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The properties of reinforced polymers strongly depend on the microstructural state, that
is, the orientation state of the fibres suspended in the polymeric matrix, induced by
the forming process. Understanding flow-induced anisotropy is thus a key element to
optimize both materials and process. Despite the important progresses accomplished in
the modelling and simulation of suspensions, few works addressed the fact that usual
processing flows evolve in confined configurations, where particles characteristic lengths
may be greater than the thickness of the narrow gaps in which the flow takes place. In
those circumstances, orientation kinematics models proposed for unconfined flows must
be extended to the confined case. In this short communication, we propose an alternative
modelling framework based on the use of unilateral mechanics, consequently exhibiting
a clear analogy with plasticity and contact mechanics. This framework allows us to revisit
the motion of confined particles in Newtonian and non-Newtonian matrices. We also prove
that the confined kinematics provided by this model are identical to those derived from
microstructural approaches (Perez et al. (2016) [1]).

1. Introduction

Over the last decades, composite materials, made of a suspending matrix and a reinforcement composed of fibres used to
fortify the matrix in terms of strength and stiffness, were successfully introduced in the aerospace and automotive industries 
and proved to be a lightweight alternative to produce structural and functional parts. The mechanical properties of such 
reinforced polymers, however, strongly depend on the orientation state of their microstructure, which is established during 
the forming process [2]. Predicting the evolution of this orientation state is thus a key yet complex task, since the motion of 
the reinforcing fibres is impacted by the flowing matrix and the interactions with the neighbouring fibres and cavity walls. 
Thus, flow-induced anisotropy must be understood and modelled in order to optimize both materials and processes.
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There is a long history of studies of the motion of slender bodies suspended in a viscous fluid, starting from the seminal 
work of Jeffery back in 1922 [3]. A vast literature dedicated to fibre and non-spherical particle suspensions is available, 
studying extensively different modelling scales and exploring the impact of the concentration regime and the nature of the 
suspending matrix. Schematically, the three main modelling scales involved when addressing the orientation kinematics of 
suspended particles can be summarized as follows: (i) the microscopic scale, the scale of a single particle; (ii) the mesoscopic
scale, the scale of a population of particle, whose conformation is usually represented by a probability density function (pdf) 
of orientation, giving an unambiguous and complete description of the orientation state; and (iii) the macroscopic scale, the 
scale of the part, whose conformation is often given by the first moments of the aforementioned pdf, providing a coarse 
yet concise description of the orientation state in the part. Depending on the level of detail and accuracy required for a 
given application, a specific scale, or a combination of them might be chosen. For further detail on that subject, including 
the so-called multiscale approach, we refer the reader to the review [4] and the monograph [5], as well as to the references 
therein. Only a succinct overview of the microscopic modelling is proposed thereafter.

In [3], Jeffery derived the expression of the hydrodynamic torque exerted on an ellipsoidal particle immersed in an 
unbounded creeping flow of a Newtonian fluid. He then obtained an equation of motion by assuming that the particle rotates 
so as to achieve instantaneous zero torque, resulting in the so-called Jeffery equation. Considering a spheroid (axisymetric 
ellipsoid) and defining the orientation of a particle by the unit vector p along its principal axis, Jeffery’s equation reads

ṗ J = � · p + κ(D · p − (D : (p ⊗ p)p)) (1)

where � and D are, respectively, the skew-symmetric and symmetric parts of the unperturbed velocity gradient ∇v of the 
flow, and κ is the shape factor of the spheroid, given by κ = r2−1

r2+1
with r the aspect ratio of the particle. Slender bodies like 

fibres and rods can be assimilated as infinite aspect ratio ellipsoids (κ ≈ 1).
Jeffery’s equation was experimentally verified by Taylor [6] and Mason [7]. Bretherton [8] showed that the equation is 

also valid for any axisymmetric particle provided that an effective aspect ratio is determined. Hinch and Leal [9–12] also 
studied Jeffery’s model, addressing the impact of Brownian motion and proposing constitutive equations for the behaviour 
of suspensions. However, only a few works, either experimental [13,14] or numerical and theoretical [15,16], address the 
fact that flows of industrial interest take place in narrow gaps, whose thickness is of the same order of magnitude or 
smaller than the length of the reinforcing fibres, thus constraining the space of possible orientation, and as a consequence 
the kinematics.

