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Abstract: Large volumes of trajectory-based data require development of appropriate data

manipulation mechanisms that will offer efficient computational solutions. In particular, identification

of meaningful geometric points of such trajectories is still an open research issue. Detection of these

critical points implies to identify self-intersecting, turning and curvature points so that specific

geometric characteristics that are worth identifying could be denoted. This research introduces

an approach called Trajectory Critical Point detection using Convex Hull (TCP-CH) to identify a

minimum number of critical points. The results can be applied to large trajectory data sets in order

to reduce storage costs and complexity for further data mining and analysis. The main principles

of the TCP-CH algorithm include computing: convex areas, convex hull curvatures, turning points,

and intersecting points. The experimental validation applied to Geolife trajectory dataset reveals

that the proposed framework can identify most of intersecting points in reasonable computing

time. Finally, comparison of the proposed algorithm with other methods, such as turning function

shows that our approach performs relatively well when considering the overall detection quality and

computing time.
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1. Introduction

Nowadays, positioning data collection devices, such as GPS and wireless communication,

technologies are widely available as personal devices. Users can easily record and save their geometric

paths as trajectory data [1]. Trajectory data can be roughly defined as a sequence of time-stamped

geographic positions of some moving objects, that is, a series of timestamped X and Y coordinates of

each position. For a given trajectory T, the position of a point at a time instant i can be denoted as

T(ti). Such data can be used in many application domains, such as detection and analysis of people’s

movement patterns and detection in the city, migration behavior of animals, and tracking of maritime

and aerial trajectories [2,3]. The analysis of trajectories can be closely associated to the geometric,

temporal, and semantic properties. Typically, the semantic dimension is related to all descriptive

attributes that can be associated to a given trajectory. For instance, the series of Points Of Interest (POI)

related to a given trajectory is considered as a semantic property, in which activities, mode of travel,

neighbor relations, context, and any metadata during movement can be considered [4].

When considering the very large volumes of collected trajectory data often available and/or

collected, the manipulation and analysis of the generated databases are not straightforward tasks [5].

Among the variety of processes that have been developed so far, clustering, Origin-Destination (O-D)

methods, spatio-temporal mining, and graph-based analysis are representative trajectory analyses that
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have been used by previous researchers [6]. Clustering is considered as an efficient computational

approach for data mining and identifying implicit geometric patterns in trajectory data [7]. The O-D

methods are often apply to study the spatial and temporal distribution of start and end points of

human displacements [8]. These studies apply a series of geometric-temporal and semantic criteria

for the derivation of movement patterns [9]. Graph-based studies have been also applied to explore

trajectory patterns [10]. A brief classification of the above methods is shown in Table 1 according to the

methods applied and data considered.

Table 1. Classification of trajectory-based studies.

Approach
Data Used

GPS Data Smart Card Data Cell Phone Data Other

O-D POI detection [8,11–14] [15] [16] [17]
Spatio-temporal mining [9,14,18–24] [25] [16,26,27] [28]

Clustering [29–35] [36–38] [39,40] [29,41,42]
Graph-based [10,43,44] [38] [45,46] [47]

Similarity-based analysis is rather oriented to the detection of trajectory analogies and

peculiarities [31]. Over the past few years, the analysis and search for similarities based on physical

and geometric descriptors has been the object of several research works. According to [48], stop points

provide valuable inputs for studying and differentiating trajectory data. In fact, a key issue relies

on identifying effective descriptors. Events and activities that are associated to either stop points

or movements also give useful insights for studying trajectory differences and similarities [49,50].

When considering geometric properties, structuring a trajectory by line segments based on curvature

points has been suggested as a valuable method for identifying the main characteristics and facilitating

the search for trajectory patterns [28,51–55]. Additional parameters such as velocity, direction,

turning points and angle, acceleration, sinuosity, distance, and travel time surely provide further

insights [56,57]. When considering large trajectory datasets, searching for outliers that deviate from

median trajectories in both space and time has been studied in related work [19,58]. A classification of

these studies according to these parameters is shown in Table 2.

Table 2. Classification of parameter-based previous studies.

