
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/14057

To cite this version :

Carolina RENGIFO, Damien PAILLOT, Hakim MOHELLEBI, Andras KEMENY, Jean-Rémy
CHARDONNET - Solving the Constrained Problem in Model Predictive Control Based Motion
Cueing Algorithm with a Neural Network Approach - In: Driving Simulation Conference 2018
Europe VR, France, 2018-09-05 - Driving Simulation Conference - 2018

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/14057
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

Solving the Constrained Problem in Model
Predictive Control Based Motion Cueing Algorithm

with a Neural Network Approach
C. Rengifo1,2, J.-R. Chardonnet2, D. Paillot3, H. Mohellebi1 and A. Kemeny1,2

(1) Renault, Virtual Reality and Immersive Simulation Center, 78288 Guyancourt, France, e-mail:
{carolina.c.rengifo, hakim.mohellebi, andras.kemeny}@renault.com
(2) LISPEN EA7515, Arts et Métiers, HESAM, Université Bourgogne Franche-Comté, Institut Image, 71100
Chalon-sur-Saône, France, e-mail: carolina.c.rengifo@renault.com, jean-remy.chardonnet@ensam.eu
(3) Université de Bourgogne, LISPEN EA7515, Arts et Métiers, HESAM, Université Bourgogne Franche-Comté,
Institut Image, 71100 Chalon-sur-Saône, France, e-mail: damien.paillot@u-bourgogne.fr

Abstract - Because of the critical timing requirement, one major issue regarding model predictive control-based
motion cueing algorithms is the calculation of real-time optimal solutions. In this paper, a continuous-time recurrent
neural network-based gradient method is applied to compute the optimal control action in real time for an MPC-
based MCA. We demonstrate that by implementing a saturation function for the constraints in the decision variables
and a regulation for the energy function in the network, a constrained optimization problem can be solved without
using any penalty function. Simulation results are included to compare the proposed approach and substantiate
the applicability of recurrent neural networks as a quadratic programming solver. A comparison with another QP
solver shows that our method can find an optimal solution much faster and with the same precision.

Keywords: Optimization, recurrent neural networks, MPC motion cueing algorithm, real-time simulator, penalty
method.

Introduction
Driving simulators are necessary tools to evaluate
human behaviors in driving situations, to validate
benefits of advanced systems and autonomous driv-
ing and to simulate driving scenarios in safe and con-
trolled environments. Motion commands such as ac-
celerations and rotations cannot be sent directly from
the model of the simulated vehicle to the platform,
because of specific physical constraints and limits in
the workspace.

For this reason, different control strategies called
Motion Cueing Algorithms (MCA) are implemented,
which aim to better reproduce all the signals com-
ing from the simulated vehicle model while keep-
ing the platform within its boundaries. There are
mainly four motion cueing strategies, three of them
being filter-based control strategies: classical, adap-
tative, optimal, and one based on prediction [Gar10].
Past works have shown that model predictive control
(MPC)-based MCA [Dag04] is the most suitable strat-
egy, as it uses optimization to track the reference, re-
spects the constraints and maximizes the workspace.
Moreover the MPC procedure provides easier tuning
and is more robust [Neh06, Fan12, Beg12, Ven16].

In MPC-based MCA the system dynamics varies
quickly and the numerical solution that is required
in real time is often seen as an obstacle for nor-
mal solvers. This optimization problem solution in
real time has been studied intensively [Goo06]. One
promising approach is to use artificial recurrent neu-

ral networks (RNN) as a method to compute dy-
namic optimization based on hardware implementa-
tion. The recurrent neural network capabilities such
as high parallelism, adaptability, and hardware-based
circuit implementation are recognized by researchers
and are used in many different application areas in-
cluding: control system design, associative memory,
mathematical programming, signal and image pro-
cessing.

In the optimization field, the first recurrent neural net-
work model was proposed by Tank and Hopfield in
their seminal work as an implementation on ana-
log circuits [Tan86]. Since then many neural network
models have been developed to solve different types
of optimization problems. Some of them are summa-
rized in Table 1.

