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A B S T R A C T

This study provides a theoretical and experimental investigation of the effect of static shear stresses on the high-
cycle fatigue behaviour of a 34CrNiMo6 high-strength steel under quenched and tempered conditions. Torsion
S–N curves under different mean shear stresses were obtained. Experimental results show that an increase in
mean shear stress yields a gradual reduction in shear-stress amplitude that the material can withstand without
failure. The results for this steel agree well with the Smith’s hypothesis for ductile steels, which states that the
effect of the torsional mean stresses on the torsional fatigue limit is negligible as long as the maximum shear
stress is within the torsional yield strength. Taking into account the results collected from the literature and the
experimental results on torsional fatigue of 34CrNiMo6 steel, an extension of the theory of Crossland is proposed
to include the mean-shear-stress effect. Its application to the torsional fatigue case with mean shear stresses can
be interpreted in terms of a balance of the energy of distortion. Macro-analyses of the specimen fracture ap-
pearance were conducted to obtain the fracture characteristics for different mean-shear-stress values under
torsion fatigue loading.

1. Introduction

An analysis of the available literature, which includes modern books
on fatigue [1–4], shows that the effect of mean torsional stresses on the
fatigue strength is still a controversial issue in the engineering world,
and that no unified view exists on its influence, despite the different
experimental campaigns that have been performed [5–30]. In any case,
it can be said that this influence is less pronounced than for mean axial
stresses, especially for ductile materials.

The pioneering experimental campaigns of torsional fatigue with
mean shear stresses were performed by McAdam [5] and Moore and
Jasper [6,7] amongst others in the 1920s. McAdam found that the mean
shear stress could be neglected without important errors, and proposed
a constant-range Eq. (1):
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Moore and Jasper [6,7] took advantage of their own experimental
campaign to conclude that the repeated torsional fatigue limit τ0 is 1.93
times the fully reversed torsional fatigue limit τ−1. This means a

decrease of 3.5% in fatigue strength for a repeated torsional fatigue
loading compared with the fully reversed torsional loading, leading to a
weak effect of the mean shear stresses on the torsional fatigue limit.

In 1939, Smith [8] performed tests on two SAE 3140 steels, and
confirmed the validity of Eq. (1) for results within the static torsional
yield strength. Smith presented a model to fit the data, and included
tests beyond the torsional yield strength, through linear Eq. (2), which
predicts a 6.25% decrease in fatigue strength for the repeated torsion
case (Rτ=0).

= +−τ τ R·(7· 15)
8

τ
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In 1942, Smith [9] published a large database of torsional tests with
a mean shear stress that was collected from the literature that was
available at that time. This collection consisted of 27 different ductile
materials, including different types of steel, malleable iron, aluminium
alloys, bronze, brass and cooper. The results showed that the effect of
mean shear stress is negligible for tests in which the maximum shear
stress was less than 80% of the torsional yield strength. The author
attributed the scatter in data beyond 80% of the torsional yield strength
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to different methods that were used by the investigators for its de-
termination, and concluded that the results supported the conclusion by
precedent authors such as McAdam, that the mean torsion stress does
not influence the torsional fatigue strength, provided the static shear
yield stress τyp is not exceeded during cyclic loading. The method
proposed in this paper agrees well with this hypothesis. Smith’s work
has influenced later works extensively, as summarised by Sines [31],
who is cited by Papadopoulos et al. [32] to have stated that the effect of
mean shear stress is negligible for fatigue lives above 106 cycles, where
the fatigue limit usually occurs, provided that the torsional yield
strength is not exceeded. For lower fatigue lives, the slope of the tor-
sional fatigue line in a Haigh-like τm–τa diagram is negative. This hy-
pothesis is in accordance with Eq. (1) for the case of the fatigue limit,
and is represented schematically in Fig. 1a [32].

In the late 1940s and early 1950s, several investigators performed
multiaxial fatigue campaigns, including torsional fatigue loading with
static shear stresses [10–12], which led them to conclude on the in-
fluence of mean shear stresses, even below the torsional yield strength.
Fig. 1b illustrates the results obtained by Findley [12] for an aeronautic
aluminium. Two different domains can be identified: an approximately
linear influencing region in the elastic domain, which is the slope of the
Haigh diagram in torsion, which is nearly constant with the number of

cycles, even for fatigue lives above 106 cycles; and a non-linear region
above the elastic domain with a stronger influence of mean shear stress.
It should be noted that this aluminium alloy appears not to have the
pseudo-fatigue limit below 108 cycles.

