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Abstract 
In the presence of squeal, Operational Deflection Shapes (ODS) are classically performed to analyze 

behavior. A simple numeric example is used to show that two real shapes should dominate the response. 

This justifies an ad-hoc procedure to extract main shapes from the real brake time measurements. The 

presence of two shapes is confirmed despite variations with wheel position and reproducibility tests. To 

obtain a high spatial density measurement, 3D Scanning Laser Doppler Vibrometer is interesting but leads 

to iterative measurements on a time-varying system. An algorithm to merge sequential measurement and 

extract main shapes is detailed. Even with a high-density 3D SLDV measurement, shapes characterizing 

the squeal event are still only known on accessible surfaces. Minimum Dynamic Residual Expansion 

(MDRE) is thus finally used to estimate motion on a full FE mesh which eases interpretation and 

highlights areas where the test and the model contain errors. 

1 Introduction 

Squeal being an undesired condition, its appearance is never predicted by initial design models, when they 

exist, and experiments are needed to understand the exact conditions of occurrence. Two major techniques 

are classically used to perform vibration measurements on brake systems: accelerometer measurements 

and 3D Scanning Laser Doppler Vibrometer measurement. The specificities of each measurement 

techniques are reminded in Table 1. 

Accelerometer 3D-SLDV 

Synchronous measurement Yes No 

Setup time Long Acceptable 

Wireframe density Low High 

Without contact No Yes 

Rotating parts No Yes 

Hidden parts Yes No 

Table 1: Characteristics of accelerometer and 3D-SLDV measurements 

The 3D-SLDV is interesting because the setup time is reasonable, it is without contact, and it can offer a 

high number of measured points. However, only visible parts can be measured. Some accelerometers can 

be used to add missing information but this still does not include tight areas or junctions. The main 
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disadvantage of the 3D-SLDV to measure a squeal phenomenon is that measurements are sequential. This 

is a problem because as will be highlighted in section 3, brake squeal is a time varying phenomenon. 

The first objective of this study was to propose an experimental strategy to extract shapes that characterize 

the limit cycle associated with a squeal occurrence. To propose and adequate strategy it is first necessary 

to have prior knowledge of the expected properties. Section 2 uses a simple numerical model  [1] to 

illustrate that the shapes associated with squeal instabilities are expected to be dominated by the 

combination of two real modes with contributions that may be quite sensitive to changes.  

Knowing that a limit cycle is expected to be composed of a time varying combination of fixed shapes, 

Section 3 exploits time-frequency analyses of experimental measurements to demonstrate that indeed two 

real shapes dominate the response and have variations that are coherent with the changes due wheel 

position. A reproducibility test further demonstrates that, while different experiments can lead to notable 

frequency shifts, the shapes underlying the limit cycle are fairly constant. This first analysis is performed 

using test on the drum brake test bench shown in figure 1 left. 

Figure 1 : Experimental setups. Left drum-brake used for section 3. 

Right : disk-brake used for sections 4-5.  

Because of the low spatial density, the accelerometer measurements can be difficult to exploit. The second 

objective of this paper is thus to present the strategy developed to extract principal shapes from 3D-SLDV 

measurements. The algorithm is described in Section 4 and applied on the brake shown in figure 1 right. 

Finally, despite a quite high spatial resolution of the laser measurement, many parts are not accessible to 

the measurement. As a result, using mode shape expansion techniques to estimate the full FE response 

from measurements appears as a necessity to provide understanding of inconsistencies between model and 

test and thus pave the way for the proposition of modifications. The Minimum Dynamic Residual 

(MDRE) method [2] is applied in Section 5 to illustrate the potential uses. It is shown that expanded 

shapes give better understanding of the brake motion and that distribution of the residual energy after 

expansion gives insight on modeling errors. 

