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A priori evaluation of simulation models preparation 
processes using artificial intelligence techniques

Florence DANGLADE, Jean-Philippe PERNOT, Philippe VERON, Lionel FINE

Abstract

Controlling the well-known triptych costs, quality and time during the different

phases of the Product Development Process (PDP) is an everlasting challenge

for the industry. Among the numerous issues that are to be addressed, the devel-

opment of new methods and tools to adapt to the various needs the models used

all along the PDP is certainly one of the most challenging and promising im-

provement area. This is particularly true for the adaptation of Computer-Aided

Design (CAD) models to Computer-Aided Engineering (CAE) applications, and

notably during the CAD models simplification steps. Today, even if methods

and tools exist, such a preparation phase still requires a deep knowledge and a

huge amount of time when considering Digital Mock-Up (DMU) composed of

several hundreds of thousands of parts. Thus, being able to estimate a priori the

impact of DMU adaptation scenarios on the simulation results would help iden-

tifying the best scenario right from the beginning. This paper addresses such

a difficult problem and uses Artificial Intelligence (AI) techniques to learn and

accurately predict behaviours from carefully selected examples. The main idea

is to identify rules from these examples used as inputs of learning algorithms.

Once those rules obtained, they can be used on a new case to a priori estimate

the impact of a preparation process without having to perform it. To reach

this objective, a method to build a representative database of examples has

been developed, the right input (explanatory) and output (preparation process

quality criteria) variables have been identified, then the learning model and its

associated control parameters have been tuned. One challenge was to identify

explanatory variables from geometrical key characteristics and data character-
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izing the preparation processes. A second challenge was to build a effective

learning model despite a limited number of examples. The rules linking the

output variables to the input ones are obtained using AI techniques such as

well-known neural networks and decision trees. The proposed approach is il-

lustrated and validated on industrial examples in the context of Computational

Fluid Dynamics simulations.

Keywords: Process evaluation, Digital Mock-Up preparation, artificial

intelligence, machine learning, knowledge formalization.

1. Introduction

The Product Development Process (PDP) relies on a multitude of activi-

ties such as design, sizing, analysis, product optimization, process simulation

or prototyping. Each activity is often based on an adapted Digital Mock-Up

(DMU) used to model the product with more or less details. The preparation5

process of an original DMU to a representation adapted for a given activity is

still a very challenging issue. It often requires a succession of operations which

are based on different tools driven by many control parameters. Today, even if

the methods and tools used to perform these operations exist, following such a

preparation process strongly relies on the knowledge of the experts that is not10

fully formalized. This lack of formalization and the associated lack of knowledge

on the performance of a given preparation process induces numerous iterations

between the original model and the model prepared for an activity. Thus, being

able to estimate a priori the cost and quality of a given preparation process

will help optimizing the transfer between Computer-Aided Design (CAD) and15

Computer-Aided Engineering (CAE) models. As a consequence, the PDP will

be shortened and the over-quality avoided.

Today, even if commercial software does incorporate some functionalities

dedicated to the adaptation of CAD models to CAE applications, the prepara-

tion process still requires a deep knowledge and a huge amount of time when20

considering Digital Mock-Up (DMU) composed of several hundreds of thousands
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of parts. The preparation process consists of three main steps: simplification,

adaptation and meshing (Figure 1).

Figure 1: Main stages of cad model preparation (application to CFD analysis).

The CAD model simplification eases the meshing and simulation steps by

removing items and modifying the geometry. Simplification techniques are de-25

tailed in the section 2.1. The adaptation steps consist in extracting faces for

meshing and in identifying the surfaces supporting the boundary conditions.

The CAD model meshing allows the numerical analysis of the problem by ap-

proximating a geometry with more or less small and complex elements (e.g.

triangles, tetrahedra, hexahedra) depending on the available computing time30

and the expected accuracy. The preparation process can be described and mod-

elled by a set of operations, a sequencing and a set of control parameters. For

each operation, the user adjusts one or more parameters (e.g. the size of mesh

elements, the level of simplification, the list of sub-assemblies to remove). There-

fore, for a given simulation objective, there exists many preparation processes.35

Today, the sequence of operations and the associated control parameters are

selected by the experts who try to minimize the impact of the adaptation on
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the results while minimizing the preparation costs. Those costs are strongly

correlated to the time spent by the expert on the different tasks.

They exist many tools and operations to simply a CAD model, section 2.140

presents the main simplification techniques applied to our case study. However,

the criteria used to select which operations and which parameters are to be

used are not fully formalized and the effects not always mastered. Section 2.2

introduces methods to evaluate the impact of a simplification on the results of

an analysis. However, there is a lack of methods to a priori estimate the impact45

of a simplification on the quality and accuracy of a simulation.

Therefore, the aim of this work is to define a new approach to estimate a

priori the quality of a preparation process. In this way, the analysts can test

different adaptation strategies and thus identify the best one with respect to a

given simulation objective. Of course, this does not exempt the analysts to make50

the numerical simulation at the end, but only one time following the preparation

process considered as the best. The proposed approach is based on the use of

Artificial Intelligence (AI) techniques [1] for the evaluation of preparation pro-

cess quality. The quality of a preparation process could be evaluated by orders

of magnitude of analysis errors, preparation duration and analysis duration.55

Amongst AI techniques, supervised learning techniques are able to estimate

output variables from carefully selected examples without knowing rules that

link input and out variables. Variables to predict can be discrete values that

are divided into several classes. So, the retained AI techniques must be able to

predict a discrete output variable from a set of input variables. Classifiers like60

Bayesian classifier, Decision Trees, Neural Networks, Support Vector Machine

or RBF Networks can take on this task.

Section 2.3 gives examples on the use of AI techniques in the mechanical

engineering domain . Actually, existing AI techniques are sufficient and well

appropriated to our purpose. So, this paper does not aim at developing a new65

one but rather it aims at finding a way to model our preparation process so that

it can be used by existing AI techniques. Regarding the use of these techniques,

the first challenge is to identify the most determinant explanatory variables that
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are extracted from CAD models and preparation processes. A second challenge

is to find a good quality learning model despite a limited number of examples.70

To reach these objectives, a dedicated framework has been devised (Figure

2) . First, the knowledge embedded in a set of preparation examples is stored

in a set of so-called instances. Each instance contains the data able to describe

the preparation process, the initial CAD models, the simplified and prepared

CAD models as well as the results of the analysis. Then, those instances are75

implemented in a learning tool which is used to configure a classifier that can

then estimate the quality of a process for a new unknown case. Each steps of

this overall approach will be developed in section 3.