Table 1: Different RNN optimization approaches

Recurrent NN Characteristics References
Penalty function Easy implementa-

tion, only approximate
optimal solutions

[Maa92],[Mla00],
[Che09]

Lagrangian Manage equality and in-
equality constraints.

[Zha92],[Bou93],
[Cos08]

Dual Overcome penalty-
method Lower compu-
tational complexity.

[Xia96],[Shu06],
[Hu08]

Projection Without penalty func-
tion.

[Xia05],[Che09],
[Liu15]

Discrete time Good for hardware im-
plementation.

[PI13]

Several studies have shown the neurodynamic opti-
mization capability to solve quadratic problems rela-
tive to MPC strategy [Que93, Yun08, Yan12, Wan14].
To the best of our knowledge, none of these applica-
tions evaluates the applicability of the penalty method
as a form of effective optimization for the implemen-
tation in an MPC loop.

In this paper, we propose to implement a continuous-
time recurrent neural network based gradient method
as a QP solver in the platform control of a dynamic
driving simulator. A penalty method was proposed
to solve the constrained optimization problem in real
time. Compared to an active-set method [Goo06], we
prove that, by using a saturation function for the de-
cision variables and an appropriate regulation in the
energy function, the penalty terms can be avoided
and then the optimal solution gives a good perfor-
mance in a tracking reference task in the MPC.

MPC-based MCA

Problem formulation
The dynamic driving simulator considered in this
study is composed of an hexapod mounted on a XY-
table. Since it has a dynamic that is predefined by the
manufacturer, we consider the double integrator as a
perfect model system. The idea with this model is to
be able to control for each degree of freedom the lon-
gitudinal and rotational accelerations of the platform.

The linear time invariant system is described by the
discrete-time state-space model:

xm(k + 1) = Amxm(k) +Bmu(k)
y(k) = Cmxm(k)

(1)

where xm(k) ∈ Rs is the state vector: position, ve-
locity, u(k) ∈ Rl is the input vector: the reference ac-
celeration, y(k) ∈ Rt is the output vector: the simu-
lator acceleration, Am ∈ Rs×s and Bm ∈ Rs×l. The
system is subject respectively to the following bound-
aries conditions:

xmin ≤ x(k) ≤ xmax
ymin ≤ y(k) ≤ ymax

∆umin ≤ ∆u(k) ≤ ∆umax
(2)

In a general tracking situation, the regulation error
and the control action cannot be equal to zero at the
same moment, thus we augment the model of the
system with an embedded integrator to ensure off-
set free tracking in the control law [Ros03]. The input
is the control increment ∆u(k) rather than the com-
mand u(k) itself:

x(k + 1) = Ax(t) +B∆u(k)
y(k) = Cx(k)

(3)

where,
x(k+1)︷ ︸︸ ︷[

∆xm(k + 1)
y(k + 1)

]
=

A︷ ︸︸ ︷[
Am 0Tm

CmAm Im

] x(k)︷ ︸︸ ︷[
∆xm(k)
y(k)

]

+

B︷ ︸︸ ︷[
Bm

CmBm

]
∆u(k)

y(k) =
C︷ ︸︸ ︷

[0m Im]
[

∆xm(k)
y(k)

]
(4)

The vectors of the predicted output Y and states X
and the future control ∆U are created recursively and
defined as:

X = [x(k + 1) x(k + 2) · · · x (k +Np)]T

Y = [y(k + 1) y(k + 2) · · · y (k +Np)]T

∆U = [∆u(k) ∆u(k + 1) · · · ∆u (k +Nu − 1)]T
(5)

where Np denotes the predictive horizon (1 ≤ Np),
Nu denotes the control horizon (0 < Nu ≤ Np). In a
more compact form:

Y = Fx(k) +G∆U
X = Fxx(k) +Gx∆U

(6)

where,

Gx =

B 0 . . . 0
AB B . . . 0
A2B AB . . . 0

...
...

. . .
...