In 1956, in the context of the 1st International Conference of
Fatigue, Findley [33] and Marin [34] proposed their multiaxial fatigue
methods, which take into account the effect of mean shear stresses.
Findley took into account all previous performed tests, and assumed
that the influence of mean stress is small for torsion and stronger for the
bending and axial of ductile metals, but strong for the torsion, bending
and axial of cast irons. Marin presented his method with an extensive
multiaxial fatigue database, including 289 strength values from 23
series of tests, and obtained an average standard deviation of only 3.6%
between experimental and theoretical values. The fatigue group of the
University of Bristol presented results of a complete fatigue campaign
on En25T NiCrMo steel. Chodorowski [13] presented on a campaign of
torsional fatigue with mean torsional stresses, and concluded that the
effect occurs even below the torsional yield strength. Crossland [35]
presented on the torsional fatigue strength of the same En25T steel with
high hydrostatic pressures, and presented a linear function of the von
Mises stress amplitude that was corrected with maximum hydrostatic
stresses, which fitted the results of axial fatigue with mean axial loads

Nomenclature

R fatigue ratio σmin/σmax

Rτ torsional fatigue ratio τmin/τmax

σuts ultimate tensile strength
τuss ultimate shear strength
τuss

s estimated ultimate shear strength
σyp axial yield strength
τyp torsional yield strength
Mσ mean axial stress sensitivity index
Mτ mean torsional stress sensitivity index
λF 1st parameter of Findley's critical plane method
βF 2nd parameter of Findley's critical plane method
σa amplitude of axial fatigue stress
σm mean component of axial fatigue stress
τa amplitude of torsional fatigue stress
τm mean component of torsional fatigue stress

τmin minimum value of torsional fatigue stress
τmax maximum value of torsional fatigue stress
σ−1 fully reversed axial fatigue limit
τ−1 fully reversed torsional fatigue limit
τ0 repeated torsion fatigue limit
κ ratio of fully reversed axial and torsional fatigue limits

σ−1/τ−1

N life (number of cycles to failure)
∗τa amplitude of shear stress in the critical plane

∗Nmax maximum normal stress to the critical plane
A elongation at fracture (%)
Z reduction in area (%)
N number of cycles
ktt stress concentration factor in torsion
J2 second invariant of the stress deviator tensor
WD elastic energy of distortion

a. Sines–Papadopoulos hypothesis [32], b. experimental results by Findley [12]
Fig. 1. Aluminium 76S-T61 torsional Haigh diagrams. a. Sines–Papadopoulos hypothesis [32], b. experimental results by Findley [12].
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and torsional tests with hydrostatic stresses. Crossland admitted in a
subsequent discussion [36] that the mean-shear-stress effect on the
torsional fatigue strength was demonstrated clearly and conclusively
for the first time by Chodorowski [13], and remarked on the need for an
extension of the theory that he had proposed to include the mean-shear-
stress effect and to take into account the anisotropy.

In the 1970s and 1980s, large campaigns of multiaxial fatigue were
conducted in Germany [15–19], which lead to the conclusion of the
influence of mean torsional stresses. In consequence, several methods
were proposed, including this effect, such as those of Grubi-
sic–Simbürger [37] and Liu–Zenner [38] amongst others. Modern de-
sign rules, such as the FKM Guideline [39,40], include the effect of
mean shear stresses in torsional fatigue. The effect for ductile steels is
approximately 58% of the effect of axial static stresses in the pure axial
fatigue loading case. This is expressed through Eq. (3), which presents
the relationship between the slopes of the Haigh diagram axial and the
torsional diagrams, Mσ and Mτ respectively:

=M M
3τ
σ

(3)

A mean stress sensitivity that is higher in axial than in torsion was
also reported by Findley [24], and in a recent paper by Mayer et al. [41]
for a VDSiCr spring steel. The results in torsion for the latter report
could be fitted by the Gerber line in the Haigh torsional diagram [23].

More methods were developed in the 1990s and 2000s, including
the mean-shear-stress effect, such as that by Robert [42], which de-
velops the critical plane of Findley; Froustey–Lasserre [43], which is
based on the total energy approach; and the critical plane of Papuga
[44], which is based on empirical considerations. In a recent review of
multiaxial fatigue methods [45], the methods which take into account
the effect of the mean shear stresses have a better experimental
agreement with the tests with static torsional stresses than those
methods which neglect the effect.