Figure 2: General approach for preparation process evaluation by using machine learning

techniques.
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To validate it, the proposed method has been applied to the adaptation

of large CAD models for Finite Elements Analysis (FEA). However, it is not80

restricted to such an application and the proposed approach can be extended to

the other steps of the PDP. Some experimental results are discussed in section 4.

2. Related works

2.1. CAD models simplification techniques

There exist a huge number of techniques to simplify a geometric model ac-85

cording to different criteria. The purpose of this section is to identify which sim-

plification methods are appropriate to the adaptation of complex CAD models

(i.e. defined with a large number of parts and numerous features) to FEA like

CFD simulation. Thakur and al. [2] have proposed a classification of simpli-

fication techniques based on surface entity operators, volume entity operators,90

explicit features operators or dimension reduction operators. We can add to

this list, operations based on the simplification of assembly trees. Among all

the simplification methods, selected techniques are described below. Figure 3

shows the results of some simplification operators on a sub-assembly.

Part filtering. Part filtering consists in deleting parts in an assembly. Usually,95

small parts far from boundary conditions are removed.

Defeaturing. The defeaturing step consists in removing details like holes, pock-

ets, pads, fillets or chamfers. This method is well adapted when the native CAD

models are available. Nevertheless, the cost of the operation can be very high

when the building tree of the model is not available, i.e. if a neutral format100

like STEP is to be used. Some tools like NX SIEMENS [3] or GPURE [4] of-

fer ready-to-use defeaturing functions based on surface entity simplification [5]

(e.g. hole filling, cutting, removal of the bosses, or surface reconstruction for

fillets and chamfers). These tools can remove a family of features based on their

size, but other criteria such as the distance from a boundary condition is not105

available or request many non-automated operations.
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Figure 3: Examples of simplifcation operators and admissible combinations.

Convex hull. The creation of a convex hull keeps only outer wrapping of the

model based on the smallest convex set containing the geometry [6]. The input

model can be either a native CAD model, or a standard CAD file like STEP,
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or a mesh. The output model is usually a polyhedral mesh. Thus, the original110

CAD model is discretized, the triangles outside of the envelope are then filtered.

Simplification tools included in NX or GPURE provide fast modelling of convex

hull. The control parameter is often the level of accuracy defined for instance

by the distance between the original model and the simplified one.

Decimation and faces clustering. The details are simplified by decimation of115

edges, faces or vertices, or by faces clustering [7], [8]. Here again, the control

parameter is often the accuracy between the original and simplified models.

The input model can be a native CAD model, a manifold B-Rep model, a non-

manifold model or a mesh. The output model is usually a polyhedral mesh.

GPURE offers ready-to-use decimation operators.120

Substitution. This operation consists in removing surfaces and/or volumes and

in rebuilding them with a less complex geometry, for instance using cylinders

and parallelepipeds. Unfortunately, the removal and rebuilding functions are

not automated within the commercial CAD modellers. The parameters to be

considered are the dimensions of the new model. Experts suggest rules to iden-125

tify these dimensions (e.g. they preserve the length of the bounding box and

the volume of the model).

Merging. This operation merges several parts into a single sub-assembly in or-

der to ease the model handling and the wrapping of a volume. This operation

reduces the risk of crashes during the meshing and simulation phases. The level130

of simplification is not affected a lot when this operation is used alone. This

is usually implemented in addition to other simplification operations. Ready-

to-use tools for merging exist in CATIAV5 [9] for instance. The experts have

to select sub-assemblies to be merged and they do have to decide whether the

merging is to be executed before or after other simplification operations. During135

the preparation of a CAD model for FEA, experts classically make use of several

of these techniques in different orders. If we combine the possibilities offered by

the tools, by the simplification techniques and by their control parameters, we
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obtain a large number of admissible preparation processes. Actually, there exist

62 admissible sequences of simplification operations. For a sub-assembly, there140

is up to 300 different simplification sub-processes and it is therefore impossible

to test all of them. In addition, the settings are varied (e.g. number of removed

parts or details, maximum distance between the original model and the simpli-

fied one, difference in faces number). Moreover, they are not significant with

respect to the impact of simplification on the analysis. Thus, it is necessary to145

define criteria to compare the original and simplified models regardless of the

simplification process that can characterize the impact of simplification on the

analysis result.

2.2. Techniques to estimate the simplification impact on analysis results

When considering FEA on a large assembly model, the number of meshed150

elements can be so large that the adaptation and meshing steps are often impos-

sible without simplifications. Additionally, without a high-level of simplification,

meshing and simulation operations can be very time-consuming. However, sim-

plifying a CAD model may result in a variation of the simulation results to be

analysed. Thus, it is important to control how the simplification may impact155

the results of a simulation. Related works focus on three methods: physical

behaviour approaches, subjective approaches and geometric approaches.

In recent years, physics-based approaches for the evaluation of simplification

impact on analysis results have gained interest. Tang and al. [10] proposed a160

new index to evaluate defeaturing impact on FEA results by using the change

of a model’s strain energy. This method is restricted to the linear elasticity.

Ferrandes and al. [11] have developed a posteriori criteria by using an approx-

imation of the energy norm of the difference between the FEA results on the

original and simplified models. The impact of simplification on global simula-165

tion results is evaluated from influence indicator of each detail. The equations

carried out for calculation by convection and radiation are very different and

these methods cannot be applied to heat transfer analysis. In the field of heat
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transfer analysis, Gopalakrishnan [12] has proposed a theory for estimating anal-

ysis errors in case of heat transfer with a high accuracy of the estimated error.170

This is very efficient, but it requires accurate information about the simplified

geometry. However, in the context of this work, we want to a priori estimate the

impact of the simplification on the simulation results, i.e. without preparing the

model and without performing the simulation. So, in our case, the simplified

geometry is not available. Moreover, the above described methods focus on the175

defeaturing. Little attention has been paid to the impact of global simplification

methods (e.g. convex hull modelling or substitution) on the simulation results.

Subjective approaches are based on knowledge and skills of analysts [13].

These methods need to know and to formalize exhaustively the criteria that180

influence the errors on the results of an analysis. Here, examples of simplifica-

tion for which the errors are known have to be envisaged. Actually, the first

set of criteria expressed by the experts are geometric criteria [14]. The differ-

ences between the reality and the analysis results are estimated from changes

in volume, area or barycentric coordinates between the original and simplified185

models. Other numerous geometric criteria can be used (curvature, number of

faces, number of features and so on). But these criteria do not give accurate

indicator on the analysis errors and also require the computation of the simpli-

fied models, which is not necessary in our approach.