In [1], we proposed a multiscale model to describe the orientation development of a dilute suspension of fibres confined 
in a narrow gap. The microscopic model was based on a dumbbell representation [17] of the confined rod, with hydro-
dynamic and contact forces (normal to the gap wall) acting on it. This confinement model was later extended in [18] to 
include unilateral contacts and non-uniform strain rates at the scale of the rod. In any case, the resulting kinematics are 
a combination of the unconfined Jeffery kinematics and a correction term that prevents the fibre from leaving the flow 
domain, that is,

ṗ = ṗ J + ṗC (2)

The equation of motion of such a confined rod, derived in [1] and summarized in Eq. (2), presents thus significant 
similarities with equations of elastoplaticity. Indeed, we could draw a parallel between, on the one hand, the classical un-
confined kinematics and the elastic deformation, and, on the other hand, the confined motion of the particle and elastoplatic 
deformation.

Hence, the purpose of this short communication is to explore the alternative modelling framework based on unilateral 
mechanics to revisit the motion of confined particles in Newtonian and non-Newtonian matrices.

The paper is organised as follows. In Section 2, we derive the model for the confined kinematics of suspended particles 
using unilateral mechanics. Then, in Section 3, we discuss how this general framework allows us to build the confined 
kinematics of fibres and spheroids immersed in a Newtonian (based on Jeffery’s model [3]) or second-order (based on 
Brunn’s model [19]) viscoelastic fluid. Finally, in Section 4, we draw the main conclusions and present some perspectives of 
this approach.

Remark. In this paper, we consider the following tensor products, assuming Einstein’s summation convention:

– if a and b are first-order tensors, then the single contraction “·” reads (a · b) = a j b j ;
– if a and b are first-order tensors, then the dyadic product “⊗” reads (a ⊗ b) jk = a j bk;
– if a and b are respectively second and first-order tensors, then the single contraction “·” reads (a · b) j = a jk bk;
– if a and b are second-order tensors, then the double contraction “:” reads (a : b) = a jk bkj .

2. Confined orientation kinematics using unilateral mechanics

In this section, we derive step by step the kinematics of a confined suspended particle using the framework of unilateral
mechanics.



(i) Additive decomposition. We assume that the particle kinematics (particle rotary velocity) can be decomposed into an 
unconfined (U) and confined (C) contribution, according to

ṗ = ṗU + ṗC (3)

By definition, the orientation vector is subject to the normalization condition

p · p = 1 (4)

(ii) Unconfined contribution. The unconfined equation of motion ṗU is either given by a model from the literature, e.g., 
Jeffery’s equation [3] for ellipsoidal particles immersed in a Newtonian fluid or Brunn’s model [19] in the case of a 
second-order (non-Newtonian) matrix, or could be estimated from experimental observations. In order to satisfy the 
normalization condition Eq. (4), the unconfined kinematics should verify ṗU · p = 0.

(iii) Allowed domain and confinement condition. We define a function f : S → R called the confinement condition (the 
equivalent of the yield condition in plasticity mechanics) and constrain the admissible orientation states p ∈ S (with S
the unit sphere) to lie in the flow domain D, ensuring the gap walls’ impenetrability, defined as

D =
{

p ∈ S | f (p) = p · n − H

L
≤ 0

}
(5)

where L is the semi-length of the particle, H the gap semi-width, and n denotes a unit vector normal to the gap wall. 
We assume, without loss of generality, that p points towards the upper hemisphere.
We refer to the interior of D, denoted by int(D) and defined as intD) = {p ∈ S | f (p) < 0}, as the unconfined domain, 
whereas the boundary ∂D, given by ∂D = {p ∈ S | f (p) = 0}, is called the confinement surface.

(iv) Confined contribution and consistency requirement. The confined kinematics ṗC is obtained from the gradient of the con-
finement condition introduced above, i.e.