Other investigations related to the torsional fatigue have been per-
formed in the recent years. There is currently intense research on the
effect of mean stress in notched components [46,47]. Moreover, nu-
merous investigations have been performed in the torsional fatigue of

steel wires [48–50].
The objective of this study is to determine the torsional fatigue

behaviour of a 34CrNiMo6 steel with a tensile strength of 1210MPa
and a tensile yield strength of 1084MPa, to provide a fatigue model for
torsional fatigue with mean shear stresses. A review from relevant re-
sults of the literature gives support to the idea that the mean shear
stress effect is not negligible in ductile metals, but it is less pronounced
than the mean axial stress effect. A torsion test campaign on
34CrNiMo6 steel was conducted with different combinations of static
and variable shear stresses, and the results were compared with the
predictions from the multiaxial fatigue criteria. The experimental re-
sults on torsional fatigue show that the mean shear stress effect cannot
be neglected, especially when the maximum yield strength is exceeded.
Finally, taking advantage of the formulation of the proposed torsional
fatigue modelling, a multiaxial fatigue criterion is developed as an
improvement of the Crossland method to take into account the mean
shear stress effect.

2. Review of relevant results from the literature

The effect of mean torsion in the torsional fatigue limit is reviewed
and summarized next. A detailed study of the available literature results
allows for a determination of the range of validity of classic hypotheses,
which states the non-influence of mean shear stresses in the torsional
fatigue strength (as long as the maximum shear stress is within the
torsional yield strength) and is used by the mesoscopic methods of Dang
Van [51] and Papadopoulos [52]. The mean stress effect in torsion of
ductile and fragile materials is compared with the mean stress effect in
uniaxial fatigue to determine if the hypotheses that were followed to
derive the Findley critical plane method [53] were correct. Moreover,
this study will allow for conclusions to be inferred regarding the shape
of the Haigh torsional diagram and modelling through classic lines that
were used in uniaxial fatigue.

Following the trend of other authors such as Smith [9] and Davoli
et al. [22], the results have been plotted in a normalized maximum
stress versus alternating stress diagram. In this type of diagram, the
maximum shear stress of the cycle τmax is expressed as a fraction of the

Fig. 2. Normalized maximum shear stress-alternating shear stress diagram, 25 steel and aluminium alloys represented [6–23] and the 34CrNiMo6 of this work.
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static torsional shearing yield strength τyp, and is plotted as an abscissa,
and the alternating shear stress τa is expressed as a fraction of the fully
reversed fatigue limit τ−1 and is plotted as an ordinate.

Ninety experimental results for 26 different steels and aluminium
alloys with unnotched specimens for lives above 106 cycles have been
collected, including all the experimental results known by the authors,
which are represented in Fig. 2. This database includes the pioneering
extensive campaign of Moore and Jasper [6,7] and the results by Smith
[8]. It also includes results of ductile materials [10–12], which are
taken into account to develop the well-known methods of Marin and
Findley and the results by Chodorowski [13], which are considered
definitive proof of the influence of the mean shear stress even below the
torsional yield strength τyp. Newer results have been included in the
database, some of which have not appeared in a comparison of torsional
experimental results [14–15,17–18,21,23], and the results of this ex-
perimental campaign are also included. Fig. 2 supports the conclusion
inferred by Smith, as the effect of mean shear stresses is, in general, low
for maximum shear stresses below 80% of the τyp. The extension of
Smith’s conclusion for the 100% of τyp appears to be doubtful because
of the number of tests in which the torsional fatigue strength decreases.
Smith's hypothesis is fulfilled for the steel that was analysed here
(yellow dots in Figs. 2 and 3), with less than 1% error.

Some authors, such as Findley [53], considered that the conclusion
stated on the non-influence of the mean shear stresses on the torsional
fatigue strength was influenced by the plotting method based on the
maximum stress-alternating stress diagram. The fully reversed torsional
fatigue limit is usually 2/3 of the torsional yield strength [25], which,
in general, is quite close to 80% of the torsional yield strength τyp, so
few tests have been performed below the torsional yield strength. The
results of the fully reversed torsional are usually included in the dia-
gram [9,22], and provided that these tests represent a great percentage
of the number of points that are represented below the torsional yield
strength, the visual appearance of the non-influence of the mean shear
stresses below the torsional yield strength is increased.

The normalized τm–τa diagram in Fig. 3 shows the experimental
results of ductile materials for which the maximum shear stress is
within the torsional yield strength. This reappraisal of the diagram of

Fig. 2 suggests that, in general, the fatigue strength in torsion tends to
decrease slightly with an increase in mean stresses. For the 25 torsion
fatigue tests with non-zero mean shear stresses in which the maximum
shear stress is below the torsional yield strength, the fatigue strength
was increased only in two tests, whereas in 23 other tests, the influence
of mean shear stress had a detrimental effect.