Property Parameters Related Work

Geometric

Distance [9,10,19,27,30–32,34,44,45]
Direction [8,16–18,23,27,33,34,39]
Turning Angle [19,23,28,31]
Sinuosity [16,20,28,31]

Physical

Velocity [8,18,19,27,28,44]
Acceleration [18–20]
Stop Point [17,18,27,30,33,34,36,43]
POI [9,10,14–16,21–25,30,39–44,46,47]

Context
People Attributes [8,13,14,25,36]
Time of Occurrence [11,12,15,25,29,34,37,40,42,45,46]

An interesting quality that can be used to study the embedded properties of a trajectory is the

notion of path curvature. The curvature of a given sub-trajectory can be revealed from the position of

a previous point (T(Pleft)) and the following one (T(Pright)), by either analyzing the rate of direction

change or fitting a circle through these two given points (Figure 1).
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Figure 1. Curvature derivation through ( ) using a tangent vector or (b) fitting a circle [5]. 
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status of turning points [5 ]. In f ct, turning points are loc ted in the beginning and end of some 

trajectory curvatures. Turning points associated to given trajectory curvature should reveal some

direction changes. When searching for the geometric complexity of a given trajectory, or searching 

for some trajectory similarities, curvatures and turning points can play an important role Another

component that should be considered is self-intersecting trajectories. Self-intersecting trajectories 

arise when given trajectory crosses its geometric path once or more. The self-intersection loops are

often omitted from the geometry, although they represent some specific behaviors, like orbiting or 

changing the route, which have not being identified. Also, the shape of the path is sometimes 

intersected as the double-level intersections [19,20 ]. Figure 2 illustr tes a s mple of self-

intersecting trajectories. This figure shows the difference between self-intersecting trajectories that

can be considered as noise and should be removed (Figure 2 left) and those that represent a real sub-

part of  trajectory with a self-intersecting point that is considered s a critical point in the trajectory 

(Figure  right)

One common difficulty of all the mentioned methods appears at the computational level,

especially when dealing with large trajectory datasets. In order to improve processing times,  given 

trajectory should be filtered by keeping the most relevant points according to the most relevant

geometric descriptors. To this end, sever l algorithms have already been explored using spatial and 

temporal descriptors, such as turning points, directions, sinuosity  and speed [5,19,31]. A key issue 

when applying a filtering algorithm to a given trajectory is identifying the most relev nt geometric 

descriptors, the ones that make sense with respect to the application domain considered, as well s

avoiding dependent par meters. For instance, curvature and direction as well as speed and 

acceleration, are dependent descriptors that should not be considered together. 

The objective of this study is to develop a computational approach for identifying critic l

descriptors of trajectories, that is, curvature areas, turning points nd self-intersecting points  A first

advantage of the three selected par meters is that many other p rameters, such as sinuosity, heading

and curviness can be derived from curvature and turning points. As trajectories generated by most

applications are very large, an important requirement is to minimize storage and computation l

costs, and then select the minimum number of geometrical p r meters from which others can be 

derived. The second principle is to take into account the very specificity of urb n trajectories and the

fact that self-intersecting trajectories occur in many cases. As this parameter is independent of the 

others, it should be considered.

The proposed method follows two main objectives. The first objective is to develop a framework 

for identifying the minimum possible numbers of critical points nd reducing the processing load of

each parameter. While in previous studies  rel tively costly computational processes have been 

implemented [61], we introduce an approach, called trajectory critical point detection using convex 

hull (TCP-CH), and derive our selected par meters by only using a convex hull algorithm. The 

application of this algorithm dramatic lly reduces the storage and computation l costs  especially

when dealing with very large trajectory datasets. 

Figure 1. Curvature derivation through (a) using a tangent vector or (b) fitting a circle [5].

Another descriptor that can be used when checking the similarity of some trajectories is the status

of turning points [5,59]. In fact, turning points are located in the beginning and end of some trajectory

curvatures. Turning points associated to a given trajectory curvature should reveal some direction

changes. When searching for the geometric complexity of a given trajectory, or searching for some

trajectory similarities, curvatures and turning points can play an important role. Another component

that should be considered is self-intersecting trajectories. Self-intersecting trajectories arise when a

given trajectory crosses its geometric path once or more. The self-intersection loops are often omitted

from the geometry, although they represent some specific behaviors, like orbiting or changing the

route, which have not being identified. Also, the shape of the path is sometimes intersected as the

double-level intersections [19,20,28,60,61]. Figure 2 illustrates a sample of self-intersecting trajectories.

