques and different ways

of accounting for the nonlinear viscoelastic response at each scale of the composite. The proposed methodology

attempts to use the most efficient homogenization method according to the needs of every scale and tends to provide

computational efficiency. The analytical results at the lower scales (matrix with fillers, bundles consisting of matrix

and long fibers) permit to adopt a nonlinear incremental methodology at the larger scale.

The numerical examples presented in Section 5 illustrate the capability of the proposed homogenization strategy to

provide complicated parametric studies, implicating various aspects such as phases volume fractions as well as form

and length of the bundles, with low cost in calculations. In addition, the model takes into account damage mechanism

at the scale of the bundle by integrating a proper constitutive law in the incremental Mori-Tanaka scheme.

Simulation of real experimental data in SMC glass fiber reinforced composites demonstrates that the model can be

adopted easily in industrial applications. While it is true that the polyester-based composites do not show significant

viscoelastic response, the proposed hierarchical modeling strategy can well capture this aspect and can be utilized in

the same form for other polymer-based reinforced short bundles composite systems that exhibit a viscous behavior

more prominent.

Appendix A. Numerical scheme for a linear viscoelastic material

The convex cutting plane (CCP) approach is a special form of the more general class of return mapping algorithms

(Simo and Hughes, 1998; Qidwai and Lagoudas, 2000) and it is an implicit scheme in terms of time integration. Two

important operators are introduced in this algorithm:

1. The time increment ∆, which denotes the difference between the values at two consequent time steps tn and tn+1

of a quantity x, i.e. ∆x = x(tn+1) − x(tn).

2. The iteration increment δ, which denotes the difference between the values at two consequent iteration steps k

and k + 1 of a quantity x at the time step tn+1, i.e. δx = xk+1(tn+1) − xk(tn+1).

In the iterative calculation procedure of the CCP algorithm the evolution equation (18)1 is integrated explicitly, thus it

considers that the viscoelastic flow directions Λ j keep the value of the previous iteration step. This technique allows

to avoid complicated expressions that consider derivatives of Λ j, which introduce fourth order tensors.

The linearized forms of (16) and (18) are written as

δσ = L0:δε −
N∑

j=1

L j:δεv
j, δεv

j = Λ jδs j,

δΦ j = δ
(∥∥∥∥H−1

j : L j:[ε − εv
j]
∥∥∥∥) − δs j

∆t
= Λ j: H−1

j : L j:[δε − δεv
j] −

δs j

∆t

= Λ j: H−1
j : L j:δε −

[
Λ j: H−1

j : L j:Λ j +
1
∆t

]
δs j,

(A.1)

31



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

where ∆t = tn+1 − tn. In the above expressions, any net quantity without an operator ∆ or δ is either constant or refers

to the iteration step k. The CCP is a strain driven approach, in the sense that one provides the total strain ε at time tn

and the viscoelastic strains εvi at time tn+1 and obtains the stress σ, the viscoelastic strains and the viscoelastic tangent

modulus Lt at time tn. The algorithm is split in three parts:

1. Elastic prediction. At the beginning of the calculations it is assumed that no viscous effect appears. In that case

all δs j are zero, the viscoelastic strains εv
j do not evolve and the stress is computed by the expression σ = L0:ε.

2. Viscoelastic correction. Since the viscoelastic mechanism evolves with time at every instance of the loading,

the elastic prediction causes an error in the viscoelastic criteria Φ j. This error is corrected iteratively with the

following procedure:

During the viscoelastic correction the term δε is considered zero, since the total strain has already been taken

into account in the elastic prediction. Moreover, the viscoelastic criteria Φ j are corrected through an iterative

Newton-Raphson procedure

Φ j + δΦ j = 0, j = 1, ...,N.

