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ABSTRACT 

Vibrotactile and force cues of the haptic modality is increasing used 
to facilitate interactive tasks in three-dimensional (3D) virtual 
environments (VE).  While maximum likelihood estimation (MLE) 
explains the integration of multi-sensory cues in many studies, an 
existing work yielded mean and amplitude mismatches when using 
MLE to interpret the integration of vibrotactile and force cues. To 
investigate these mismatches, we proposed mean-shifted MLE and 
conducted a study of comparing MLE and mean-shift MLE. Mean-
shifted MLE shared the same additive assumption of the cues as 
MLE, but took account mean differences of both cues.  In a VE, the 
study replicated the visual scene, the 3D interactive task, and the 
cues from the existing work. All human participants in the study 
were biased to rely on the vibrotactile cue for their task, departing 
from unbiased reliance towards both cues in the existing work. 
After validating the replications, we applied MLE and mean-shifted 
MLE to interpret the integration of the vibrotactile and force cues.  
Similar to the existing work, MLE failed to explain the mean 
mismatch. Mean-shifted MLE remedied this mismatch, but 
maintained the amplitude mismatch. Further examinations revealed 
that the integration of the vibrotactile and force cues might violate 
the additive assumption of MLE and mean-shifted MLE. This sheds 
a light for modeling the integration of vibrotactile and force cues to 
aid 3D interactive tasks within VEs. 

Index Terms: H.5.1 [Multimedia Information Systems]: Artificial, 
augmented and virtual realities; H.5.2 [User Interfaces]: Haptic I/O 

1 INTRODUCTION 

In a three-dimensional (3D) virtual environment (VE), information 
and feedback in the visual modality can be overwhelming to human 
users [1]. Increasingly, VEs have incorporated feedback of other 
modalities (such as haptics and auditory) to provide the users 
alternative feedback for presence and interactivity [1], [4]. Of these 
modalities, haptics is important because of its relevance to direct 
manipulation of objects. Two common types of feedback in the 
haptic modality are through vibrotactile and force cues. A generic 
mechanism of integrating these cues would be necessary to aid 3D 
interactive tasks.  

A potential candidate of the mechanism is maximum likelihood 
estimation (MLE) [2], [4]. MLE could explain appropriately the cue 
integration of different modalities, such as visual and haptic cues 
[4], force and position cues [2], and auditory and visual cues [7]. 
MLE gives a prediction of a cue integration based on empirical 
observations of individual cues [4].  Each observation is a Gaussian 

distribution, represented by its mean (μ), standard deviation (σ), and 
amplitude (A).  The prediction ( ) of an integration among M 
individual cues is a summation of the cues’ weighted observations 
( , ∈ 1, . . , ) as follows [4]: 

∑ 	 ,     where  	 /
∑ /

  . (1) 

When applying MLE to interpret empirical observations of 
integrating vibrotactile and force cues, an existing work reported  
mean and amplitude mismatches [3]. To remedy the mismatches, 
we propose mean-shifted MLE to take account mean differences 
between the observations and their cue integration. The mean-
shifted weights of vibrotactile and force cues (wV and wF, 
respectively) are formulated as below: 

    and       , (2) 

where μV, μF, and μFV are the means of the observations of the 
vibrotactile cue, force cue and their integration, respectively. We 
conducted a study to explore the suitability of mean-shifted MLE. 
In the study, each human participant undertook a 3D interactive 
task within a 3D VE. The study indicated that mean-shifted MLE 
remedied the mean mismatch but retained amplitude differences. 

2 EMPIRICAL STUDY 

Within a VE created with the Unity game engine, the visual scene, 
the interactive task and the cues of the VE were replicated 
according to their originals in the existing work [3]. The procedures 
were also replicated, except all participants in the study were 
instructed to rely on the vibrotactile cue for the task. This led to a 
biased reliance on the vibrotactile cue.  This biased reliance  
departed from an unbiased reliance on either of the cues in the 
existing work [3]. 

Each participant viewed the visual scene with a pair of 3D shutter 
glasses along with an IR emitter (nVidia Inc., Santa Clara, USA). 
For 3D interaction, the participant employed the right hand to hold 
the stylus of a PHANToM Omni device (Geomagic Inc., USA) on 
a small table. The visual scene consisted of a high-powered 
transmission line supported by two towers (60.0 m apart) and 
located in a mountainous region. The transmission line curved 
towards the ground due to its weight. The viewport of the VE was 
on a flying drone, which had a robotic arm equipped with a loop-
shaped clamp. The clamp covered the line for detecting defects on 
the line.  

Ten participants (age 27.13 ± 5.13 years old) took part in the 
study. All participants differed from the counterparts in the existing 
work and were naïve to the purpose of this study. According to a 
pre-screening, every participant was right-handed, had intact color 
vision, and possessed normal or corrected-to-normal vision with 
stereo acuity of at least 40” of arc. The participant wore an E4 
wristband (Empatica Inc., Italy) on the left wrist to monitor his/her 
physiological signals in real time. An ethics approval was attained 
at our institute for the study. 
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The participant performed an interactive task. During the task, 
the participant used the stylus of the Omni device to guide the drone 
to fly and to move the clamp along the transmission line. Any defect 
on the line was fed back to the user by a vibrotactile cue and/or a 
force cue. The vibrotactile cue (200 Hz for 1.0 s) was generated 
through the first motor of the VibroTac (SENSODRIVE Gmbh, 
Germany) bracelet. The force cue (0.6 N for 1.0 s) was delivered 
by the Omni device. There were 5 cue profiles with each profile 
being one testing block as follows: 
 V_co:  Only a vibrotactile cue on the right hand, co-located with 

the Omni stylus. 
 V_dis:  Only a vibrotactile cue on the right forearm, dis-located 

from the Omni stylus. 
 F_only: Only a force cue delivered by the Omni stylus.  
 FV_co: A cue consisted of both V_co and F_only profiles. 
 FV_dis: A cue consisted of both V_dis and F_only profiles. 