ANp−1B ANp−2B . . . ANp−NuB

Fx =

A
A2

...
ANp

(7)

F = CFx and G = CGx (8)

In the MPC also known as the receding horizon con-
trol, an open-loop control sequence is computed at
each sampling time by optimizing an objective func-
tion over a finite predictive horizon Np, within the sys-
tem constraints (Eq. 2). The first control action is im-
plemented making a closed-loop system. The pro-
cess is repeated at the next time step, yielding a
receding horizon control strategy [Bor07]. The cost
function to minimize is of the form:

J(k) =
Np∑
j=N1

δ(j) ‖r (k + j|k)− y(k + j)‖2
2

+
Nu∑
j=1

λ(j) ‖∆u(k + j − 1)‖2
2

+
Np∑
j=N1

q(j) ‖x (k + j|k)‖2
2 (9)

where J(k) is a scalar objective, subject to the con-
straints defined in Eq. 2, r (k + j|k) denotes the ref-
erence trajectory at sampling instant k, y(k + j) is
the predicted output, δ(j), λ(j) and q(j) are weight-
ing parameters for the tracking error, the control rate
and the states respectively.
The prediction reference r(k + j) remains constant
over the prediction horizon Np, overcoming the diffi-
culty in predicting the driver’s behavior.
In the matrix form, we get

J = (Y −Rs)T Qδ (Y −Rs) + ∆UTQλ∆U +XTQqX

where

RTs = r(k)× [1 1 ... 1]1×Np

Replacing the predicted output Y = Fx (ki) + G∆U
and the predicted states X = Fxx (ki) + Gx∆U in
J and eliminating all the terms that do not depend
on the vector decision variable ∆U , the cost function
obtained is

J = ∆UT
(
GTQδG+Qλ +Gx

TQqGx
)

∆U

+2
(

(Fx (k)−Rs)T QδG+ (Fxx (k))T QqGx
)

∆U

Finally, the QP problem with the constraints remains:

minimize J = 1
2∆UTH∆U + fT∆U

subject to Ac∆U ≤ b
(10)

where,

∆U ∈ Rn, f ∈ Rn, b ∈ Rm, Ac ∈ Rm×n

The matrix H is a symmetric positive definite n × n,
i.e., all eigenvalues ofH are strictly positive and then,
the cost function J has a unique global minimum. The
matrix equation Ac∆U ≤ b contains all the linear in-
equality constraints of Eq. 2. This quadratic problem
has to be solved at every sampling time to find the
control sequence ∆U and apply the first element of
this sequence to the real system as a receding con-
trol strategy.

Feasibility of the solution
Many past studies have addressed the feasibility is-
sue at each time step in the optimization problem
due to the constraints set on the output and the state
constraints. Different solutions exist to address this
issue: making the horizon control infinite, setting a
terminal state equal to zero, using a discrete linear
quadratic regulator terminal condition. The first leads
to an optimization problem with infinite constraints
that is impossible to solve, the second can consider-
ably reduce the feasible QP solution and might per-
turb the input trajectory in short horizons. The last
one is difficult to apply to a real-time dynamic simula-
tion system [Fan17].
Getting a feasible solution at every sample time re-
quires an extremely high prediction horizon, which is
not viable to find the solution in real time. Also pre-
viously applied methods are not suitable for MPC-
based MCA. To overcome this issue, Fang et al. pro-
posed a different condition [Fan14]. Their proposed
approach can verify a solution along the prediction
horizon using a braking law once the platform ap-
proaches its limits. This law can be compared to an

adaptive filter that allows the platform to return to its
neutral position while respecting the limits in position,
velocity and acceleration. This condition is summa-
rized as:

pmin ≥ pk + cvTx+ ca
T 2

2 ≤ pmax (11)

where the coefficients cv, ca and T are tuning param-
eters that prevent the platform from exceeding its lim-
its. In Table 2 we expose the performance of the dy-
namic platform we consider here along the degrees
of freedom of interest, here the longitudinal and lat-
eral rail-axis.