2 Expected shapes in a squeal event: a simple example 

To motivate the procedure used to analyze shapes during a squeal event, a simple numeric example is 

detailed here. As motivated in [1], the complex mode shapes come from the linearization of the model 

around a chosen state (pressure, velocity…). The linearized model provides a system of the form 

[𝑀]{𝑞̈(𝑡)} + [𝐶]{𝑞̇(𝑡)} + [𝐾𝑠 + 𝐾𝑢]{𝑞(𝑡)} = {𝑓𝑒𝑥𝑡(𝑡)} (1) 



where 𝑞, 𝑞̇ et 𝑞̈ are displacements, velocities and acceleration, M, C, K are respectively the mass, damping 

and stiffness matrices supposed constant. The stiffness matrix can be decomposed in a symmetric part 𝐾𝑠,

coming from the elastic properties of each components and the linearization of the normal contact loads 

and a non-symmetric part 𝐾𝑢 linked to the fluctuation of the tangential loads induced by the fluctuation of

the normal loads. It is classical to project the system in the real mode basis [𝛷], found by solving the 

system with [𝐶] = 0 and 𝐾𝑢 = 0 (which is equivalent to consider a friction coefficient 𝜇 = 0). Projected

in this basis, the complex modes are solution of  

([ ∖𝜔𝑗
2

\
] + [𝛷𝑇𝐾𝑢𝛷] + 𝜆𝑗[𝛷

𝑇𝐶𝛷] + 𝜆𝑗
2[𝐼]) {𝜓𝑗𝑅} = 0 (2) 

with restitution on the full set of Degrees Of Freedom (DOFs) computed using {𝜓𝑗} = [𝛷]{𝜓𝑗𝑅}.

The simplified brake shown in Figure 2 is used as an illustration. The disc (blue) and the backplate 

(yellow) are made of steel and the friction (green) is made of an orthotropic softer material, about 5GPa 

with an additional Rayleigh damping (see the introduction of [1] for details). The model is clamped at 4 

locations at the interface between the backplate and the friction (similar to the one circled in the figure). 

Figure 2 : Simple brake model geometry (left) and real mode shapes #8 and #9. (right) 

This model has an unstable (negative damping) complex mode at 5050Hz which corresponds to the 

interaction between the two real modes #8, with a mostly out-of-plane deformation, and #9 with mostly a 

deformation of the pads sliding on the disc. 

To confirm that the complex mode shape mainly comes from the interaction between the two real shapes, 

the friction coefficient is swept from 0 to 0.2 (not a physical value but still relevant for the interpretation). 

The left of Figure 3 shows that the complex modes #8 and #9 are stable at first (as indicated by the red 

dots). Then with the increase of the friction coefficient, mode #8 becomes unstable, while the damping of 

mode #9 increases.  

Figure 3 : Evolution of complex modes with the friction coefficient: roots (left), real mode participation to 

the complex mode #8 (middle) and phase between real modes #8 and #9 (right) 

From (2), it is possible to look at the evolution of the real mode participation (𝜓
𝑗𝑅

) of each modal DOF

with the normalization ‖𝜓
𝑅
‖ = 1. Figure 3 center thus shows the participation of the real modes to

complex mode #8, which become unstable, evolves from 100% of real mode #8 (blue line) to 70% of real 

mode #9 (red line) and 70% of real mode #8. Figure 3 illustrates the significant evolution of the phase 

relation between contributions of real modes #8 and #9 to complex mode #8. 



To evaluate the pertinence to use only two real modes to interpret the unstable modes, equation (2) is 

reduced on the 2 real mode shapes #8 and 9, leading (with the assumption of modal damping) to 

([
1 0
0 1

] 𝜆𝑗
2 + [

2𝜁8𝜔8 0
0 2𝜁9𝜔9

] 𝜆𝑗 + [
𝜔8

2 0

0 𝜔9
2] + [

𝑘11
′ 𝑘12

′

𝑘21
′ 𝑘22

′ ]) {𝜓𝑗𝑅} = 0 (3) 

The comparison between the system reduced on the two real modes on the one hand and on all real modes 

on the other hand is provided by Figure 4. The accuracy of frequencies is not as good with only two 

shapes, but the coupling still occurs and the damping computation is almost unchanged. 

Figure 4 : Complex modes frequency (left) and damping (right) for variable friction coefficient. Reduction 

on two real modes (dashed lines) and on all real modes (full lines). 

The common practice in presence of coupled modes is to try separating the frequencies. Doing so on the 

two shape reduced model, by moving away their frequencies with the same percentage (modifying 

𝑘1, 𝑘2, 𝑐1, 𝑐2 but not the non-symmetric stiffness part), results in the evolution of the complex frequencies

and damping shown in Figure 5. As mode #9 damping decreases, mode #9 one increases until it is no 

longer unstable. The dot lines represent the values of the frequencies 𝑓
8
 𝑓

9
 and dampings 𝜁

8
 𝜁

9
. When the

frequencies are moved away, the influence of the coupling stiffness decreases, and the mode parameters 

converge toward the ones without coupling at all. 