ṗC = −γ
d f

dp
(6)

where γ is the consistency parameter. The derivative of f (p) with respect to p, enforcing the normalization condition, 
reads

d f

dp
= n − (p · n)p (7)

which is obtained by subtracting from the derivative of f (p) with respect to p its projection onto the p direction in 
order to ensure that ṗC · p = 0.
The consistency parameter γ is assumed, on the one hand, to obey the Kuhn–Tucker complementary conditions

γ ≥ 0, f (p) ≤ 0, and γ f (p) = 0 (8)

and, on the other hand, to satisfy the consistency requirement

γ ḟ (p) = 0 (9)

To obtain the derivative of f with respect to time, we proceed as follows:

ḟ = d f

dp
· ṗ (10)

= (n − (p · n)p) · (ṗU − γ (n − (p · n)p)) (11)

= ṗU · n − γ (1 − (p · n)2) (12)

Thus the value of γ is given by

γ = (ṗU · n)

(1 − (p · n)2)
(13)

(v) Summary. The resulting kinematics can be summarized as follows:

f < 0 ⇐⇒ p ∈ int(D), γ = 0 =⇒ ṗ = ṗU unconfined

f = 0 ⇐⇒ p ∈ ∂D,

⎧⎪⎨
⎪⎩

ḟ = 0 and γ > 0 =⇒ ṗ = ṗU + ṗC

ḟ = 0 and γ = 0 =⇒ ṗ = ṗU

ḟ < 0 =⇒ γ = 0 =⇒ ṗ = ṗU

confinement

force-free contact

unconfined detachment

(14)

The force-free contact actually corresponds to the case where the confined particle is touching the gap wall, but is not 
trying to leave the flow domain (to “push” on the wall).



Fig. 1. Confined rod suspended in a Newtonian fluid (solid line: confined particle; dotted line: unconfined particle).

Remark 2.1. For the sake of clarity, we assumed in the present section and throughout the remainder of this article that 
under confinement, both extremities of the suspended particle are in contact with the gap walls and the centre of gravity 
of the particle is fixed in the mid-plane of the flow channel. These assumptions are, however, relaxed in Appendix A, where 
we address, using the same framework just introduced, the general case by introducing the position of the particle centre 
of gravity in the confinement condition, allowing in the meantime contact with only one gap wall.

3. Discussion

The confined kinematics obtained in the previous section read

ṗ = ṗU + ṗC = ṗU − (ṗU · n)

(1 − (p · n)2)
(n − (p · n)p) (15)

which coincides exactly with the expression obtained in [1] following a microstructural approach for a confined rod im-
mersed in a Newtonian fluid (ṗU was thus given by Jeffery’s kinematics).

However, the unilateral mechanics approach developed in the previous section does not assume anything on the shape 
of the suspended particles or the nature of the matrix fluid. Only an expression of the unconfined kinematics is actually 
necessary, which allows us to extend straightforwardly our model describing the motion of a confined particle to situations 
where the microstructural approach from [1] might be tedious.

In this section, we thus discuss three scenarios: (i) a rod immersed in a Newtonian fluid (developed in [1]), (ii) a spheroid 
in a Newtonian fluid, and (iii) a spheroid in a second-order fluid. We also provide some numerical illustrations in the case 
of a linear shear flow v = [

γ̇ z 0 0
]T, with γ̇ = 1 in a channel of height H = 0.25 L

3.1. Confined rod suspended in a Newtonian fluid

Inserting Jeffery’s equation for rods ṗJ
rod = ∇v · p − (∇v : (p ⊗ p)p) as unconfined kinematics in Eq. (15), we recover 

the kinematics derived in [1] using a microstructural approach (hydrodynamic and contact forces acting on the dumbbell 
representation of a rod).

Fig. 1 depicts the evolution of the orientation of a rigid fibre immersed in a shear flow of a Newtonian fluid. The solid 
line shows the trajectory of the confined rod and the dotted line the trajectory of an hypothetical unconfined particle 
starting from the same initial orientation. Fig. 1a shows the evolution of the rod orientation as a trajectory on the unit 
sphere. Starting from the same initial condition, the confined (solid red) and unconfined (dotted blue) rods both follow the 
same Jeffery orbit. When it touches the wall, the confined rod is constrained to slide along the gap wall, and finally catches 
an unconfined Jeffery orbit tangent to the wall and aligns in the flow. This abrupt change in the trajectory as it touches the 
gap wall can also be observed in Fig. 1b, where the components of the unit vector of orientation p are represented.

3.2. Confined ellipsoid suspended in a Newtonian fluid

Considering spheroidal particles (axisymmetric ellipsoids), we insert now the general Jeffery equation [Eq. (1)] in Eq. (15). 
The equivalence with the kinematics obtained from a microstructural approach on a tri-dumbbell is detailed in Appendix B.