190

Finally, the use of estimation techniques does not require the computation of

the simplified models. The analysis is performed a priori, i.e. on the initial CAD

models and before any adaptation. Danglade and al. have introduce a technique

to identify and delete the features which have a low impact on the accuracy of

the results [15]. However, this method was limited to the defeaturing of a single195

part. In this paper, the idea is to extend this principle to all the previously

introduced simplification operations and to global preparation processes of large

assembly models.
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2.3. Techniques of AI in mechanical engineering

Learning objective. In mechanical engineering, AI techniques are used in various200

applications such as physical behaviour estimation, design , recognition , reverse

engineering or material sciences. In those applications, classifiers are often used

to estimate one or several output parameters of different natures (e.g. geometri-

cal, statistical, physical), or even to classify shapes or 3D points sets. For sizing

and shape design, classifiers are often estimating global geometric parameters of205

the model ([16],[17], [18], [19]). The estimation of a physical quantity ([20], [21],

[22], [23]) like a load, a stress, a pressure or a temperature, remove the need

to solve complex equations. Statistical parameters ([24], [25], [26]) don’t give

directly the physical quantity. However, they offer the opportunity to estimate

for example a standard deviation, a mean, a trend or a physical effect probabil-210

ity. The classification of shapes ([27], [28]), or digitized 3D points sets, is used

for models recognition and reuse. The aim of our work is to a priori estimate

the impact of the CAD model simplification on the results of the analysis as

well as the cost of the preparation. Thus, the idea is to be able to perform

the estimation without doing the simplification itself. Here, we are not trying215

to estimate the analysis results but only the errors due to the simplification.

Physical quantity estimation is not useful in our case. A statistical parameter

(e.g. percentage of deviation) seems more appropriate in our study.

Input variables and examples. When using artificial intelligence techniques on

CAD models, the most important challenge is to identify the input variables220

to be processed. Physical problem is generally described by physical quantities

vectors ([21], [23], [26], [19]). Geometrical data are described by coordinates

([24], [18]), by histogram [27] or by a vector of parameters ([20],[16], [17]). In

our case, the complexity of the manipulated CAD models makes it difficult to

use graphs or histograms. The high-level of simplification between two configu-225

rations does not allow the use of the points’ coordinates. A vector of carefully

selected parameters seems to be the reasonable solution. The choice of the most

representative input parameters, the selection and configuration of the classifiers
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are so many issues that are addressed and developed in section 3. Moreover,

in our approach we also need to identify variables which best characterize the230

preparation process to be evaluated. This is also a challenging issue that has

been addressed in this paper.

Finally, it has to be recalled that the Machine Learning Techniques (MLT),

which can be used to identify the estimation rules, often require a large number

of examples, also called instances. However, being the preparation of models235

for numerical simulation a very long process, the number of examples will be

limited. Thus, it is necessary to propose a method which guarantees the reli-

ability of the estimations despite a limited number of examples. This has also

been addressed in this paper.

3. Proposed framework to evaluate CAD model preparation pro-240

cesses

3.1. Overall approach

This section aims at introducing our new approach (Figures 2 and 4) which

makes use of AI techniques to a priori estimate the impact of a preparation

process on the quality of a FEA. The performance of the preparation process245

is evaluated by means of a performance indicator that is computed from the

impact of the simplification on the simulation results and from the preparation

and simulation costs. Generally speaking, to build a classifier able to estimate

an output variable from a set of input variables, it is necessary to determine

four elements:250

1. examples database which should be as representative as possible of existing

cases;

2. the explanatory or input variables that are used by the classifier to esti-

mate output variables;

3. the type of classifier and its overall architecture;255

4. the classifiers parameters.
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A method to set these elements is briefly introduced hereunder and is de-

tailed in the following subsections.

First, a database of CAD model preparation process examples is built (Part260

1 of Figure 2). The section 3.2 proposes a method to model a representative

database by covering all range of preparation processes. The extracted data

from CAD models are the ones that seem most logical according to the ana-

lysts’ experience. These choices will then be validated by AI techniques. Data

relative to the preparation process are also extracted to set up the database and265

from the inputs.

Relevant explanatory variables for the estimation of the output variables are

selected and treated in a learning database. Those variables are extracted from

the prepared CAD models and available simulation results. Finally, the learn-270

ing data are compiled in a matrix where rows describe input or output variables

and lines match to examples of CAD model preparation processes (Figure 4).

The selection of variables are detailed in section 3.2.2. For a new case, available

variables are limited to the original CAD model data, to the boundary condi-

tion information and to the preparation process description. Some unknown275

data (simplified model and prepared model) are needed for the output variables

estimation. These intermediate variables must be estimated before the output

variables.

During the learning phase (Part2 of Figure 2), AI techniques are used to280

select, configure and optimize classifiers able to estimate the intermediate and

output variables from a set of input variables.

We will name ”learning model” a combination of configured classifier and

variables. The objective of this part is to identify, for each variable to predict,

the best learning model as illustrated in the figure 5. For this purpose, it is285

likely to use four stages [29]: machine learning initialization (1), resampling

and distribution (2), optimization (3) and quality of learning models evaluation
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Figure 4: Learning model (classifier and learning variables) for the estimation of an output

variable y from an input variables vector x.

(4). In stage 1 AI techniques are pre-selected, an architecture is proposed for

candidate classifiers. In stage 2, examples are partitioned, output variables are

distributed in several classes and the selection of explanatory variables is refine.290

In stage 3, best classifiers are selected for each output variables and are then

optimized. In stage 4, the evaluation of the learning models allows to identify

the best configuration of variables and classifier.

The method developed for learning is given in section 3.3.

295

For a new case (Part 3 of Figure 2), available variables are extracted. Then,

classifiers are used to estimate intermediate and output variables. In order to
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Figure 5: Part 2 : General method for Learning.

evaluate the impact of the tested preparation process, experts finally analyze

the estimated costs and the analysis result error. The best preparation process

is identified by analyzing performance indicators among a large set of tested300

processes. The workflow for evaluating processes on a new case is described in

section 3.4.

Eventually, new examples can be added to the learning database once their

impact on the simulation has been estimated. This refers to the capitalization305

of the knowledge embedded in the examples.

In this paper, the proposed method will be validated while considering the

preparation of CAD models for CFD simulations. Input (explanatory) variables
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X are parameters that are extracted from the original and prepared CAD mod-310

els, from the simulation model and from the preparation process description.

These input variables are described in the next section. Output variables y are

parameters that characterize the quality of the preparation process to be eval-

uated. Five output variables will be estimated by learning: the impact of the

simplification on a sub-assembly (y1), the simplification cost of a sub-assembly315

(y2), the cost of preparation (y3), the cost of analysis (y4) and the analysis

result error (y5).