Table 2: Performance along the longitudinal and lateral rails
of Renault ULTIMATE simulator

Rail Position Velocity Acceleration
X ±2.6m ±2m/s ±5m/s2

Y ±2.6m ±3m/s ±5m/s2

Recurrent Neural Network
model design
The idea of using optimization-based neural net-
works is to compute a QP optimal solution explicitly
and to apply the control action online. The network
used in this work is a continuous feedback network.
Its dynamics can be depicted by a set of continuous
dynamic systems as follows:

ẋ = w (x(t)) (12)

For a better understanding, we express the decision
vector ∆U in Eq. 10 in terms of the states x in the
network represented by Eq. 12.

minimize f(x) = 1
2x

THx+ fTx

subject to gi(x) = Acx− b ≤ 0, i = 1, 2...m.
(13)

where f(x) is a strongly convex objective function
since H is positive definite matrix, g(x) ∈ Rm is
the inequality constraints. The network represented
by Eq. 12 needs a corresponding Lyapunov func-
tion E (x(t)) that defines the stability of the dynamic
system trajectory thus, as t increases, the value of
E (x(t)) decreases. It has been proven [Zha13] that
the objective function of the optimization problem in
Eq. 13 is equivalent to the Lyapunov function of the
neural network.

The differential equations in Eq. 12 are solved simul-
taneously by an associated circuit consisting of highly
interconnected processing units called neurons. For
some initial state, the network will converge to an
equilibrium state that will coincide with the optimal
solution to the original problem (Eq. 13).

To solve the QP problem in Eq. 13 and to take
into account the system constraints, the next step is
to transform the constraint problem into an uncon-
strained problem to be able to apply a steepest de-
scend method based on the gradient of the function.
By using the penalty method, the energy function is
adapted to integrate inequality constraints into the

original function.

E(x, k) = f(x) + k
m∑
i=1

(
gi

+(x)
)2

gi
+(x) = max {0, gi(x)}

(14)

where k > 0 is the constant penalty parameter and
gi

+(x) is a continuous non-negative penalty function
which equals zero at a point if only all constraints are
satisfied at that point. The augmented energy func-
tion remains a quadratic objective function in which
each unsatisfied constraint influences the state x by
assigning a penalty multiplied by k. This parameter
influences the accuracy of the solution; therefore, it
must be large enough to provide a feasible solution.
Ideally, when the value of k holds at infinity, the opti-
mal solution of E(x, k) converges to a solution of the
original problem with constraints (Eq. 13). In practice
this remains impossible to realize since k cannot be
set to infinite, therefore, with this method, the solu-
tions are an approximation to the optimization prob-
lem (Eq. 13). If k is small, a greater violation of the
restrictions will occur since the penalty is not enough
to guarantee a feasible solution, on the other hand
with a very large value of k the energy function will
be computationally ill-conditioned and become a stiff
system.
According to the literature [Coc93], it is desirable to
create an activation function Si for the penalty func-
tion. That is, every time a constraint is active, the
penalty function is different to zero, otherwise it’s zero
and the solution does not take into account the con-
straints and it’s solve as an unconstrained optimiza-
tion problem:

E(x, k) = f(x) + k

2

m∑
i=1

Si[gi(x)]2 (15)

In order to find the minimal value of the energy func-
tion E(x, k), the unsconstrained optimization prob-
lem is transformed into an associated system of first-
order ordinary differential equations by using the gra-
dient descent method [Coc93]:

dx

dt
= −µ∇xE(x, k) (16)

The state trajectories x(t) moves in the search direc-
tion of the negative of the gradient and will converge
to a global minimum (equilibrium point in Eq. 16) for
E(x, k), since E(x, k) is a Lyapunov function. The dy-
namic equation at neuron j can be written

dxj
dt

= −µ
(
∂f(x)
∂xj

+ k
m∑
i=1

Sigi(x)∂gi(x)
∂xi

)
,

(j = 1, 2, ..., Nu), (i = 1, 2, ...,m), k > 0, µ > 0
(17)

µ = diag (µ1, µ2, . . . , µNu) , µj = 1
τ
,

Si =
{

0, if gi(x) ≤ 0
1, otherwise

where µ is a learning parameter, τ is the integra-
tion time constant of the integrators, m is the num-
ber of inequalities constraints. Equations 16 and 17

represent a recurrent neural network as a gradient
dynamic system. Replacing the functions by their re-
spective indexes:

dxj
dt

= −µj

((
fj +

Nu∑
i=1

hjixi

)
+ k

m∑
i=1

Siaijgi(x)
)

(18)

For convenience, the adaptive gains µj are equal.
The selection of the appropriate parameter µ is cru-
cial to ensure the stability of the system and the con-
vergence speed to an equilibrium point. Considering
the following aspects, the choice of µ is based on a
trial and error basis: higher learning rates will decay
the loss faster, but if it is too large, the algorithm will
become unstable and steepest descent will not con-
verge.