Fig. 2. Confined spheroid (aspect ratio r = 4) suspended in a Newtonian fluid (solid line: confined particle; dotted line: unconfined particle).

Fig. 2 depicts the evolution of the orientation of a spheroid of aspect ratio r = 4 immersed in the same shear flow of a 
Newtonian fluid. The unconfined particle (dotted blue) undergoes its classical kayaking motion, whereas the confined one 
(solid red) first slides along the wall, and is then constrained on the largest kayaking orbit possible in the narrow gap, that 
is, the orbit tangent to both gap walls. Note that the orbit points tangent to the channel walls thus correspond to force-free 
contacts.

3.3. Confined ellipsoid suspended in a second-order fluid

Leal [20] and Brunn [19] published some important theoretical works to describe, respectively, the motion of a rod and 
an ellipsoid in a second-order fluid, in the limit of low Weissenberg numbers, which constitutes the counterpart of Jeffery’s 
equation in the case of a viscoelastic suspending matrix. The constitutive equation for the second-order fluid is given by 
Giesekus [21]

σ = −pI + 2ηD + 2η

[
k(11)

0 D · D + k(2)
0

(
∂D

∂t
+ v · ∇D + � · D − D · �

)]
(16)

where k(11)
0 and k(2)

0 are material parameters. Brunn [19] derived the equation of evolution of the orientation of a particle,
and the resulting kinematics reads

ṗB = � · p + κ(D · p − (D : (p ⊗ p)p)) − (I − p ⊗ p) · D · (H2D · p + H1(D : (p ⊗ p))p) (17)

where H1 and H2 depend on the material parameters and the ellipsoid aspect ratio as given in Brunn [19].
In Appendix C, we briefly show how to write Brunn’s kinematics [Eq. (17)] in the form of Jeffery’s kinematics Eq. (1)

with an effective velocity gradient ∇̃v. Consequently, the microstructural validation developed in Appendix B can also be 
used in this section.

In the case of a second-order fluid, it is well known that the kayaking motion of the particle drifts towards the shear 
plane for oblate spheroids (r < 1) or towards the vorticity axis for prolate spheroids (r > 1) [19,22,23].

Fig. 3 depicts the evolution of the orientation of a spheroid of aspect ratio r = 4 immersed in the same shear flow, but 
now the suspending matrix is a second-order fluid (in this illustration, we have k(11)

0 = 0.144 and k(11)
0 = −0.09, and thus,

H1 = 0.084 and H2 = 0.0056). Again, the confined spheroid (solid red) is constrained to exert its kayaking and drifting 
motion towards the vorticity axis of the flow in the narrow flow domain.

4. Conclusion and perspectives

This work proposes an alternative route for deriving the confined orientation kinematics of dilute suspensions of fibres
and ellipsoidal particles. This approach, based on unilateral mechanics, allows us to extend directly our previous microstruc-
tural model developed for confined rods in a Newtonian fluid [1] to ellipsoidal particles and viscoelastic matrices.

The same strategy might then be applied at the macroscopic scale, working on the so-called second-order orientation 
tensor a [24], a = ∫

(p ⊗p) ψ(p) dp, to derive a macroscopic model for confined suspensions. However, defining the adequate 
confinement condition f (a) ≤ 0 in that case is a delicate task that will be addressed in a future work.



Fig. 3. Confined spheroid (aspect ratio r = 4) suspended in a second-order fluid (solid line: confined particle – dotted line: unconfined particle).
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Appendix A. Confined orientation kinematics using unilateral mechanics – interaction with only one gap wall

In this appendix, we extend the framework introduced in Section 2 in situations where the suspended particle’s centre 
of gravity does not necessarily lies in the channel mid-plane, allowing interaction with only one gap wall. In that case, the 
confinement condition now reads

f (p) = (xG + pL) · n ≤ H (18)

with xG the position of the particle centre of gravity G. The allowed domain D is thus now given by

D =
{

p ∈ S | f (p) = 1

L
(xG · n) + (p · n) − H

L
≤ 0

}
(19)

Note that in this case, we consider the case where G lies in the upper-half of the channel.
Using these new definitions, the derivation of the confined kinematics is obtained following the same rationale as that 

presented in the step (iv) in Section 2. The derivation of f with respect to p [Eq. (7)] is left unchanged, whereas the 
derivation of f with respect to time [Eq. (10)] now reads