3.2. Part 1. Learning Data Base Building

3.2.1. Learning database320

Examples modeling. The learning database must contain a significant number

of examples that must be evenly distributed in each output variable class. Ac-

tually, all ranges of Level Of Simplification (LOS) and Analysis Result Error

(ARE) must be covered. The LOS is defined by means of the Hausdorff dis-

tance between the less simplified model and the tested model. The ARE (Eq.325

1) is the error between the analysis result of the tested model R(Mm) and the

analysis result of the reference model R(Mm
ref ).

ARE(Mm) =
R(Mm)−R(Mm

ref )

R(Mm
ref )

(1)

A CAD model Mm
i is made of sub-assemblies Cn

j . m index is the reference of

the global CAD model, n is the reference of the sub-assembly, i is the reference of

the global model preparation, j is the reference of the simplification sub-process.330

The learning database contains specific models (M0, M1, Mref) having high,

intermediate or low LOS as well as models which cannot be simulated. M0 is

the model without simplification. M1 is the model with the highest LOS (all

sub-assemblies are substituted by parallelepipeds or cylinders). Mref is the less

simplified model that can be simulated. Models with high LOS are simplified335

to the maximum except one. Models with low LOS are built from the Mref
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by removing or simplifying one sub-assembly. Sub-processes of sub-assemblies

simplification are ranked according to their impact on the analysis results. Ex-

amples with intermediate LOS are built by simplifying and/or removing one by

one sub-assemblies from Mref according to their rank.340

Raw Data extraction . The choice of the explanatory variables is strongly linked

to the purpose of the preparation process to be evaluated. Said differently, the

variables which affect the result of a CFD simulation can be different from the

variables which impact a heat diffusion simulation. As a consequence, to be

sure that the learning phase will capture the best explanatory variables for a345

given preparation objective, the idea is to try to be exhaustive when considering

the input variables. Then, selection methods will be implemented to identify

the most determinant variables objective by objective. These methods are de-

scribed in section 3.2.2. To build the learning database, raw data are extracted

from CAD models, preparation process description and simulation information350

(Figure 6).

The so-called extracted data are the output and input variables which char-

acterize the examples to be used during the learning phase. When considering

a new unknown example, the extracted data only concern the input variables355

that are then processed by a configured classifier which estimates the values

of the output variables {y1, , y5}. Input data are explanatory variables that

describe the simplification process and that characterizes criteria for evaluating

this process (model geometry, original and simplified models comparison, simu-

lation information). The explanatory variables database should be as complete360

as possible in order to best characterize a given example. It is important to

underline that the learning technique only sees the examples by means of those

numerical values. The learning technique will never work on a CAD model nor a

simplification process directly but rather on a set of values characterizing them.

Simplification process description. The simplification process of a sub-assembly365

is described using parameters that specify which operators are used, their pa-
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Figure 6: Part 1 Learning database building.

rameters and the adopted tools. This description formalizes the six simplifying

operations that have been identified in section 2.1. It is reported in table 1

which is filled as follows:

• Defeaturing parameters are, for each type of details (e.g. bumps, pockets,370

holes, or rounds), numerical variables that give the relative size of the

removed details and their distance to the nearest boundary condition.

Details smaller than x ∗ CS are removed, being CS the sub-assembly

size obtained from the average length of the sub-assembly bounding-box

and 0 < x < 1. Details for which the distance to the nearest boundary375

conditions exceeds x∗MS are deleted, being MS the global assembly size.

• Filtering parameters give, for parts that are candidate to the removal,

conditions on size and distance from the nearest boundary condition.
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• Merging, building by substitution, decimation and convex hull opera-

tors are described by nominal variables that specify if and how the sub-380

assembly is simplified.

Some examples of these parameters are given in Table 1 for the simplification

operators illustrated in Figure 3. Variables that describe simplification processes

are known for a new case.

Simplification examples
Defeaturing

Filtering Merging Substitution
Convexe

hull
Decimation

Bump Pocket Hole Round

(a) Original 0(1)/0(2) 0/0 0/0 0/0 0/0 No No No No

(b) Small holes defeatur-

ing

0/0 0/0 0.2/1 0/0 0/1 No No No No

(c) All small details filter-

ing

0/0 0/0 0/0 0/0 0.05/0.1 No No No No

(d) Small parts filtering +

all small details defeatur-

ing

0.2/1 0.2/1 0.2/1 0.2/1 0.2/1 No No No No

(e) Merging + substitu-

tion

0/0 0/0 0/0 0/0 0/0 Before Yes No No

(f) Merging + convex hull 0/0 0/0 0/0 0/0 0/1 Before No Yes No

Table 1: Examples of simplification process description on sub-assemblies. (1) relative size x

of removed details. (2) relative distance x between removed details and the nearest boundary

condition.

To be generic, the modelling of the preparation process should not depend385

on the number of parts and sub-assemblies. Moreover, the process will be de-

scribed by a vector of six variables {x1, , x6} indicating the overall simplification

level for each type of operation (Table 2) and computed from the area Area(P p)

of parts, the area Area(F f ) of features, the area Area(Cn
j ) of sub-assemblies

and the area Area(M0) of the overall model.390

Part filtering Defeaturing Substitution Merging Convexe Hull Decimation
∑

P

p=1
Area(Pp)

Area(M0)

∑

F

f=1
Area(F f )

Area(M0)

∑

N

n=1
Area(Cn

j )

Area(M0)

Table 2: Overall parameters for simplification process description.

CAD and meshed models description. The variables describing the CAD mod-

els (original and simplified), the adapted models and meshes are are based on
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geometric quantities characterizing the size (e.g. area, volume, volume of the

bounding box, number of parts) and the shape (e.g. compactness, curvatures,395

number of faces, number of details, number of mesh elements). There exist

different ways to describe these characteristics. The values can be raw (without

treatment) but it can also be a mean value (calculated from values of each parts

or details), a maximal value, a dimensionless value or a value treated by nor-

malization. So, CAD and meshed models are described by a great number of400

variables described according to different ways. For a new case, the only known

variables are those that characterize the original models.

Original and simplified models comparison. The comparison of an original and

a simplified model is a mean to evaluate the impact of simplification [30]. To do

so, the similarity between models can be measured by computing the Minkowski405

distance, the Hausdorff distance or a correlation index. Another method is to

compute differences between the original and simplified models while considering

geometric criteria like volume, area, compactness, curvature, number of faces,

number of features and so on. These differences are expressed by benefits (Eq.

2) between M0 the original CAD model and Mi the simplified one. Of course,410

for the a priori estimation, those distances are not known for a new case.