Figure 5 : Complex mode frequency and damping for varying frequency shift of real modes #8 and #9 

3 Time frequency analysis 

With the objective of extracting the characteristics of a limit cycle, it is first necessary choose a strategy to 

extract shape information. The test case used for illustration is the drum brake of figure 1 left. The 

measurement is performed using 38 accelerometers measured simultaneously. The measurement geometry 

was built [2] from the numerical mode shapes, using the MSeq algorithm [3], to distinguish the modes in a 

frequency band around 900Hz. In the picture, the drum was removed to see the internal instrumentation. 



For this brake, a low frequency squeal occurrence (about 900Hz) has been found on vehicle and needed to 

be reproduced on bench for further analysis.   

To analyze the evolution of the squeal with time, the Gabor transform is used to decompose the signal in 

the time-frequency domain. It consists in a Short Time Fourier Transform where at each time step, the 

signal is convolved with a Gaussian window whose standard deviation √Δ𝑡2 is used to choose the

compromise between time and frequency resolution, fixed by the Heisenberg-Gabor equality 

√Δ𝑡2√Δ𝑓2 =
1

4𝜋
. 

The Gabor transform is applied to the measurement on an arbitrary sensor with a very good frequency 

resolution √Δ𝑓2 = 0.5𝐻𝑧 which induces a quite poor time resolution √Δ𝑡2 = 0.1592𝑠. This is acceptable

because the squeal behavior evolution with time is slow. Figure 6 left shows that during the squeal, the 

frequency shifts between 906Hz and 913Hz. Three time slices on the right of the figure also highlight the 

amplitude evolution of the main resonance. A smaller peak of amplitude, constant in frequency at 900Hz, 

is present for each measurement and is due to an harmonic of the power supply of the bench (50Hz). It is 

interesting to note that this choice is notably different from earlier practice which used much shorter 

buffers in favor of a better time resolution. 

Figure 6 : Gabor transform of a squeal measurement (left), time slices (right) 

To evaluate in detail the evolution of the behavior, at each instant 𝑡, the frequency where the amplitude is 

maximum 𝑓
𝑚𝑎𝑥

(𝑡) is found, and the corresponding shape {𝑦(𝑓𝑚𝑎𝑥(𝑡), 𝑡)} is extracted. All these shapes are

concatenated and real plus imaginary parts are decomposed with the Singular Value Decomposition 

providing sorted real shapes {𝑈𝑗}

[𝐹] = [ℜ(⋯𝑦(𝑓𝑚𝑎𝑥(𝑡), 𝑡)⋯) ℑ(⋯𝑦(𝑓𝑚𝑎𝑥(𝑡), 𝑡)⋯)]𝑁𝑆×2𝑁𝑇 = ∑ {𝑈𝑗}𝜎𝑗{𝑉𝑗}
𝑇

𝑗
(4) 

with NS the number of sensors and NT the number of time steps. 

The family [⋯𝑦(𝑓𝑚𝑎𝑥(𝑡), 𝑡)⋯] can then be decomposed on these real shapes, leading to

[⋯𝑦(𝑓𝑚𝑎𝑥(𝑡), 𝑡)⋯] ≈ ∑ {𝑈𝑗}𝑁𝑆×1
{𝑎𝑗(𝑡)}1×𝑁𝑇𝑗

(5) 

with 𝑎𝑗(𝑡) = 𝜎𝑗 × (𝑣𝑗(𝑡) + 𝑖𝑣𝑗(𝑡 + 𝑁𝑇)).



Figure 7 : Time evolution of the main real shapes |𝑎𝑗(𝑡)| (left) and relative evolution between the two

main shapes 𝑎2(𝑡)/𝑎1(𝑡).

Figure 7 left shows the time evolution of |𝑎𝑗(𝑡)| and it is clear that the limit cycle shape has only two

significant amplitudes and is thus well represented the by two main real shapes [𝑈1𝑈2]. The relative

evolution between the two main shapes 𝑎2(𝑡)/𝑎1(𝑡) is analyzed on the right and show an amplitude ratio

in the range 0.75-1 and a low phase evolution between -85° and -100°. Thus the limit cycle, despite the 

evolution of the complex shape, stays in the same subspace in an analogous way than the numerical result 

illustrated in section 2. 