ḟ = ∂ f

∂xG
· ẋG + ∂ f

∂p
· ṗ (20)

= 1

L
(n · ẋG) + (n − (p · n)p) · ṗ (21)

= 1

L
(n · ẋG) + (n − (p · n)p) · (ṗU − γ (n − (p · n)p)) (22)

= 1

L
(vG · n) + (ṗU · n) − γ (1 − (p · n)2) (23)

with vG = ẋG the velocity of the particle’s centre of gravity. Finally, the value of the consistency parameter γ is given by

γ =
1
L (vG · n) + (ṗU · n)

(1 − (p · n)2)
(24)

leading to the following expression for the confined kinematics

ṗ = ṗU + ṗC = ṗU −
1
L (vG · n) + (ṗU · n)

(1 − (p · n)2)
(n − (p · n)p) (25)

This expression is exactly the one that we derived in [18] when addressing the kinematics of a confined particle interacting 
with only one gap wall using a microstructural approach (dumbbell).



Fig. 4. Hydrodynamic and contact forces acting on a confined suspended spheroid.

Appendix B. Confined kinematics of an ellipsoid using the dumbbell approach

In order to address the confined kinematics of an ellipsoid immersed in a Newtonian fluid flow, we consider its cor-
responding tri-dumbbell representation. For the sake of simplicity, we consider in this appendix the 2D case, that is the 
bi-dumbbell represented in Fig. 4, which will provide the orientation kinematics of a spheroid (axisymmetric ellipsoid). The 
orientation of the two principle axes are given by the unit vectors p1 and p2.

On each bead acts a hydrodynamic force (Stokes drag), scaling with the difference of velocity between the fluid at the 
bead position and the bead itself. For the bead located at p1 L1, that force reads

FH(p1L1) = ξ(v0 + ∇v · p1L1 − vG − ṗ1L1) (26)

where ξ is a friction coefficient and vG and v0 denote respectively the velocity of the centre of gravity G and the velocity 
of the fluid at G. Without any loss of generality, we assume that L1 is the spheroid longest axis, on which contact with the 
gap wall will occur. The contact forces on the upper and lower beads read

FC(p1L1) = μn and FC(−p1L1) = −μn (27)

with n = [
0 0 1

]T (since the contact force is orthogonal to the wall as soon as friction is neglected – it could be easily 
introduced), and its intensity μ is a priori unknown.

When both beads of the dumbbell aligned along direction p1 are in contact with the gap walls (more general situations 
were analysed in [18]), balance of forces yields

2ξ(v0 − vG) = 0 (28)

that is, v0 = vG, the particle’s centre of gravity is moving with the fluid velocity at that position.
Balance of torques thus yields

2p1L1 ×
(

∇v · p1L1 − ṗ1L1 + μ

ξ
n
)

+ 2p2L2 × (∇v · p2L2 − ṗ2L2) = 0 (29)

Introducing the fact that ṗi = ω×pi , i = 1, 2 (with ω the angular velocity vector), and taking into account that pi ×ω×pi =
ω, i = 1, 2, we have

ω = L1

L2
1 + L2

2

(p1 × (∇v · p1L1 + μ

ξ
n)) + L2

L2
1 + L2

2

(p2 × (∇v · p2L2)) (30)

Thus, the spheroid rotary velocity is given by

ṗ1 = ω × p1 = L1

L2
1 + L2

2

((p1 × (∇v · p1L1 + μ

ξ
n)) × p1) + L2

L2
1 + L2

2

((p2 × (∇v · p2L2)) × p1) (31)

Applying the triple vector product formula (a × b) × c = (a · c)b − (b · c)a, the previous equation reads:

ṗ1 = L1

L2
1 + L2

2

((∇v · p1L1 + μ

ξ
n) − ((∇v · p1L1) · p1 + μ

ξ
(n · p1))p1)

− L2

L2
1 + L2

2

(((∇v · p2L2) · p1)p2)

(32)



We now develop the last term of this equation in order to obtain an expression that only depends on p1 . First, we decom-
pose the velocity gradient according to ∇v = D + �,

((∇v · p2) · p1)p2 = ((D · p2) · p1)p2 + ((� · p2) · p1)p2 (33)