Implementation
To implement the proposed RNN we used Simulink-
Matlab. As shown in the previous section, the recur-
rent neural network is seen as a set of differential
equations (16) which represent all the state trajec-
tories x of the network. A simplification of the gen-
eral topology of the RNN can be seen in Fig. 1. The
architecture consists in a continuous-time integrator
that can be viewed as a special time-depending neu-
ron; dynamic building blocks seen as multipliers or
adders, function generators for the realization of the
gradient of the energy and saturated transfer func-
tions.

Figure 1: Scheme of the proposed one-layer recurrent neural
network

In order to generate code and make a real-time
based Simulink application, it is required to use a
fixed-step integration algorithm to solve the system
in Eq. 16. We simulate the RNN as a optimizer in
the control loop as shown in Fig. 5, employing a
penalty function method (Eq. 17) for inequality con-
straints. The method shows a convergence for all the
state’s trajectories x towards an optimal point since
the solution tracking reference is the desired one
Fig. 7. Nevertheless, when implementing the avail-
able fixed-step time solvers, the method did not work
completely since the convergence of Eq. 17 was not
ensured for all sample times.

Aiming to find the minimum step that the RNN needs
to find a solution, i.e., an equilibrium point for every
state x at every sample time, we analyze the step
used by a variable-step solver. Fig. 2 shows that the
minimum step size to capture the dynamics accu-
rately is very small (∼ 10−8) and cannot be applicable
to a real time application. As seen in Fig. 2, the dif-
ferential equation system is stiff, i.e., the system has
both slowly and quickly varying continuous dynamics.
Therefore it is mandatory to take small time steps in
the numerical method to obtain satisfactory results.

Figure 2: Solver step time for a stiff model

One of the reasons why the differential equations are
stiff is that the system is ill-conditioned:

cond(H) >> 1 (19)

This condition means that the ratio of the largest

Figure 3: Condition number for the Hessian matrix of the
system

eigenvalue to the smallest one of matrix H is very
high. In this case, the gradient might not choose the
best way to descend to the minimum and the solu-
tion to the QP problem may become unreliable. Fig.
3 shows the condition number of the Hessian matrix
H as a function of the prediction horizon Np. How-
ever, the energy function does not depend only on
the original cost function J (Eq. 13), but also on the
penalty function (Eq. 14) that is updated at each sam-
pling step according to the system’s constraints g(x)
and the states, thus making difficult the precondition-
ing of the system based solely on the Hessian matrix
H of f(x).
Accordingly, to alleviate ill-conditioning and the stiff-
ness of the differential equations, a regulation strat-
egy is implemented. In Fig. 1 we can see a gain g that
represents the regularization parameter that helps
handling oscillations for each state trajectory x. Addi-
tionally, to ensure that all the constraints in Eq.13 are
satisfied, and based on the convergence analysis in
[Cos08], we convert the constraints for the system to
boundary constraints for the control signal (∆U = x
for the RNN). We choose a saturation linear function
depicted in Fig. 4 that ensures the control does not
exceed its boundaries:

xj = f (aj) =
{

lmin, aj ≤ lmin
aj , aj ∈ [lmin, lmax]
lmax, aj ≥ lmax

(20)

j = 1, 2, ..., Nu
This function will saturate each state trajectory x to

Figure 4: Saturation dynamic function f (aj)

an upper lmax or lower lmin limit based on the con-
straints and the actual dynamic states of the platform
at each simple time. The RNN will find at a fixed-step
time a control sequence ∆U = x for which the gra-
dient of the cost function is zero. When the dynamic
platform approaches the limits that are governed by
the restrictions on the system, the saturation function
will prevent the gradient from finding an unstable so-
lution and will limit the value to the maximum or the
minimum gradient as shown in Eq. 21.

xj = lmax,
∂E(x)
∂xj

≤ 0

lmin < xj < lmax
∂E(x)
∂xj

= 0

xj = lmin,
∂E(x)
∂xj

≥ 0.