Benefiti =
Characteristic(Mi)− Characteristic(M0)

Characteristic(M0)
(2)

Influence factors on analysis. Data extracted from the simulation refer to the

factors of the preparation process influencing the analysis. These factors quan-

tify the geometrical changes due to simplification. They take into account the

distances and positions of the simplified components relatively to the boundary415

conditions or analysis target zones. In order to take into account the size of the

different parts of a component, moments have been proposed. This moment (Eq.

3) is determined from the distance BCD(Cn
j ) between each sub-assembly Cn

j

and its nearest boundary condition and the area Area(Cn
j ) of the sub-assembly.
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Moment(Mi) =

N
∑

n=1

(

BCD(Cn
j )

2.Area(Cn
j )

)

(3)

At the end, the database contains more than 250 explanatory variables xv.420

Other factors could be added for other preparation goals (position of gravitys

center, moments ...). Thus, the proposed methodology has to ensure the com-

pleteness of the variables. For a new case, the number of known variables is

limited. The unknown explanatory variables will be called intermediate vari-

ables. They must be computed first, to be able to estimate the main output425

variables {y1, ..., y5}.

Data processing. Input (xraw) and output (yraw) raw data are represented in

matrix (Figure 4) in order to implement them in the classifiers and to provide a

single representation regardless of the number of sub-assemblies and parts of the

model. Each row matches to an example of a simplified sub-assembly or global430

model. Each column is a variable that describes the preparation process of the

model or that characterizes an evaluation criterion. Before aggregating raw data

in the learning database, they must be consolidated. Aberrant or missing values,

which are due to lack of entry or computation errors, are deleted or replaced

with exact values if they are known. This treatment increases the confidence435

indicators of the classifiers from about 3 to 7%.

At the end, the database contains output variables ybase = {y1, ..., y5} and

a set of vector of input variables xbase. Selected input variables are listed in

Table 4.

3.2.2. Explanatory variables selection440

Selection method . Since the most important factors are not known at the be-

ginning of the analysis, a quite exhaustive set of explanatory variables has been

proposed. Actually, more than 250 explanatory variables are used to character-

ize each example of the database. The selection of variables ensures the quality

of the classification and helps to formalize knowledge. The proposed method445
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first removes correlated variables and selects the most relevant variables using

well-known selection algorithms. This algorithm is depicted on Figure 7.

Correlated variables removing. Once the data processed (aberrant values remov-

ing, normalization, and discretization) and the groups of correlated variables

Groups(xcor) identified, a correlation coefficient is computed between each cor-450

related variable and the variables to estimate. The less correlated variables

x
(cor/y)

with the variables to estimate are removed from the vectors of the base

xbase.

Relevant explanatory variables selection. For each variable to estimate y, the

explanatory variables xbase are classified according to their influence on the455

variable y. Relevant explanatory variables xexp are selected by a stepwise back-

ward, or forward, regression algorithm. This consists in eliminating (if back-

ward) or adding (if forward) one by one a relevant variable according to its

rank (Rank[xbase(y)]). Models are evaluated by the average quadratic error

AQE(xq
exp) (Eq. 4), where q is the total number of initial variables in the base,460

yn is the actual variable for example n and pn is the estimated variable that is

given by the selected classifier. Variables are removed or added to the initial q

variables models giving a q variables model. The operation is repeated until the

q variables model is not better than the q variables model. When the evaluation

criteria have reached an acceptable threshold and when this criteria no longer465

changes, then explanatory variables are correctly selected. So the key variables

that were not initially known, are just identified. Otherwise, if the evaluation

criteria have not reached an acceptable threshold and no longer changes, the

completeness of the explanatory variables is not achieved. It will be necessary

to identify new input variables.470

AQE =

√

√

√

√

1

N

N
∑

n=1

(yn − pn)2 (4)
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Figure 7: Method for relevant explanatory variables selection.
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3.2.3. Selected variables

As explained in the previous section, the most relevant explanatory variables

are selected by removing the correlated variables and by ranking them according

to the impact of each variable on the outputs (i.e. the result error, the cost of

preparation and the cost of analysis in the present case). This algorithm has475

been applied to CFD analysis context and the selected variables are listed In

Table 4. Naturally, in a different context (e.g. heat transfer simulation or linear

elasticity), the most relevant explanatory variables obtained by the proposed

algorithm can be different.

Selected

explanatory variables

Estimation of : Estimation of :

y2= simplification cost y1 = simplification impact

y3= preparation cost y5 = analysis result error

y4 = analysis cost

Process

description
All variables(1) All variables(1)

Models description

Model area(1),(2), Part number(1),

Triangles numbers (1),(2), Compactness(1),

Faces number(1),(2), Ratio model / bounding box volume(1), (2),

Ratio model / bounding box volume(1),(2), Curvature(2),

Curvature(2). Model area (2).

Models

comparison

Area(2), Area(2),

Volume(2) Volume(2),

Part number(2) Compactness(2).

Ratio model / bounding box volume(2),

Curvature(2).

Influence

factors with simulation data

Moment area and boundary condition (BC) distance(2) None

distances to BC and target(1).

Table 3: Selected explanatory variables when considering cfd simulations. (1) known for a

new case. (2)unknown for a new case (intermediate variables to estimate).

3.3. Part 2. Learning480

The learning step consists in selecting, configuring and evaluating classifiers

to estimate each intermediate variable and each output variable for a given set

of input invariables. The selection and configuration of classifiers are conducted

simultaneously with variables configuration. The final result is a learning model

(i.e. a pair {x(y);Cl(y)}) of optimized variables and classifiers. The method485

proposed to build the learning models is illustrated in Figures 5 and 8.
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Figure 8: Part 2 : Learning. Method for the choice and the configuration of learning models.

3.3.1. Stage 1. Machine learning initialization

Machine learning initialization consists in configuring selected classifiers and

general learning parameters.

Choice of AI techniques. In order to estimate the quality of a preparation pro-490

cess, output variables to predict can be statistical parameters or physical quan-
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tities, input variables will be vectors of parameters. Values of variables can

be discrete or continuous . Two learning methods are considered: regression if

output variables are continuous or classification if output variables are discrete.

According to the section 2.3, the main techniques used in mechanical en-495

gineering for these objectives and variables are neural network ([24], [25], [26],

[29]). Other techniques that can predict a discrete or continuous output variable

will be explored, like Decision Trees, Support Vector Machines or Naive Bayes

Functions.

Configuration of classifiers. The objective of this step is to define the architec-500

ture and the set of parameters that characterize the pre-selected classifiers and

learning. During learning initialization, general parameters are chosen to define

the architecture of classifiers and learning options. These general parameters

are listed in the second row of table 4. During training, set of parameters are

optimized in order to built classifiers. They are listed in the third row of table505

4.