The order of these testing blocks was counter-balanced among all 
participants. A practice block was present for each participant to 
learn how to fly the drone and detect defects. A total of 15 randomly 
located defects were on the transmission line, with every block 
having different set of defect locations. After every block, the 
participant answered one cybersickness  questionnaire [6] and one 
perceptual questionnaire [3]. Subjective data of perceived 
usefulness (Usf), effectiveness (Eff), pleasure (Pls) and workload 
(Wld) were gathered using the perceptual questionnaire; Objective 
data including task completion time (TCT) and percentage accuracy 
in identifying defects (Acc) were collected by the VE application. 
NASA task load index devised the perceived Wld [5]. Length of the 
procedure for each participant was about 1.75 hours. 

3 RESULTS AND DISCUSSION 

None of the participants suffered from cybersickness according to 
the physiological data and the responses to the cybersickness 
questionnaire. The subjective and objective data were normally 
distributed and thus eligible for ANOVA and Bonferroni post-hoc 
analyses. Table 1 depicts all subjective and objective data and their 
ANOVA outcomes. ANOVA analyses of the subjective data 
revealed that no significant difference existed among the testing 
blocks for Usf, Eff and Pls, whereas Wld gave a significant 
difference. The difference arose from the V_co vs. F_only blocks 
and the V_co vs. FV_co blocks, indicated by Bonferroni post-hoc 
tests. ANOVA analyses of objective data revealed that no 
significant difference existed among all testing blocks for TCT. 
However, there was a significant difference among all blocks 
existed for Acc. The F_only block was significantly less accurate 
than other testing blocks indicated by the Bonferroni post hoc tests. 
As F_only block is the block without the vibrotactile cue, the 
vibrotactile cue enhanced the accuracy of detecting defects. All 
these results corresponded to those in the existing work [3], 
validating our replication of the visual scene, the interactive task 
and the cues in the VE.  This set the baseline for using MLE and 
mean-shifted MLE. 

Using MLE and mean-shifted MLE, the integration of both cues 
was examined on Acc. A Gaussian distribution was estimated for 
each testing block. Since the participants were instructed to favor 
the vibrotactile cue over the force cue, their data were reliance-
biased towards the vibrotactile cue. The same estimations were 
carried out for the unbiased data from the existing work [3]. 

MLE failed to interpret the observed cue integration based on 
reliance-biased data in both co-located and dis-located settings, as 
well as reliance-unbiased data in dis-located setting. These 
observations were close to those of the vibrotactile only (V_co and 
V_dis) blocks. In contrast, mean-shifted MLE predictions followed 
the observations closely. When the force cue was delivered dis-
located from the vibrotactile cue, it is plausible that the participants 
ignored the force cue, making mean-shifted MLE prediction 

plausible. However, the amplitude remained mismatched between 
the observations of the cue integration and the mean-shifted MLE 
predictions. This indicates participants did not completely ignore 
the force cue when delivered at a co-location with the vibrotactile 
cue. Compared to MLE, mean-shifted MLE elucidated well the 
observations of the cue integration in all cases. 

To investigate the amplitude mismatch, we plotted the 
relationship between amplitude differences and the mean-shifted 
weight difference between the vibrotactile and force cues for all 
reliance-biased and -unbiased data. This yielded a linear 
relationship by a least square regression with R2 = 0.92. The 
relationship explains the amplitude mismatch and indicates that a 
model without the additive assumption might be necessary. 

4 CONCLUSION 

We proposed mean-shifted MLE to handle the mean and amplitude 
mismatches yielded by MLE when integrating vibrotactile and 
force cues. While mean-shifted MLE remedied the mean mismatch, 
the amplitude mismatch remained. The amplitude mismatch 
appeared to have a linear relationship with the difference of mean-
shifted weights. Future work is to acquire data for modelling this 
relationship and elucidating the integration of the vibrotactile and 
force cues to aid 3D interactive tasks. 
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Table 1: The means and standard deviations of the subjective 
data and their ANOVA results among all testing blocks. 

Data 

(objective/ 

subjective) 

Testing Blocks (  ± ) ANOVA 

V_ 

co 

V_ 

dis 

F_ 

only 

FV_ 

co 

FV_ 

dis F
(4

,4
9)

 

p<
0.

05
 

Usf (%) 67 ± 18  60 ± 22 65 ± 20 65 ± 15 60 ± 24 0.65 — 

Eff (%) 63 ± 17  57 ± 19 53 ± 23 61 ± 20 56 ± 23 0.92 — 

Pls (%) 65 ± 18  61 ± 22 60 ± 22 69 ± 22 64 ± 23 0.83 — 

Wld 126±38 138±26 145±28 144±24 139±33 1.79  

Acc (%) 79±12 87±13 35±18 81±11 85±12 24.08  

TCT (min) 4.1±0.7 4.1±0.6 4.1±0.5 4.1±0.5 4.5±0.9 1.65 — 