(21)

The proposed dynamic system describing this behav-
ior is detailed in the following state equations:

dx

dt
= −µ (∇xE(x) + g.a) (22)

Since the Hessian matrix H of the function f(x) is
positive-definite, each equilibrium point of the system
(Eq. 22) corresponds to an optimal global solution of
(Eq. 13).

It is important to mention that the recurrent neural
network used in this work (Fig. 1) has Nu neurons-
based continuous time integrators that considerably
improve the computational cost and allow us easy im-
plementation. Fig. 5 shows the block diagram of the
proposed control scheme.

Figure 5: Block diagram of our proposed control scheme

Control Scheme
Based on the recurrent neural network design de-
scribed above and making reference to the MPC-
based MCA control strategy (Fig. 5), the control
scheme can be summarized as follows:
1. Define the prediction horizon Np, the control hori-

zon Nu, the sample time, the weighting parame-
ters δ(j), λ(j) and q(j) in Eq. 9.

2. Transform Eq. 9 in a QP problem (Eq. 13) and up-
date the matrices H, f,A, b with the actual states
and constraints.

3. Solve the quadratic programming problem using
the recurrent neural network approach by calcu-
lating the optimal control actions ∆U .

4. Calculate the optimal control input u(k) = ∆u +
u(k − 1).

5. Apply only the first element in u(k) sequence and
then apply it as an input to the system.

Simulation and results
Using the SCANeR Studio simulation software†, a
driving simulation scenario was generated to take the
vehicle information as the acceleration signal. The
idea is to analyze the capacity of the simulator re-
sponse to respect the limits and tracking the signal
using the MPC-based MCA method with an optimiza-
tion based on neural networks.
The scenario consists in a simple maneuver remain-
ing at an initial position for four seconds then follow-
ing a car with a speed of 30 m/s in a straight line. The
scenario lasts only 18 seconds which is enough to
evaluate the behavior of the system as can be seen
in the reference signal in Fig. 7.
A fixed-time implicit solver was implemented, since
it provides greater stability for oscillatory behaviors,
avoiding unnecessary computational cost. The global
sampling time of the system was set to 1 ms, and a
minimum of two iterations are required for the net-
work to converge to an optimal solution. The platform
system is sampled with a 10 ms step that is the mini-
mum required for a real-time application (control fre-
quency at 100 Hz).
For the QP problem (Eq. 10), the tuning parameters
were the followings: d = 1, λ = 0.1, q(pos) = 1,
q(vel) = 0.1, q(acc) = 0, Nu = 3, Np = 100. Op-
timization is implemented on each independent de-
gree of freedom of the platform system, but here we
only show the simulation of the most relevant axis:
the longitudinal axis.
First, we conducted a comparison to validate the ac-
curacy of the optimal value at each time step. A
quadprog-Matlab function is used as the compari-
son solver. This function can apply tree different al-
gorithms: trust region reflective, interior point convex
or active set. We decided to implement an active set
method to find the QP optimal solution at each sam-
ple time. Using the previous information, we found
that the error between the solution of that solver and
the proposed approach based on RNN is almost null.
In Fig. 6, we can see that the platform acceleration
given by the control input of both curves overlap,
proving the applicability of the RNN to solve the MPC-
based MCA optimization problem.

† http://www.oktal.fr/en/automotive/range-of-simulators/software

Figure 6: Comparison between quadprog and the proposed
RNN

Secondly, we analyzed the average time the quad-
prog takes to solve the optimization problem. This
analysis was based using the model profiler appli-
cation available in Matlab-Simulink. We found that
for our problem with 3 states the quadprog function
takes at least 3 ms to find a solution. In the simulink
profile report can be seen the time taken by each
block in solving the specific operation. For the op-
timization subsystem (Fig. 1) the total time for one
sample time is 0.235ms. As stated above, a minimum
of 3 iterations is required to find a optimal solution,
then the time required to solve the Qp problem is
∼ 0.7ms. This comparison shows the potential of the
proposal approach to solve problems with a greater
number of states and solve the MPC-MCA obtimiza-
tion problem in real time respecting the plateform
constraints.