Learning Initialization. Learning initialization consists in defining methods to

obtain all classifiers parameters. The parameters that define the classifier ar-

chitecture (second row of the table 4) are chosen by trial-error series. Learn-

ing consists in optimizing classifiers parameters by minimizing a cost function.510

For that, it is necessary to choose a learning method like Back propagation,

Levenberg-Marquardt algorithm, Gradient Descent,and so on.

The used cost function for an output variable y and a predicted output

variable ŷ is a squared-error cost function J(y, ŷ) (equation 3.3.1.

J(y, ŷ) =
1

2
(y − ŷ)

2
(5)

515

3.3.2. Stage 2. Resampling and distribution

This stage consists in refining examples and variables, while taking into ac-

count the low number of examples and the high number of explanatory variables.
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Partitioning of examples. Examples of preparation processes are partitioned

into two main groups of Na and Nt examples. Nt examples of the second520

group will be used for classification tests.

The preparation of a model for the simulation is a time-consuming operation.

It is difficult to obtain a very large number of examples in an industrial context.

The number of available examples is limited. There is therefore a significant

risk of over-learning. In order to reduce errors during learning, it has already525

been proposed to reduce the number of explanatory variables (section 3.2.2).

The k-fold cross validation method also reduces errors during learning.

For that, Na examples of the first group will be sampled in K groups for

learning and validation. In order to ensure the reliability of estimations quality

despite the small number of examples, it will firstly be necessary to ensure that530

each class of variables contains a minimal number of examples (generally 10),

then the k-fold cross-validation method is carried out. This consists of first

building a classifier Cl(y) to estimate an output variable y on all groups of Nk

examples.

The parameters to be defined in this step are the percentage of examples535

that are reserved for learning and for tests, the number of folds and the number

of repetitions.

Output variables distribution. Continuous output variables are to be distributed

in between 3 to 13 classes. The different classes can be defined using rules. For

example, the values of the variable y5 ”analysis result error” can be divided into540

7 classes as defined in Table 5. The first class corresponds to cases for which

the error on the analysis is negligible and the last class to cases for which the

analysis is not possible.

The parameters to be defined in this step are, for each output variable, the

number of classes, the interval data in each class and the minimum number of545

examples in each classes.
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Classes 1 2 3 4 5 6 7

y5 0% < y5 ≤ 1.5% 1.5% < y5 ≤ 4% 4% < y56% 6% < y5 ≤ 9% 9% < y5 ≤ 15% y5 > 15% Failed

ARE Low error Important error analysis

Table 5: Example of class distribution for the analysis result error y5 (Analysis Result Error).

Use of intermediate and selected variables. A selection method of explanatory

variables has been proposed in section 3.2.2. For each output variable to predict,

input variables can known (KV) or unknown for a new case (variables depending

on the prepared CAD model). Unknown variables must be estimated by learning550

before to predict output variable. So, they are called intermediate variables (IV).

Several scenarios can be considered. IV can be used (scenarios A on table 6)

or not (scenarios B) for learning. All potential explanatory variables can be

exploited, or only more sensitive variables. Table 6 summarizes the scenarios to

study.555

Use of IV

All IV More sensitive IV None IV

Use of KV
All KV A11 A12 B1

More sensitive KV A22 B2

Table 6: Scenarios depending on the use of intermediate variables (IV) and selected variables

for IV and known variables (KV).

The retained scenario is for each variable to predict the one that gives the

best classification for a minimum number of intermediate variables according to

the criteria given in section 3.3.4.

3.3.3. Stage 3. Optimal architecture

The figure 8 shows the proposed approach for learning on each output vari-560

able to be predicted.

During the initialization (3.3.1) and resampling (3.3.2) stages, the selected

classifiers have been configured (step 2.2 on figure 8) for a given architecture

(second row in table 4), the examples have been partitioned (step 2.1 on figure

8) In k groups of Nk examples.565
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Selection of classifiers. The classifiers are built and tested on k groups (step

2.3 on figure 8) and then, on the whole learning model (step 2.4 on figure 8).

Variable configurations are identical for all tested classifiers (same choice of

explanatory variables, and same processing for the explanatory variables and

the output variable).570

The classifiers are evaluated based on the the Average Quadratic Error

(AQE, Eq. 4) and on the mean area under the ROC curve. The AQE should

be as minimal as possible. The ROC curve gives the true-positive rate against

the false positive rate for several thresholds. It is desirable to have a mean value

of area under the ROC curve close to one.575

The selected classifiers (step 2.5 on figure 8) are those that obtain the best

scores according to these criteria.

Optimization of learning models. Learning process allows to determinate the

parameters of the classifiers by minimizing a cost function.

Step 2.6 consists in improving the learning model by refining classifiers and580

variables. For that, steps 2.2 to 2.4 are repeated for different architectures

of classifiers by adjusting parameters that are listed in the second row of the

table 4. In a similar way, different configurations of variables are tested for

different distributions of output variables and different scenarios by trying to

find a compromise between a maximum number of classes and a minimum AQE.585

Then classifiers parameters are optimized by implementing genetics algo-

rithms or meta-classifiers [31] like Bagging, Boosting, Stacking or combination

of 2-Classes classifiers.

When the AQE threshold value cannot be reached for any model, input vari-

ables are not sufficiently relevant. It will be necessary to repeat the selection590

phase of the input variables and to suggest new one as discussed in section 3.2.2.

The criteria for the selection of a learning model are the AQE value, the

value under the Receiver Operating Characteristic (ROC) curve, the percentage

of correct estimations, the number of classes of the values for each variable and595
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the duration of the learning. A high number of classes in which the values of

variables are distributed give more accurate estimated values. However, this

requires a large number of examples. Since the number of preparation pro-

cess examples is limited for a given objective, a compromise has to be found

between the accuracy of the estimated values and the quality of the estimations.600

3.3.4. Stage 4. Quality of models

At the end (step 2.7 on figure 8), the set of learning models is evaluated using

a confidence rate (percentage of acceptable and unacceptable misclassified cases)

using a group ofNt examples that has been reserved for testing. An misclassified605

case will be considered as unacceptable when it is optimistic about the actual

value.

3.4. Part 3. Use on a new case

Once configured, the classifiers can be used to estimate all intermediate and

output variables from a new set of input variables. The known input vari-610

ables are extracted and processed from new case data (i.e. original CAD data,

preparation process description and simulation case description). First (step

3.1 of Figure 9), the intermediate variables IV n
j related to sub-assemblies are

estimated (estimation of original and CAD model comparison, estimation of

influence factors on analysis). Then the impact of simplification on analysis615

(y1 = SI) and of simplification cost (y2 = SC) are evaluated for each sub-

assembly and for a maximum of simplification processes (steps 3.2 and 3.3).