The last expression, combined with (A.1)3, permits to identify the viscoelastic scalars at each Maxwell branch

and at each iteration step k by the relation

δs j =
Φ j

Λ j: H−1
j : L j:Λ j +

1
∆t

. (A.2)

Next, the stress and the viscoelastic strains are updated through the equations (A.1)1,2 and the viscoelastic

criteria Φ j are evaluated from (18)3. The procedure continues until all δs j are smaller than a tolerance. Usually

the iterative approaches in viscoelastic materials converge very fast and most of the times only one iteration

step is required.

3. Viscoelastic tangent modulus: In finite element analyses involving nonlinear materials the knowledge of the

correct stress is not sufficient to proceed to the next time increment. Indeed, in implicit numerical schemes a

tangent operator relating the increments of stress and total strain is required. The CCP algorithm provides a

continuum tangent modulus. Once the previous two parts are finished, δε is “released” from being zero and Lt

is computed by utilizing equations (A.1) and assuming that δΦ j are zero. This leads to the expression

δσ = Lt :δε, Lt = L0 −

N∑
j=1

(L j:Λ j) ⊗ (Λ j: H−1
j : L j)

Λ j: H−1
j : L j:Λ j +

1
∆t

. (A.3)

An important remark is that this tangent modulus does not preserve the major symmetries. Since the incremen-

tal Mori-Tanaka scheme (especially the calculation of the Eshelby tensor) requires symmetric tangent moduli

tensors, the symmetric part of Lt

Lt sym
i jkl =

1
2

[
Lt

i jkl + Lt
kli j

]
,
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is utilized here.

Appendix B. Incremental Mori-Tanaka

When a composite has nonlinear material constituents, a micromechanics framework like the Mori-Tanaka method

needs to be extended in order to account for an incremental formulation that allows the computation at each step of

appropriate tangent moduli.

Generally speaking, the homogenization can be seen as a two scale problem, the macroscale and the RVE (Figure

B.1). The two problems need to be solved simultaneously at each time increment. The RVE problem is solved

”analytically” with the help of the concentration tensors. As Figure B.1 depicts, the macroscale analysis provides the

macroscale

εmacro
σmacro

analysis

RVE problem

LSMC

εr

σr
constitutive

Lr

phases

laws

Figure B.1: Computational scheme for incremental Mori-Tanaka.

macroscopic strain εmacro. The microscale (RVE) problem utilizes this information and the appropriate concentration

tensors to obtain the macroscopic stress σmacro through an iterative process, as well as the necessary tangent modulus

LSMC of the SMC (or SMC-hybrid) composite.

Microscale problem

Once the macroscopic strain is provided by the macroscale analysis, the microscale problem is split in the follow-

ing parts:

1. For an elastic prediction, the time increment of the microscale strains ∆εr at each phase of the composite are

calculated by the linearized relations

∆εr = Ar :∆εmacro,

where the concentration tensors Ar are provided by equation (27) (for the M inhomogeneities) and (28) (for the

filled matrix). The microscopic tangent moduli Lr at the first iteration are considered as if all the phases are in

elastic state (elastic prediction). During the iteration process their value change according to the evolution of

the nonlinear mechanisms (i.e. viscoelasticity for the filled matrix).
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2. Using the microscopic strain εr, the constitutive law of each material phase is utilized in order to calculate the

microscopic stresses σr. For nonlinear materials the stress is usually computed iteratively (see for instance

Appendix A for a linear viscoelastic material).

3. Once the second step is completed, the updated tangent moduli Lr, as well as the updated concentration tensors

Ar, for each phase are utilized in order to obtain the tangent modulus LSMC of the the SMC (or SMC-hybrid)

composite from the relation (29).

Macroscale problem

Ignoring inertia and body forces, the macroscopic problem can be written in linearized incremental form as

div
(
σmacro + δσmacro) = 0, (B.1)

where

σmacro =

1 − M∑
r=1

cr

σFM +

M∑
r=1

crσr, (B.2)

and

δσmacro = LSMC:δεmacro. (B.3)

These relations permit to obtain the new macroscopic strain (either due to the change of the time increment or during

the correction process), which is used in the RVE problem.
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