Then we develop each of these terms. Using the fact that D is symmetric, we have

((D · p2) · p1)p2 = p2(pT
1 · D · p2) = p2(pT

2 · D · p1) = (p2 ⊗ p2) · D · p1 (34)

Since p1 and p2 are mutually perpendicular,

(p1 ⊗ p1) + (p2 ⊗ p2) = I (35)

and thus Eq. (34) now reads

((D · p2) · p1)p2 = (I − (p1 ⊗ p1)) · D · p1 (36)

Similarly, using the fact that � is skew-symmetric, we have

((� · p2) · p1)p2 = p2(pT
1 · � · p2) = −p2(pT

2 · � · p1) = −(p2 ⊗ p2) · � · p1 (37)

and thus

((� · p2) · p1)p2 = −(I − (p1 ⊗ p1)) · � · p1 (38)

Finally, coming back to Eq. (32), we have

ṗ1 = L1

L2
1 + L2

2

((∇v · p1L1 + μ

ξ
n) − ((∇v · p1L1) · p1 + μ

ξ
(n · p1))p1)

− L2
2

L2
1 + L2

2

(D · p1 − (p1 ⊗ p1) · D · p1 − � · p1 + (p1 ⊗ p1) · � · p1)

(39)

or

ṗ1 = � · p1 + L2
1 − L2

2

L2
1 + L2

2

D · p1 − L2
1 − L2

2

L2
1 + L2

2

(p1 ⊗ p1) · D · p1 + L1

L2
1 + L2

2

(
μ

ξ
(n − (n · p1)p1)) (40)

The first part of Eq. (40) is actually the classical Jeffery equation for a spheroid, since L2
1−L2

2
L2

1+L2
2

= r2−1
r2+1

= κ is the spheroid 
shape factor and the second part is thus the confinement contribution,

ṗ1 = ṗJ
1 + L1

L2
1 + L2

2

(
μ

ξ
(n − (n · p1)p1)) (41)

Imposing the impenetrability condition [1]

(vG + ṗ1L1) · n = 0 (42)

allows us to obtain the intensity μ of the contact force. Since the particle centre of gravity is in the mid-plane of the shear 
flow, vG = 0 and thus

ṗ1L1 · n = ṗ1
JL1 · n + L2

1

L2
1 + L2

2

(
μ

ξ
(1 − (n · p1)

2)) = 0 (43)

The value of μ is then given by

μ = − L2
1 + L2

2

L2
1

ξ L1

(1 − (n · p1)2)
(ṗ1

J · n) (44)

Eventually, the confined kinematics of a rigid spheroid are given, as expected, by

ṗ1 = ṗJ
1 − (ṗ1

J · n)

(1 − (n · p1)2)
(n − (n · p1)p1) (45)



Appendix C. Rewriting Brunn’s kinematics with an effective velocity gradient

Brunn’s orientation kinematics for a spheroid particle immersed in a second-order fluid reads [19]:

ṗB = � · p + κ(D · p − (D : (p ⊗ p)p)) − (I − p ⊗ p) · D · (H2D · p + H1(D : (p ⊗ p))p) (46)

where the spheroid shape factor is given by κ = r2−1
r2+1

, with r the aspect-ratio of the particle, and H1 and H2 are given by 

Brunn, H1 = (r2 − 1)H2 = −2 
(

r2−1
r2+1

)2 (
k(2)

0 + 1
4 k(11)

0

)
. Developing Eq. (46), we have

ṗB = � · p + κ(D · p − (D : (p ⊗ p)p)) − H2D2 · p + H2(p ⊗ p) · D2 · p

− H1(D : (p ⊗ p)) D · p + H1(D : (p ⊗ p)) (p ⊗ p) · D · p
(47)

We now define an effective velocity gradient:

∇̃v = ∇v − H2

κ
D2 − H1

κ
(D : (p ⊗ p))D (48)

and the effective vorticity and strain rate tensors �̃ = 1
2

(
∇̃v − ∇̃v

T
)

and D̃ = 1
2

(
∇̃v + ∇̃v

T
)

. Equipped with this effective 
velocity gradient, Brunn’s kinematics Eq. (46) can be rewritten in the same form as Jeffery’s kinematics [Eq. (1)], that is,

ṗB = �̃ · p + κ(D̃ · p − (D̃ : (p ⊗ p)p)) (49)
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