Intermediate variables IV m
i related to the overall assembly are estimated. All

of them are used to estimate the preparation (y3 = PC) and simulation costs

(y4 = AC). Then, the error on the result of the analysis (y5 = ARE) can be620

estimated. Finally, experts take a decision on the relevance of the proposed

process by making a trade-off between the costs and analysis result errors. Of

course, we could imagine to extend the proposed approach while applying Ma-

chine Learning Techniques to understand how the experts take the final decision
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using y3, y4 and y5. This is part of a future work.625

Figure 9: Part 3 : Use on a new case. A priori estimation of simplification cost (SC),

preparation cost (PC), analysis cost (AC), simplification impact on sub-assembly (SI) and

overall analysis result error (ARE) when considering new inputs for which the simplification

and simulation have not been performed.

4. Application to the a priori evaluation of preparation processes of

complex products

4.1. Application context

The proposed method to a priori estimate the quality of preparation pro-

cesses has been applied and validated on the preparation of CFD simulation630

model of products made of hundreds of parts. Four different products were

used to build the database. They have been simplified using CATIA V5, NX

Siemens and GPure. 325 examples of preparation processes were built and sim-

ulated from 4 original models and one preparation objective. The original model
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contains 478 parts. In order to compare the results of the estimations with the635

actual values and validate the proposed approach, the cases dedicated to testing

have also been prepared and simulated. Then results had been validated by an

engineer. Figure 10 give examples of the overall simplified models.

For CFD analyses, the adaptation step consists in closing the geometry of640

the fluid volume and in modeling inlets and outlets. The CAE model is a meshed

volume of the fluid, which is limited by the boundaries of the CAD model. It is

important to stress that for one product, meshing characteristics were similar

to all examples (e.g. tetrahedral or hexahedral mesh elements, map of sizes,

boundary layer definition). All analysis data (e.g. materials characteristics,645

temperatures, heat flow, velocities) were also similar.

The Weka [32] software has been used to visualize the data, to process the

data, to identify the relevant variables, to configure and to select the classifiers

(neural networks, support vector machines, decision trees, and Bayesian Naives650

classifiers).

4.2. Results

Different learning models were tested for the different factors that have been

defined in sections 3.3.1 and 3.3.2 according to the proposed procedure in section

3.3.3.655

4.2.1. Learning initialization

To limit the risk of over-learning, 75% of examples are used for the learning

phase; other 25% are used for the testing phase.

For K-fold cross validation method, examples for learning had been divided

in 10 sets. The used cost function is the squared-error test function (equation660

3.3.1). For neural networks, the back-propagation method has been used.

The pre-selected classifiers were evaluated with the same learning and the

variables configurations. According to the configuration of variables, only more
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Figure 10: Examples of learning case (15 among the 244 learning cases) and new case (5

among the 80 new cases) of simplification on overall products for two products (P1 and P2).

sensitive variables had been used for learning. Output variables had been dis-

tributed in five classes.665
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4.2.2. Selection of classifiers

Table 7 gives the Average Quadratic Errors (AQE equation 4) of best clas-

sifiers for each type of pre-selected IA techniques before optimization.

Classifier Y1 (IS) Y2 (CS) Y3 (CP) Y4 (CA) Y5 (ARE)

Neural networks 0,20 0,19 0,30 0,26 0,31

Support Vector Machine 0,32 0,33 0,33 0,32 0,34

Decision tree 0,20 0,18 0,29 0,22 0,27

Naives Bayes function 0,42 0,27 0,37 0,34 0,35

Table 7: Average Quadratic Errors for best classifiers for the five output variables prediction.

Best results have been obtained with C.4.5 decision trees for the estimation

of the simplification costs (y2), preparation costs (y3) and analysis costs (y4),670

and multilayer perceptron neural networks classifiers for the estimation of the

simplification impact (y1)and the analysis results errors (y5).

4.2.3. Selection and use of input variables

More sensitive variables had been selected with the method of section 3.2.2.

The list of selected variables is given in section 3.2.3.675

During the stage of classifiers selection, only more sensitive explanatory vari-

ables had been used (scenario A12 presented in the section 3.2.2). For each

output variable, a series of tests allowed to identify the best scenario for using

the explanatory variables among all scenarios (table 6). The table 8 gives AQE

and their evolution in the different scenarios for the selected classifiers.680

Y1 (IS) Y2 (CS) Y3 (CP) Y4 (CA) Y5 (ARE)

Neural networks Decision tree Decision tree Decision tree Neural networks

Scenario A12 0,196 0,18 0,29 0,22 0,31

Scenario A11 0,2 (+2%) 0,171 (-6%) 0,297 (+1%) 0,233 (+6%) Failed

Scenario A22 0,191 (-2%) 0,169 (-7%) 0,3 (+2%) 0,239 (+8%) 0,315 (+1%)

Scenario B1 0,248 (+27%) 0,222 (+22%) 0,299 (+2%) 0,28 (+27%) 0,332 (+7%)

Scenario B2 0,238 (+22%) 0,207 (+14%) 0,302 (+3%) 0,284 (+29%) 0,333 (+7%)

Table 8: Average Quadratic Errors and their evolution for different scenario of Known Vari-

ables (KV) and Intermediate Variables (IV) use.
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The table 8 shows that intermediate variables are essential (AQE increases

strongly with B1 and B2 scenarios). A22 scenario (All KV and More sensitive

IV) will be used for the prediction of Y1 and Y2 output variables. A12 sce-

nario (More sensitive KV and IV) for the prediction of Y3, Y4 and Y5 output

variables.685

4.2.4. Distribution of Output Variables

During the stage of classifiers selection, the values of output variables were

distributed in 5 classes. The table 9 gives the percentage of misclassification

for different distributions of the output variables. Models with the highest

number of classes, while not exceeding a misclassification of more than 5% were690

chosen. Y2 and Y3 variables were distributed in 6 classes. Y1, Y4 and Y5 were

distributed in 7 classes.

Classes # Y1 (IS) Y2 (CS) Y3 (CP) Y4 (CA) Y5 (ARE)

3 1% 0% 2% 0% 1%

5 3% 3% 3% 3% 2%

6 5% 2% 5% 4% 4%

7 5% 11% 7% 5% 5%

9 7% 11% 7% 7% 8%

11 6% 8% 7% 8% 11%

Table 9: Percentage of misclassification depending on the number of classes of output variables.