It is also important to evaluate reproducibility. For this purpose, a second squeal event has been measured 

a day after the first measurement, leading to potential evolution of parameters such as pressure map, 

relative component placement or temperature. The time-frequency evolution of this second measurement 

and for the same sensor is shown on Figure 8. A quite important frequency shift is also found from 917Hz 

to 925Hz and is in average more than 10Hz higher than the first one. 

Figure 8 : Gabor transform of the second squeal measurement. 

The family containing the two measurement, normalized to have the same weight 

[𝑦(𝑡)] = [
[⋯𝑦1(𝑓𝑚𝑎𝑥(𝑡), 𝑡)⋯]

‖⋯𝑦1(𝑓𝑚𝑎𝑥(𝑡), 𝑡)⋯‖

[⋯𝑦2(𝑓𝑚𝑎𝑥(𝑡), 𝑡)⋯]

‖⋯𝑦2(𝑓𝑚𝑎𝑥(𝑡), 𝑡)⋯‖
] (6) 

is used and decomposed as in (4) and (5). The evolutions of the amplitudes |𝑎𝑗,1(𝑡)| and |𝑎𝑗,2(𝑡)|, related

to the common main real shapes shown in Figure 9. The predominance of the two main real shapes is a bit 

less clear than when the first measurement was decomposed alone (see Figure 7 left), but still there. 



Figure 9 : Time evolution of the common main real shape amplitudes for the first measurement |𝑎𝑗,1(𝑡)|

(left) and the second measurement |𝑎𝑗,2(𝑡)| (right).

4 Extraction of principal shapes from laser measurements 

Tests limited to accelerometers have a very limited resolution. 3D-SLDV measurements allow a higher 

spatial density but lead to sequential measurements. The objective of this section is thus to introduce a 

methodology for shape extraction in this context. The test case is the disk brake of figure 1 right. The 

measurements have been performed using the Polytec Scanning Laser Doppler Vibrometer PSV500 using 

the test geometry visible in Figure 11. This system presents a squeal occurrence at about 4250Hz. To 

extract the two main shapes from the sequential measurements, three reference monoaxial accelerometers 

have been disposed on the structure as reference: one on the caliper, one on the anchor bracket and one on 

the arm. 

In order to aggregate the sequential measurements, the hypothesis used is that a subspace of response 

shapes of dimension two remains constant during the squeal. 

For each point i of the wireframe presented in the introduction, a time measurement is performed (0,1s) 

containing three measured signals Xi, Yi, Zi at the scanned point and reference accelerometers  

[

𝑥𝑖(𝑡)

𝑦𝑖(𝑡)

𝑧𝑖(𝑡)
⋮

𝑎𝑅𝑒𝑓(𝑡)]𝑖∈[1,𝑁𝑙𝑎𝑠𝑒𝑟]

(7) 

For each laser position i, the two main real shapes [Φ1
𝑖 Φ2

𝑖 ] are extracted using the SVD (4). To

concatenate each measured point, two main shapes at the references [𝜙
1
𝜙

2
]
|𝑟𝑒𝑓

 are needed. These are

obtained using again an SVD on the restriction at reference accelerometers of all the previously extracted 

main shapes 

[Φ1
1Φ2

1 … Φ1
𝑖 Φ2

𝑖 … Φ1
𝑁Φ2

𝑁]|𝑟𝑒𝑓 = ∑{𝜙
𝑗
}
|𝑟𝑒𝑓

𝜎𝑗{𝑉𝑗}
𝑇

𝑗
(8) 

Finally, for each measured point i, the objective is to find the best linear combination [𝜆𝑖] of [Φ1
𝑖 Φ2

𝑖 ], that

minimizes the Euclidian distance with the target shape at references [𝜙
1
𝜙

2
]
|𝑟𝑒𝑓



[𝜆𝑖]=[Φ1
𝑖 Φ2

𝑖 ]|𝑟𝑒𝑓
+ [𝜙

1
𝜙

2
]
|𝑟𝑒𝑓 (9) 

and the concatenation for each point of 

[𝜙̃
1

𝑖
𝜙̃

2

𝑖
]  =[Φ1

𝑖 Φ2
𝑖 ][𝜆𝑖] (10) 

forms the two main shapes. 