This figure shows the difference between self-intersecting trajectories that can be considered as noise

and should be removed (Figure 2 left) and those that represent a real sub-part of a trajectory with a

self-intersecting point that is considered as a critical point in the trajectory (Figure 2 right).

One common difficulty of all the mentioned methods appears at the computational level,

especially when dealing with large trajectory datasets. In order to improve processing times, a given

trajectory should be filtered by keeping the most relevant points, according to the most relevant

geometric descriptors. To this end, several algorithms have already been explored using spatial and

temporal descriptors, such as turning points, directions, sinuosity, and speed [5,19,31]. A key issue

when applying a filtering algorithm to a given trajectory is identifying the most relevant geometric

descriptors, the ones that make sense with respect to the application domain considered, as well

as avoiding dependent parameters. For instance, curvature and direction, as well as speed and

acceleration, are dependent descriptors that should not be considered together.

The objective of this study is to develop a computational approach for identifying critical

descriptors of trajectories, that is, curvature areas, turning points and self-intersecting points. A first

advantage of the three selected parameters is that many other parameters, such as sinuosity, heading

and curviness can be derived from curvature and turning points. As trajectories generated by most

applications are very large, an important requirement is to minimize storage and computational costs,

and then select the minimum number of geometrical parameters from which others can be derived.

The second principle is to take into account the very specificity of urban trajectories and the fact

that self-intersecting trajectories occur in many cases. As this parameter is independent of the others,

it should be considered.

The proposed method follows two main objectives. The first objective is to develop a framework

for identifying the minimum possible numbers of critical points and reducing the processing load

of each parameter. While in previous studies, relatively costly computational processes have been

implemented [61], we introduce an approach, called trajectory critical point detection using convex hull

(TCP-CH), and derive our selected parameters by only using a convex hull algorithm. The application

of this algorithm dramatically reduces the storage and computational costs, especially when dealing

with very large trajectory datasets.
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Figure 2. Self-intersecting trajectories (noise to the left, real intersection to the right). 
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Figure 2. Self-intersecting trajectories (noise to the left, real intersection to the right).

The second aim of this study is to select a few trajectory parameters that also identify the number

and locations of POIs. This approach has the advantage of favoring the search for trajectory similarities

when considering, for example, direction or origin-destinations. More precisely, the three selected

parameters can be defined as follows:

• Turning point: a turning point is considered as a changing direction point of a trajectory.

For instance, a trajectory with no curve does not have any turning points, while two turning

points arise for each curvature area (Figure 3).

• Curvature: a curvature denotes a curve in a trajectory. Every curve has two turning points that

denote the start and end of the curve, and a curvature point. A curvature can be also characterized

by its length and shape (Figure 3).

• Self-intersection point: a self-intersecting point denotes a point in the trajectories pass through at

least twice. A self-interacting point is considered as a critical point as it encompasses some specific

important properties: a self-intersecting point in a trajectory represents a node in the trajectory,

in which the trajectory passes through twice, surely denoting the relative importance of that

point. Amongst different parameters that can be considered for a self-intersecting point, the time

and distance that is covered by the self-intersecting part of the trajectory can be mentioned.

The role of self-intersecting trajectories has been studied in related work. For example, Keler et al.

integrated 68 taxi trajectories in Shanghai to detect travel duration variety [62], while detecting 271

self-intersecting trajectories amongst 2750 intersections (Figure 4). Self-intersections are important

for biological studies such as the ones applied to animal movement patterns and detection.

In another related work, Bidder et al. studied horse trajectories [3], while Vrotsou et al. applied an

approximation algorithm to study birds trajectories and extract movement and route patterns [63].

A few geometrical algorithms have been considered for detecting self-intersecting trajectories

such as Douglas-Peucker. However, the resulting geometric simplification is not efficient enough

and does not provide sufficient geometric simplification [64].

A schematic illustration of the application of these three parameters is presented in Figure 3.

A convex hull algorithm is used to extract the minimum number of critical points that can be used

to show all of the geometric properties of the trajectory, including shape, complexity, direction,

and distance. The importance of these three parameters is to contain comprehensive information about

spatial and temporal distances that can be used in geometric data mining analysis of trajectory, like

pattern detection. On the other hand, it should be mentioned that other physical parameters like speed,

acceleration and “stop and go” situation are also important to characterize a trajectory and search for

some similarities.