Figure 7: Longitudinal acceleration rendering using rails
only

Fig. 7 shows the longitudinal (X-axis) signals of the
motion system obtained by the resulting strategy and
the actual platform acceleration during the scenario.
It is observed that the platform tries to follow the ref-
erence of the acceleration until it approaches the lim-
its. Then, the restrictions are applied so that the op-
timization can find a solution at each sampling time.
The way in which the acceleration behaves when it
approaches the limits depends on the parameters
mentioned in the feasibility section.

Comparing with previous recurrent neural networks
based on penalty functions (Tab. 1) for solving a
quadratic optimization problem with bounds con-
straints, our method shows to have lower computa-

tional complexity since the penalty function can be
replaced by using a saturated activation function for
the bounds constraints and an appropriate regular-
ization parameter. Consequently, the number of neu-
rons and logical operations used to solve the QP
problem can be reduced.

Conclusions and future work
The resulting set of differential equations requires
less components with respect to existing neural net-
works, for the same class of optimization problems,
and could converge to the optimal solution in a fi-
nite time. The simulation results confirm the effec-
tiveness of our proposed method and better perfor-
mance can be obtained with an appropriate learning
rate tuning. Our method provides a good tracking per-
formance with fast responses without exceeding the
system limits in position, velocity and acceleration.
The neural networks parallel capability, gives a great
opportunity for the implementation of this technique
for a more complex system. Using a multi-core imple-
mentation, we can eliminate the adaptive filter condi-
tion of the constraints with a prediction horizon long
enough to ensure optimization feasibility, avoiding the
tuning task and making the algorithm much more ro-
bust.
As future works, we aim at tuning the learning rate so
that the system can find a solution as quickly as pos-
sible within the required time and with an increased
number of states. It is also intended to integrate the
different axes of the platform, e.g., combine optimiza-
tion between the longitudinal axis and the pitch angle.
Future development will include a validation test of
the algorithm on the real setup.

References
A. Beghi, M. Bruschetta and F. Maran, A real time implemen-
tation of MPC based Motion Cueing strategy for driving sim-
ulators, in Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on, 6340–6345, IEEE, 2012.

C. Bordons and E. Camacho, Model predictive control, Springer
Verlag London Limited, 2007.

A. Bouzerdoum and T. R. Pattison, Neural network for quadratic
optimization with bound constraints, IEEE transactions on neu-
ral networks, vol. 4(2): 293–304, 1993.

L. Cheng, Z.-G. Hou, N. Homma, M. Tan and M. M. Gupta, Solv-
ing convex optimization problems using recurrent neural net-
works in finite time, 538–543, IEEE, 2009, ISBN 978-1-4244-
3548-7.

A. Cochocki and R. Unbehauen, Neural networks for optimiza-
tion and signal processing, John Wiley & Sons, Inc., 1993.

G. Costantini, R. Perfetti and M. Todisco, Quasi-Lagrangian Neu-
ral Network for Convex Quadratic Optimization, IEEE Transac-
tions on Neural Networks, vol. 19(10): 1804–1809, 2008.

M. Dagdelen, G. Reymong and N. MaÃ¯zi, MPC Based motion
cueing algorithm: developpement and application to the UL-
TIMATE driving simulator, DSC 2004 Europe, 2004.

Fang, zhou and Kemeny, Andras, Motion cueing algorithms for
a real-time automobile driving simulator, 2012.

Z. Fang and A. Kemeny, Review and prospects of Renault’s
MPCbased motion cueing algorithm for driving simulator,
Paris, 2014.

Z. Fang, M. Tsushima, E. Kitahara, N. Machida, D. Wautier
and A. Kemeny, Motion cueing algorithm for high perfor-
mance driving simulator using yaw table, IFAC-PapersOnLine,
vol. 50(1): 15965–15970, 2017.