This procedure has been applied to the 3D-SLDV measurement of the brake disc presented in 

introduction. Around 4250Hz, the two main shapes shown in Figure 10 have been extracted. 

Figure 10 : Visualization of the two main shapes extracted from all the sequential time measurement with 

the proposed method 

The first shape shows mainly a deformation of the bracket. The second shape shows another deformation 

of the bracket with a deformation of the disc. 

5 Expanding the results to full FEM size 

Despite the high spatial resolution of the 3D-SLDV measurement, information such as hidden parts or 

interfaces between components are missing. Using a FEM to perform expansion is useful for two main 

reasons: it evaluates the deformations at all FEM DOFs which helps in analyzing the shapes and 

depending on the used algorithm, it can highlight areas where the FEM is doubtful which orients model 

updating procedures. 

As illustrated in Figure 11, the test wireframe has been constructed in two parts: one in the direct view to 

measure the disc, a part of the caliper and a part of the anchor bracket and one through the mirror to 

measure the remaining parts of the caliper and the anchor bracket. The experimental wireframe geometry 

is overlaid with the FEM and clearly illustrates the missing areas. 



Figure 11 : Measurement wireframe on top of the FEM 

The two shapes obtained from the exploitation of the limit cycle measurements are used to perform 

expansion with a FEM. The MDRE [4] algorithm is used, which consists in finding the shape {𝜙̂} that 

minimizes the weighted sum of two energies: 𝜖𝑀𝑜𝑑 linked to the residual force 𝑍(𝜔){𝜙̂} = {𝑅𝐿(𝜔)} (not

zero because the model is not exact) and 𝜖𝑇𝑒𝑠𝑡 linked to the measurement error (the error between the

measured shape and the observation at sensors of {𝜙̂}). The cost function is then written 

J = ϵMod + γϵTest (11) 

with 𝛾 the weighting between the two errors. In more details, to measure the residual force, the static 

displacement which it engenders is computed as 

{𝑅𝐷(𝜔)} = [𝐾]−1{𝑅𝐿(𝜔)} = [𝐾]−1 𝑍(𝜔){𝜙̂} (12) 

and the deformation energy linked to this residual displacement is the error of model 

𝜖𝑀𝑜𝑑 = {𝑅𝐷(𝜔)}𝐻[𝐾]{𝑅𝐷(𝜔)} (13)

To express the measurement error, the expanded shape is observed at sensors using the 

observation matrix [𝑐] and compared with the measured shape using the classical Euclidian norm 

𝜖𝑇𝑒𝑠𝑡 = ([𝑐]{𝜙̂} − {𝑦𝑇𝑒𝑠𝑡})
𝑇
([𝑐]{𝜙̂} − {𝑦𝑇𝑒𝑠𝑡}) (14) 

From these two errors, the cost function can be put in a matrix form (see [4] and [2]) and thus the 

expanded mode shape can be found directly for each value of 𝛾. 

Nevertheless, full resolution of MDRE is generally not accessible [5], so that the reduction proposed in [2] 

is a major contribution. The FEM is reduced on a basis combining the response to unit loads at sensors, for 

the result to be at least as good as the static expansion, and the free modes of the structure (considering the 

friction coefficient equals to zero), for the expansion to be exact if the model matches perfectly the 

measurements. This family of shapes is orthonormalized with respect to mass and stiffness matrices, 

leading to the basis 

[𝑇] = [[𝛷]𝑁𝑀[𝛷⊥]] (15)
with [𝛷]𝑁𝑀 the free mode shapes and [𝛷⊥] the part of the response to unit loads at sensors that is

orthogonal to the free modes (this part will be called later enrichment). 



Furthermore, this model reduction can be useful if the expansion is used in combination with an updating 

procedure, to speed up the parametrized studies. It also permits a quick evaluation of the MDRE result 

with several values of the parameter 𝛾 which allows more or less measurement error. 