The rest of the paper is organized as follows. Section 2 introduces the suggested framework for

the detection of turning points and curvature areas. Section 3 presents the experimental evaluation.

Finally, Section 4 concludes the paper and outlines further work.
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2. Algorithm Framework

We introduced a convex hull algorithm (TCP-CH), whose objective is to detect the principal geometric

characteristics according to three geometric parameters, that is, curvature, turning, and intersection

points (Figure 3). Indeed, such critical points should be detected using an appropriate algorithm.

The flowchart that is illustrated in Figure 5 describes the main steps of the proposed approach. First,

points with inadequate spatial accuracy are omitted from movement points. These points are usually

located in an illogical distance from the trend of the trajectory. The main reason that causes poor

accuracy in reporting trajectory points is GPS signal as recorded by a receiver. However, in many cases,

such location error at the processing phase can be solved by map matching methods [65]. The main

principle behind map matching methods is to minimize the distance between the projected path on

the map and the input trajectory [66–68]. Remaining noisy data are removed by the application of a

Kalman filter to smooth the positions by recursively modifying error values. This method applies a

recursive process to measurements that are observed over time (i.e., the positions coming in the GPS

receiver), and predicts positions that tend to be closer to the true values of the measurements [48,69–72].

This means that after linear estimation of the points for each trajectory, the standard deviation of

distance (
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1. Trajector  Conve Hull

One of the commonly used structures in geometric computation is the convex hull that is often 

considered to derive some representative geometrical structures [73]. The notion of the convex hull 

is widely applied in geometric computation and two-dimensional ( D) implement tion of this

structure w s first proposed by Graham in [ ]. Graham’s study acts as found tion for

geometric computation, as well as an independent domain in computer science [7 ]. Designing 

collision free paths, shape analysis convex decomposition, and positioning are some represent tive

examples of convex hull applications [ ]

Conv ity definition  a set S is a convex set if and only if any connecting line of the two points

p and q of S re completely inside the setሺ∀	݌, ݍ ∈ ܵ → തതതݍ݌ ⊆ ܵሻ ↔ set s is convex ( ) 

Based on the convexity concept, a convex hull structure is a set of n points P { n}, that 

is the sm llest convex set containing all the points of P. Figure shows a convex hull of a set from

two dimension points [73,76]. 

from the linear estimated model are detected as noise and are removed from the trajectory.

The objective of the processing phase is to extract convex hulls as well as turning and self-intersection

points from each trajectory.
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2.1. Trajectory Convex Hull

One of the commonly used structures in geometric computation is the convex hull that is often

considered to derive some representative geometrical structures [73]. The notion of the convex hull is

widely applied in geometric computation and two-dimensional (2D) implementation of this structure

was first proposed by Graham in 1972 [74]. Graham’s study acts as a foundation for geometric

computation, as well as an independent domain in computer science [73]. Designing collision free

paths, shape analysis, convex decomposition, and positioning are some representative examples of

convex hull applications [75].

Convexity definition: a set S is a convex set if and only if any connecting line of the two points p

and q of S are completely inside the set.

(∀ p, q ∈ S → pq ⊆ S) ↔ set s is convex (1)

Based on the convexity concept, a convex hull structure is a set of n points P = {p1, p2, . . . , pn},

that is the smallest convex set containing all the points of P. Figure 6 shows a convex hull of a set from

two dimension points [73,76].ISPRS Int  J  Geo-Inf. 7 of
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Several computational methods have been suggested to derive convex hull structures. Amongst

many approaches suggested so far, several approaches consider non-extreme points, extreme edges,

quick hull, gift wrapping, graham, divide and conquer, and incremental [74,76–78]. According

to the structure of trajectory data that can be considered as a time-stamped series of locations,

the implementation of the proposed method is incremental. The pseudo code of the derivation of a

convex hull structure using incremental method is shown in Figure 7.
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2.2. Critical Points Derivation

The derivation of the critical points that act as the main descriptors of a given trajectory is based

on the convex hull structure. The TCP-CH is developed hereafter. A trajectory is considered as a

discrete time-stamped series of location data.

Definition 1. A discrete trajectory T is a mapping of a time series t1, . . . , tn to the two dimension plane.

For each time stamp ti, the position (Xti, Yti) in the plane is given as T(ti). Moreover, for two given time stamps

tt and tj with ti < tj, the subtrajectory T from ti to tj is denoted as T[ti,tj] [5].