N. J. Garrett and M. C. Best, Driving simulator motion cueing
algorithms- a survey of the state of the art, 2010.

G. Goodwin, M. M. Seron and J. A. De DonÃ¡, Constrained con-
trol and estimation: an optimisation approach, Springer Sci-
ence & Business Media, 2006.

X. Hu and J. Wang, An Improved Dual Neural Network for Solv-
ing a Class of Quadratic Programming Problems and Its -
Winners-Take-All Application, IEEE Transactions on Neural Net-
works, vol. 19(12): 2022–2031, 2008.

Q. Liu and J. Wang, A Projection Neural Network for Con-
strained Quadratic Minimax Optimization, IEEE Transactions
on Neural Networks and Learning Systems, vol. 26(11): 2891–
2900, 2015.

C.-Y. Maa and M. A. Shanblatt, Linear and quadratic program-
ming neural network analysis, IEEE transactions on neural net-
works, vol. 3(4): 580–594, 1992.

V. M. Mladenov and N. Maratos, Neural networks for solving
constrained optimization problems, Proc. of CSCC’00, Athens,
Greece,(N. Mastorakis, 2000.

L. Nehaoua, H. Arioui, S. Espie and H. Mohellebi, Motion cueing
algorithms for small driving simulator, 3189–3194, IEEE, 2006,
ISBN 978-0-7803-9505-3.

Y. Pan and J. Wang, Two neural network approaches to model
predictive control, 1685–1690, IEEE, 2008, ISBN 978-1-4244-
2078-0.

M. J. Perez-Ilzarbe, New Discrete-Time Recurrent Neural Net-
work Proposal for Quadratic Optimization With General Linear
Constraints, IEEE Transactions on Neural Networks and Learn-
ing Systems, vol. 24(2): 322–328, 2013.

J. Quero, E. Camacho and L. Franquelo, Neural network for con-
strained predictive control, IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, vol. 40(9): 621–
626, 1993.

J. A. Rossiter, Model-based predictive control: a practical ap-
proach, Control series, CRC Press, 2003, ISBN 978-0-8493-
1291-5.

Shubao Liu and Jun Wang, A Simplified Dual Neural Network
for Quadratic Programming With Its KWTA Application, IEEE
Transactions on Neural Networks, vol. 17(6): 1500–1510, 2006.

D. Tank and J. Hopfield, Simple’neural’optimization networks:
An A/D converter, signal decision circuit, and a linear pro-
gramming circuit, IEEE transactions on Circuits and Systems,
vol. 33(5): 533–541, 1986.

J. Venrooij, D. Cleij, M. Katliar, P. Pretto, H. Bulthoff, D. Steffen,
F. Hoffmeyer and H. Schoner, Comparison between filter-and
optimization-based motion cueing in the Daimler Driving Sim-
ulator, 2016.

X. Wang, Z. Yan and J. Wang, Model predictive control of multi-
robot formation based on the simplified dual neural network,
3161–3166, IEEE, 2014, ISBN 978-1-4799-1484-5 978-1-4799-
6627-1.

Y. Xia, A new neural network for solving linear and quadratic
programming problems, IEEE transactions on neural networks,
vol. 7(6): 1544–1548, 1996.

Y. Xia and G. Feng, An improved neural network for convex
quadratic optimization with application to real-time beam-
forming, Neurocomputing, vol. 64: 359–374, 2005.

Z. Yan and J. Wang, Model Predictive Control of Nonlinear Sys-
tems With Unmodeled Dynamics Based on Feedforward and
Recurrent Neural Networks, IEEE Transactions on Industrial In-
formatics, vol. 8(4): 746–756, 2012.

Yunpeng Pan and Jun Wang, Nonlinear model predictive con-
trol using a recurrent neural network, 2296–2301, IEEE, 2008,
ISBN 978-1-4244-1820-6.

S. Zhang and A. Constantinides, Lagrange programming neural
networks, IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, vol. 39(7): 441–452, 1992.

X.-S. Zhang, Neural networks in optimization, vol. 46, Springer
Science & Business Media, 2013.