Rather than absolute measurement and model errors, relative errors are introduced to ease 

interpretation of the role of parameter 𝛾. The relative measurement error is defined by 

𝜖𝑇𝑒𝑠𝑡
𝑅 =

√𝜖𝑇𝑒𝑠𝑡

‖𝑦𝑇𝑒𝑠𝑡‖
(16) 

and the relative model error by 

𝜖𝑀𝑜𝑑
𝑅 =

𝜖𝑀𝑜𝑑

{𝜙̂}
𝑇
[𝐾]{𝜙̂}

(17) 

Because of the chosen reduction basis, the DOFs 𝑞𝑅 can be decomposed in those linked to the free modes

𝑞𝑀 and those linked to the enrichment 𝑞𝑀⊥. In this basis, the stiffness matrix is diagonal with first the

mode pulsations 𝜔𝑀
2  and then the pseudo-pulsations 𝜔𝑀⊥

2 . From this property, the model error can be

decomposed in the part linked to the free modes and the part linked to the enrichment 

𝜖𝑀𝑜𝑑 = {𝑅𝐷}|𝑀
𝑇
[
⋱

ωM
2

⋱

] {𝑅𝐷}|𝑀 + {𝑅𝐷}
|M⊥

𝑇
[

⋱

ω
M⊥
2

⋱

] {𝑅𝐷}
|M⊥ (18) 

Several expansions with an increasing 𝛾 from 1 to 1e10 have been performed on the disc brake test case. 

The evolution of the relative measurement and model errors is shown in Figure 12. 

Figure 12 : Evolution of relative model and measurement error with 𝛾. Left: first main shape, right: 

second. 

For a very low value of 𝛾 = 1, the relative model error is really low but the expanded shape does not 

match the measurements. When increasing the value of 𝛾, the measurement error decreases with at first an 

incresing model error linked to the enrichment (up to 𝛾 = 10𝑒5). Then, the measurement error continues 

to decrease but with a strong increase of the model error linked to the free modes: to represent the 

measurement well, the free modes are used but do not satisfy well the mechanical equilibrium of the 

model. The free mode subspace seems thus relevant but does not have the good frequency distribution. 

Choosing an intermediate 𝛾 (5e+05), the expanded mode shapes are show in Figure 13.The first one is 

dominated by the deformation of the right column and the right side of the caliper. The second shape is 

mostly a deformation of the whole caliper and again the right column. The analysis of the squeal behavior 



with the expanded shapes is simpler than with only the deformations at sensors. It can help providing 

modification propositions to impact the phenomenon. 

Figure 13 : Expansion result for the two extracted experimental shapes form the limit cycle measurements. 

The expansion can also be used to analyze the model quality. Indeed, the energy distribution coming from 

the residual forces shows areas of the model where the mechanical equilibrium is poor. This residual 

energy can be split in two: the residual energy related to the free mode shapes, and the residual energy 

related to the enrichment shapes. 

Figure 14 shows that the residual energy related to the enrichment shapes is mostly a concentration of 

energy near the sensor locations 

Figure 14 : Model error on the enrichment shapes 

Figure 15 shows residual energy distribution on the free mode shapes. This energy is more global with 

nevertheless several concentration areas: in the sliding contact between the pad and the disc (A), at each 

contact between the pad and the caliper (B) and between the columns and the caliper (C). Using these 

residual energy maps helps defining a relevant parametrization of the model to perform model updating if 

needed. 



Figure 15 : Model error on the free mode shapes 

6 Conclusion 

This study showed that the interpretation of the squeal behavior as an interaction between two real shapes 

makes sense, not only numerically but also experimentally. The reproducibility of the phenomenon, 

despite frequency shifts, is good when the subspace is compared instead of the complex shapes directly: 

the limit cycle lies in a two-dimensional subspace with a slow variation of relative amplitude and phase. 

The time/frequency analysis strategy retained is very simple and more advanced techniques such as the 

Hilbert transform could be considered [6]. Tracking of modes during the cycle and before the squeal 

instability would be a useful complement to the test performed here. It would correspond to force 

appropriation and could be coupled to auto-resonance techniques [7].  

The two-dimensional subspace is sufficiently stable to allow a piecewise reconstruction combining 

reference sensors and 3D-SLDV measurements. This leads to field measurements of squeal shapes, but 

still only measures accessible surfaces and thus fail to give indications about the behavior of junctions.  

Finally, the expansion of the two shapes extracted from the limit cycle measurements provides a fully 

detailed estimation of the test shapes. The proposed reduction methodology enables practical studies on 

industrial models and the results can be interpreted in terms of shapes of interest and possibly as a basis to 

localize errors to be used in model updating analysis. Combining expansion and updating is a clear 

perspective of this work. 
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