Another important constraint to determine the robustness of the proposed method is the

monotonicity condition, as introduced in Definition 2.

Definition 2. A criterion is monotone if for any subtrajectory T′ ⊆ T, we have that if T′ satisfies the criterion,

then any subtrajectory T′′ ⊆ T′ also satisfies the criterion [5].

Indeed, curvature and turning points should be extracted for relevant trajectories, that is, curved

trajectories. As suggested in [2], a curvature can be defined as the rate of change in the tangent vector

direction of a given trajectory. A curvature can be approximated by the turning angle of the directed

line segments connecting three given points (Figure 1a).

In Figure 9, an example of curved trajectory is shown. Figure 9a shows a trajectory with at least

three minimum possible points that can denote a curved trajectory while Figure 9b shows a trajectory

with a series of sample points recorded by GPS.
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Figure 9. Examples of a curved trajectory. (a) A potential curved trajectory with minimum critical

points; (b) A simple trajectory with a series of sample points recorded by GPS.

The following subsections introduce the principles of the proposed method for detecting turning,

curvature, and self-intersecting points.

2.2.1. Turning Points Detection

This sub-section introduces the definition and algorithms that is applied for detecting critical

turning points. In fact, a convex hull structure appears in between two sequential turning points along

a given trajectory. A turning point is defined as follows:

Definition 3. A point T(ti) materializes a turning point for each i = 1, 2, . . . , n from a given trajectory n if and

only if:

1. Conditions (2) and (3) are true for two values of j = i + 1 and s < i − 1

dist[T(ti)T(ti−1), T
(

tj

)

] > 0 (2)
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f or s < i → ∆ti,s is minimum and dist[T(ti)T(ti−1), T(ts)] 6= 0 (3)

2. The signs of the two values extracted from Relation (4) are same and opposite to the sign of Relation (5) for

two values j and s

∣

∣

∣

∣

∣

∣

∣

xT(ti)
yT(ti)

1

xT(ti−1)
yT(ti−1)

1

xT(ts) yT(ts) 1

∣

∣

∣

∣

∣

∣

∣

6= 0,

∣

∣

∣

∣

∣

∣

∣

xT(ts+1)
yT(ts+1)

1

xT(ts) yT(ts) 1
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yT(ts−1)

1

∣

∣

∣

∣

∣

∣

∣

6= 0 (4)
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∣

∣

∣

∣

xT(ti)
yT(ti)

1

xT(ti−1)
yT(ti−1)

1

xT(tj)
yT(tj)

1

∣

∣

∣

∣

∣

∣

∣

6= 0 (5)

where xT(ti)
and yT(ti)

are the coordinate specifications of the point T(ti) and same for the points s and

j. Moreover, dist[T(ti)T(ti−1), T
(

tj

)

] describes the distance between the connecting line of T(ti) and

T(ti−1) to the point T(tj). Additionally, ∆ti,s is the time difference of the points i and s. Figure 10 shows

an example of trajectory with turning points. Figure 10a shows two sequential turning points, with a

curvature between them. Convex hulls of a trajectory are sequentially derived as the end point of the ith

convex hull is considered as the start point for the (i + 1)th convex hull. Figure 10b generalizes the case

with a trajectory of seven turning points.
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In fact, the comparison of Figure 10a and Figure 10b illustrates the monotonicity property of the

application of the convex hull structure. This means that between any start and end points of a formed

convex hull along a trajectory, there could not be any turning point and this feature is verified for any

subset of considered convex hull points.

2.2.2. Curvature Point Detection

A critical curvature point is an important geometrical descriptor that helps to specify the shape

and length of the curve. The proposed method for detecting these critical curvature points is as follows:

Definition 4. For each point, T(ti) and T(tj) respectively denote the start and end points of a convex hull,

while T(tr) denotes the curvature point if and only if;

dist
(

[T(ti)T
(

tj

)

], T(tr)
)

is MAX (6)

Figure 11 illustrates the critical points of two convex hulls.
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As shown in Figure 11, curvature and turning points are valuable parameters to describe the

geometry of a trajectory. This also provides some useful quantifiers to evaluate the similarities between

some trajectories.