4.2.5. Optimization of classifiers

The architecture and parameters of classifiers were optimized by using test

series, as described in section 3.3.3. Table 10 gives some results for different695

meta-classifiers after optimization of all parameters. Finally, Stacking meta-

classifier are used for the prediction of Y1, Y2 and Y5 output variables. Bagging

meta-classifier are used for the prediction of Y3, Y4 output variables.
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Y1 (IS) Y2 (CS) Y3 (CP) Y4 (CA) Y5 (ARE)

Before optimization 0,191 0,169 0,294 0,220 0,312

Boosting 0,100 0,022 0,125 0,182 0,099

Bagging 0,102 0,088 0,113 0,142 0,127

Stacking 0,058 0,019 0,170 0,192 0,087

2-classes combination 0,097 0,121 0,148

Table 10: Average Quadratic Errors for different meta-classifiers after classifiers optimization.

The table11 summarizes the configuration and final evaluation of learning

models.700

4.2.6. Quality of models

Table 12 gives the percentage of correctly classified instances and the number

of unacceptable errors (when the estimated value is more optimistic than the real

value) on 80 new cases that have not been used for learning. These confidence

rates are satisfactory with regard to the estimation of costs (y2, y3 and y4).705

The confidence rates are satisfactory but should be improved with regard to the

estimation of error on analysis (y1 and y5).

y1 (IS) y2 (CS) y3 (CP) y4 (CA) y5 (ARE)

Correctly classified instances 94% 98% 100% 100% 91%

Unacceptable errors 0 0 0 0 2/80

Table 12: Classifier confidence rates.

4.3. Validity domain

From the perspective of the objective of the preparation, the proposed

method was applied to CFD analysis. Thus, this approach can be used for710

all preparation objectives for which the simulation is applied to a fluid volume.

In this case, only the explanatory variables are different and should be selected

among the set of potential variables. For other preparation objectives, it will

be necessary to propose a new description of the preparation process but the

main strategy to find the classifiers remains valid. From the perspective of the715

preparation operations, the study was limited to six simplification operations
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that are described by ”all or nothing” parameters. The adaptation and meshing

processes were the same for all examples. If we wish take into account a greater

number of preparation operations and describe them more precisely, it will be

necessary to add new variables that describe these operations. Each variable720

will be described by a greater number of values. Knowing that it is necessary to

have at least ten significant examples for each value, carefully selected examples

will be added.

5. Conclusion and perspectives

In this paper, a new approach to evaluate a priori the impact of CAD model725

simplification processes on simulation results has been developed. The idea is

to make use of Machine Learning Techniques to configure a set of classifiers

from a set of known examples. Once configured, the classifiers can be used

to estimate a priori what would be the impact of a new unknown preparation

process on the simulation results. Thus, it is possible to evaluate a preparation730

process without doing it. Engineers can thus save a lot of time and test several

preparation processes before focusing on a particular one that they will anyhow

have to do. Five output variables are used to evaluate a preparation process:

the preparation cost, the meshing cost, the simulation cost, the simplification

impact on sub-assembly and on the overall analysis result error. Data have been735

extracted from preparation processes description and CAD models. They have

been implemented in vectors in order to be used by classifiers.

The choice of input variables has been a real challenge. The algorithm used

to find the relevant input data has been validated by using classifiers. Another

algorithm has been proposed to test different classifiers or several configurations740

and criteria have been proposed to identify the best configured classifier for each

output variable.

The satisfactory ratings of the classifiers confidence indicator show that us-

ing AI techniques is a good mean for the a priori estimation of preparation

processes costs and analysis result error. However, there were some deficits in745
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some classes of the learning base. The creation of additional models in these

classes should improve the classifiers’ confidence indicator. One of the major

difficulties encountered during this study was the small size of the learning

database even if 325 examples have been built and simulated. This problem has

been solved with a robust method to build a representative database and by750

learning with cross-validation method. Further studies, should also treat more

complex examples with a larger number of sub-assemblies and parts. In order

to optimize algorithms of classifiers, it then could be envisaged to use genetic

algorithms combined to the classifiers.

However, the global preparation process proposed at the end of our workflow755

can still be optimized. Actually, our workflow estimates the impact of a given

process but does not directly identify the best process. Further studies should

therefore focus on an optimization loop so that using the developed indicators,

the best process can be suggested to the designers. The combined use of clas-

sifiers such as neural networks with genetic algorithms allows optimizing the760

design of mechanical products. It could be one way in future studies to identify

the optimal preparation process with respect to costs and errors minimization.

The preparation process quality takes into account the impact of simplification

on analysis result. The proposed method could be extended to other steps of

preparation model like meshing.765

At the end, the proposed approach and the developed tools reduce the time

spent to adapt a complex DMU to a particular simulation while controlling the

quality of the analysis results. More broadly, the approach could be extended to

other applications which require a preparation process such as the visualization

of large DMU or the detection of collisions in large DMU.770
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Classifier Classifiers architecture and learning initilization Parameters to optimize or refine by

learning

Neural Network Neural network model (Perceptron or Adaline) Number of nodes by layer

Structure (multilayer feedforward network, fully recurrent network, recurrent

netwok with self connections, ...)

Weights of the connections betweem

nodes

Activation function (Step, Linear, Log-Sigmoid or Tan-Sigmoid)

Number of hidden layers

Value of momentum applied to the weights during updating

Number of iterations

Validation threshold

Stop condition (from number of iteration or validation threshold)

Decision tree Decision tree model (CART or C4.5.) Tree architecture

Pruning strategy (no-pruning, post-pruning, pre-pruning Number of nodes

Node selection criterion (entropy measure, Fisher test, Gini index,...) Classes on terminal nodes

Stop condition on terminal nodes

Support vector machine Kernel function (Linear, Polynomial, Gaussian radial basis function,...) Optimal hyperplan

Parameters depending of the Kernel function (Bias-variance compromise ,

Gamma,)

Tolerance of the termination criterion

Naive Bayes methods Type: classifier or net Rules or net architecture

Estimator algorithm Models parameters

Method used for searching network structures
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Y1 (IS) Y2 (CS) Y3 (CP) Y4 (CA) Y5 (ARE)

Classifiers :

Neural Network Multi-

Layer Perceptron

• HL: 1

• N : 15

• LR : 0,1

• M : 0,1

Decision tree C4.5

• CFP : 0,75

• L : 27

• S : 53

• P: no

Decision tree C4.5

• CFP : 1

• L : 12

• S : 23

• P : yes
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Neural Network Multi-

Layer Perceptron
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0,058 0,019 0,113 0,142 0,087
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