2.2.3. Intersection Point Detection

Detecting the location of trajectory self-intersection is another approach for valuing and exploring

possible similarities between trajectories. Indeed, self-intersecting trajectories often occur in real

contexts. Detecting such trajectories allows for us to not only to simplify such trajectories, but also

to qualify them. Considering discrete trajectory data—as they have been used in this study—three

general modes of intersection can be defined. These three modes respectively denote Point to Point,

Point to Edge and Edge to Edge cases. These three different cases are hereafter defined and illustrated

in Figure 12.

Definition 5. Point to Point mode: the points T(tj) and T(ti) are denoted as intersection vertices in a

self-intersected trajectory if and only if for any 0 < i, r, j < n, the turning point T(tr) exists while i < r < j and it

meets the condition below:

T(ti) = T
(

tj

)

(7)
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Definition 6. Point to Edge mode: the points T(ti) and T(ti + 1) are denoted as vertices of the intersection edge

and T(ts) as the intersection point if for any 0 < i, r, j < n, there exist a turning point T(tr) while i < r < s and it

meets the condition below:

ti < ts < tj and
(

dist[T(ti)T(ti+1), T(ts)]
)

= 0 (8)

Definition 7. Edge to Edge mode: the two edges i and j (0 < i, j < n) contain the vertices (i, i + 1) and (j, j + 1)

relatively, and are denoted as intersection edges if the line equation of these two edges intersects.ISPRS Int  J  Geo-Inf. 12 of
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(b) Edge to Point Intersection; (c) Edge to Edge Intersection.

The principle behind the identification of self-intersecting points is to overlay convex

hull structures.

Definition 8. A trajectory T is a self-intersecting trajectory if and only if it meets the two conditions below:

1- Condition 1: After derivation of convex hulls of a given trajectory, at least two convex hulls overlay.

2- Condition 2: For the points f and l that respectively denote the start and end points of the two convex hulls

i and j, an intersection occurs between (fi, Ii) and (fj, Ij) if at least two edges of Ei and Ej (considering

Ej є CHi and Ej є CHj) exist; that is, Ei is inside CHj and Ej is inside CHi.

The two conditions given for Definition 8 verify the existence of some self-intersection points in a

given trajectory. The first condition checks whether at least two convex hulls of a trajectory overlap.

This is a necessary, but not sufficient, condition when detecting self-intersecting points in a trajectory.

The second condition assures the existence of intersection in trajectory data.

Figure 13 illustrates the principles applied by Definition 8. Figure 13a illustrates a subset of a

trajectory with 2 self-intersections. After application of the proposed convex hull structure, 4 convex

hulls are formed from points 1 to 12. These four convex hulls fulfill the first condition of Definition 8

as they overlap. However, the second condition of Definition 8 is true only between the 1st to the 4th

and 3rd to the 4th convex hulls. Figure 13b provides some similar examples.
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Figure 13. Deriving convex hulls to detect self-intersections in (a) simple intersected trajectory and (b)

more complicated trajectory.

3. Implementation

The main aim of this study was to develop a computational approach for the detection of

critical geometrical points of a given trajectory, namely curvature, turning and self-intersection points.

This subsection describes the implementation of the different algorithms that are presented in the

previous section. Figure 14 shows the sample of trajectories used in this study, which are a part of the

Geolife data repository [14], which encompasses a large urban set of trajectories recorded from 2007 to

2012 by GPS devices in the city of Beijing in China.
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The number of trajectories extracted from that sample equals 326, which denote travel patterns

performed as walking, cycling, and by car and bus. After pre-processing and eliminating trajectory

outliers, the total number of trajectory points is 83,412 and the total traveled distance is 67,2195 m.

The shortest trajectory equals 8.54 m, whereas the longest one equals 14,408.2 m. Moreover, the average

length of the trajectories is 2417.94 m, the average distance is 10.21 m, and the average sampling time

is 5.11 s. Most of these trajectories are curved and then fulfill a necessary condition for an appropriate

implementation of our algorithms. Moreover, in order to facilitate and optimize the computation of

the convex hull structure, a smoothing processing step is applied to the dataset. The objective of this

smoothing step is to avoid derivation of small and local convex hulls. Table 3 shows the number of

deleted noisy points at the trajectory data set divided to four groups based on length of the trajectories.

The results that are presented in Table 3 show the existence of the most deviated noisy points in

long-range trajectories, with the largest number of deleted points found in trajectories with lengths

between 800 and 1200 m.

Table 3. Results of deleted noisy points in the trajectories.

Category
Length of
Trajectory

No. of Trajectories
No. of Removed

Points
Variance of Distance to

Fitting Line

1 0–1000 56 63 3.41
2 1000–4000 82 235 7.33
3 4000–8000 127 1376 14.57
4 8000–15,000 61 639 17.20

3.1. Detection of Curvature and Turning Points

The next step of the experimental validation is forming convex hull structures along these

trajectories, as well as deriving turning and curvature points. For example, Figure 15 shows a part

of trajectories 80, 125, 242, and 286, with the identified turning and curvature points. As shown in

Figure 15, between two turning points, only one curvature is detected. This is an implementation

confirmation of the monotonicity condition of the proposed method.

ISPRS Int  J  Geo-Inf. 14 of

Table 3. Results of deleted noisy points in the trajectories

Category
Length of 

Trajectory

No. of 

Trajectories

No. of R moved

Points

V rianc  of Dist nce

to Fitting Lin

3.1. Detection of Curvature an Turnin Points

The next step of the experimental v lidation is forming convex hull structures long these 

trajectories s well as deriving turning and curvature points. For example  Figure shows a p rt of

trajectories 80, 1 nd with the identified turning and curv ture points. As shown in Figure

, between two turning points, only one curv ture is detected. This is an implement tion 

confirm tion of the monotonicity condition of the proposed method. 

 

Figure 15. Detected trajectory turning and curvature points in different parts of some trajectories. 

The proposed model, in addition to the detection of turning and curvature points, also

dramatically decreases the number of derived points For example, Figure 16 shows the trajectory, 

consisting of 4 points As shown in Figure  critical curvature and turning points are detected,

revealing the final im of our study. In fact, the minimum meaningful number of geometric

descriptors is actually derived, while largely decre sing the number of trajectory points necessary to 

represent the geometric l characteristics of a given trajectory. 

Figure 15. Detected trajectory turning and curvature points in different parts of some trajectories.



ISPRS Int. J. Geo-Inf. 2018, 7, 14 14 of 21

The proposed model, in addition to the detection of turning and curvature points,

also dramatically decreases the number of derived points. For example, Figure 16 shows the trajectory,

80 consisting of 534 points. As shown in Figure 16, 25 critical curvature and turning points are detected,

revealing the final aim of our study. In fact, the minimum meaningful number of geometric descriptors

is actually derived, while largely decreasing the number of trajectory points necessary to represent the

geometrical characteristics of a given trajectory.ISPRS Int  J  Geo-Inf. 15 of
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Table 3 illustrates the overall figures of our whole implementation. Accordingly, 3253 turning

points have been extracted, representing 0.045% of the input trajectory points. Our approach is

compared to the one applied by [79], which takes into account a few different criteria, such as distance,

direction, area, and shape. When considering our approach, the length ratio between the extract and

initial trajectories is 98.1%, showing the efficiency of the algorithm in preserving the overall shape of a

given trajectory. Moreover, by applying the principles that are introduced in [79], the average geometric

similarity between the derived TCP-CH trajectory and the primary trajectory is 96.3% considering

the parameters of distance, direction, area and shape. This reveals the high ability of the TCP-CH

method in extracting critical points and keeping the primary trajectory geometry using minimum

meaningful points.

One of the most important characteristics of the proposed method is computation load decrement

for detecting turning points. Other methods, like turning functions, use the difference between tangent

angles of the lines connecting sequential points [80]. In order to detect turning points, the mentioned

method requires to derive the heading for each adjacent point, and also the difference between at

least three sequential headings, thus generating computational overload and complexity. Another

advantage of our proposed method is that it can detect these critical turning points only with the

formation of convex hull structures along the trajectory and without heading calculation.

For a more accurate assessment of the TCP-CH method, the turning function algorithm is

implemented and compared, as presented in Table 4. As it can be seen, the turning function method

has extracted 14078 points as meaningful points, which is more than four times the ones extracted

by the TCP-CH method. However, the accuracy of the TCP-CH method is 3.9% higher than that of

the mentioned one. Despite the large numbers of detected points by the turning function method,

it is expected that the similarity accuracy also increases. This is due to the intrinsic structure of the

intended method that avoids taking into account local curvatures, and, thus, preserves better accuracy.
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In other words, the large number of meaningful points in the turning function method generated

computation overload while performing trajectory data analysis. Finally, another disadvantage of

the turning function method is dependency of the accuracy of results to the data scalability. This is

because some of the meaningful points at a small scale are not identifiable in large scales and vice versa.

This occurs since turning function uses the angle difference of successive edges and finally, shows how

the difference changes. Therefore, it falls in local differences, especially in high radius curves.

Table 4. Comparison of results between proposed trajectory critical point detection using convex hull

(TCP-CH) method and turning function method in detecting geometric critical points.

Data Specification TCP-CH Turning Function

Number of Point 73,062 3253 14,078
Mean of geometric similarity (%) - 96.3 92.4

Length (m) 672,195.6 659,423.8 647,162.1

3.2. Detection of Intersection Points

The final step of this study is to identify the self-intersecting trajectories among a set of

trajectory data with potential intersection points. In fact, the TCP-CH algorithm applied to the

identification of self-intersecting trajectories is considered as a possible approach for the detection of

trajectory similarities. Regarding the considered Geolife dataset sample, almost 17% of all data include

self-intersecting trajectory points denoting 58 self-intersecting trajectories. It appears that some of these

trajectories contain some simple, complex, or consecutive intersections. Furthermore, 33 trajectories

have one self-intersection, while 25 trajectories have two or more intersections. In addition, the total

number of intersections gives 105 self-intersection points, which can be used for trajectory similarity

detection. Important aspects that are related to the analysis of these intersection points include their

overall number and location (Figure 17). In this figure, the number of intersections that occurred in

each quarter of trajectories is shown by the red polygon. Moreover, the number of trajectories with

intersection points in each quarter is shown in Figure 17, by the black polygon. The quarter is defined

based on the length of the related trajectory.
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Figure 18 shows an example of a trajectory with 317 nodes and 2141 m length containing

the location of several self-intersecting points, which are illustrated at a larger scale at the bottom.

As shown in Figure 18, the TCP-CH algorithm method is able to derive 26 self-intersection points

in total to keep the main critical points of that trajectory, while being able to properly detect these

self-intersections and their positions in Section 5 by considering notable complexity.ISPRS Int  J  Geo-Inf. 17 of
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4. Conclusions

Nowadays, in most modern cities, urban trajectory data are produced on a regular mode.

This offers many opportunities for the development of data monitoring and analysis frameworks

and location-based services. However, very large volumes of generated data imply to reduce the

complexity and size of databases that are generated in order to decrease computation times and favor

further data analysis. In particular, one common analysis developed and applied to trajectory data is

to explore similarities and outliers. This implies to identify the most important and critical geometrical

characteristics of some given trajectories. The research developed in this paper introduces a convex

hull geometric structure, named TCP-CH, whose objective is to identify the critical points of some

trajectory data. These critical points include the ones considered as such from a geometrical point

of view, and in fact, the ones that can be used to characterize the geometric complexity of a given

trajectory. These critical points are based on three complementary geometric descriptors including

turning, curvature and self-intersection points. One of the peculiarities of the TCP-CH algorithm is
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that it minimizes the number of critical points that are detected for each descriptor, favoring further

similarity analysis. Overall, the main advantages of the proposed method are as follows:

- The TCP-CH method identifies critical curvature, turning and self-intersection descriptors using

one common geometrical structure. In particular, we introduced a new parameter, named self-

intersection, which improves the accuracy of trajectory similarity detection.

- These critical points favor the generalization of derived trajectory that keeps the main and

the most valuable geometrical characteristics of a given trajectory with sufficient accuracy.

Overall, the TCP-CH method exhibits more than 96% of similarity when evaluating distance,

area, direction, and shape parameters.

- Comparison of the TCP-CH method with the turning function method—which is a common

method applied for the detection of curvatures—shows more than 3% accuracy improvement

when considering that the number of detected critical points is four times less than the

mentioned method.

Overall, the TCP-CH method provides a framework that can be used for the analysis of geometrical

trajectories, regardless of the domain of study. Indeed, the examples that are developed in this

paper are closely related to urban trajectories; however, many other domains of application might

be also explored with additional geometrical characteristics. Furthermore, despite the fact that the

contribution is extremely limited to the spatial dimension, integration of additional semantic and

temporal parameters might provide additional information and data inputs that can surely enrich and

extend the applicability of our whole approach.
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