For the uniaxial case, the results are usually plotted in a Haigh
diagram, in which the mean axial stress σm is normalized with the ul-
timate tensile strength σuts. Some authors use a torsional Haigh diagram
in which the mean torsional stress is normalized in terms of the ultimate
torsional strength τuss. For instance, in a recent paper, Mayer et al. [23]
found that the mean-shear-stress effect on a VDSiCr spring steel could
be modelled through Gerber's parabola in the torsional Haigh diagram.
The same idea was proposed by Sauer [6] in 1948 for a 14S-T alumi-
nium alloy. Both experimental results are presented in a normalized
Haigh torsional diagram in Fig. 4. The Gerber line, Eq. (4), shows a
horizontal slope in the intersection with the axis of ordinates, which
suggests that the effect of mean shear stresses is negligible for low va-
lues, and increases progressively for higher mean shear stresses.

⎜ ⎟⎜ ⎟= ⎛

⎝
−⎛

⎝
⎞
⎠

⎞

⎠
−τ τ τ

τ
· 1a

m

uss
1

2

(4)

The elliptical relationship for torsion, represented in Eq. (5), shows
also a horizontal slope in the intersection with the axis of ordinates. The
mean shear stress effect is less pronounced than the one predicted by
the Gerber line.

⎜ ⎟= −⎛
⎝

⎞
⎠

−τ τ τ
τ

· 1a
m

uss
1

2

(5)

The Goodman line for torsion, Eq. (6), represents a linear influence
of the mean shear stress on the torsional fatigue strength.

⎜ ⎟= ⎛
⎝

− ⎞
⎠

−τ τ τ
τ

· 1a
m

uss
1

(6)

The complete database is plotted in a normalized Haigh diagram,
Fig. 6. For some steels, in which the τuss value is unavailable, the

Fig. 3. Mean-shear-stress effect, represented only the tests in which the maximum shear stress is below the torsional yield strength.
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estimated static shear strength τuss
s was calculated by means of Eq. (7),

based on the collection of data analysed by Smith [5]:

≈τ σ0.75uss
s

uts (7)

In the Haigh torsional diagram (Fig. 5), 53.4% of the data lie be-
tween the Gerber and Goodman lines, and the remaining 46.6% lies

over the Gerber line. No result lies below the Goodman line. However,
for the uniaxial Haigh diagram σm–σa, some authors [54] have found
that ∼90% of the results lie between the Gerber and Goodman lines.
This will lead to the conclusion that the mean stress effect is lower in
torsion than in axial for ductile materials.

For fragile materials, Findley [53] considered that the mean-shear-

Fig. 4. Normalized torsional Haigh diagram with the experimental results of a 14S-T aluminium alloy [10] and a VDSiCr spring steel [23].

Fig. 5. Normalized torsional Haigh diagram, 25 different steel and aluminium alloys represented [6–23] and the 34CrNiMo6 of this work.
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stress effect is as important as the mean axial loads for the uniaxial case.
To test this hypothesis, eight different cast irons have been collected
from the literature [9],[26–30], and have been represented in Fig. 6.
The estimated ultimate torsional strength is approximately equal to the
ultimate tensile strength, as the Worst Principal Stress criterion is ful-
filled [55]. This can be represented through Eq. (8):

≈τ σuss
s

uts (8)

For the cast irons, some of the results lie below the Goodman line.
Smith’s conclusions in [9] remark on the great impact of mean torsional
stresses in fragile materials. The Smith line, Eq. (9) was recommended
for design purposes. The same line was recommended for the axial fa-
tigue.

=
−

+
−

( )
( )

τ τ ·
1

1
a

τ
τ

τ
τ

1

m
uss

m
uss (9)

Therefore, it can be concluded that the mean stress effect is lower in
torsion than the axial mean stress effect for ductile materials, but is
strong in torsion and axial for cast irons, which are considered to be
fragile materials.

3. Effect of mean shear stress in multiaxial fatigue theoretical
models

Amongst the multiaxial fatigue methods, the Marin [34] method,
which is based on stress invariants; the Findley [33] critical-plane
method and the energetic approach that is based on the method of
Froustey–Lasserre [43] will be considered. These methods take into
account the effect of mean shear stresses in the torsional fatigue case,
and can be expressed easily through analytic formulations for the tor-
sion case.

The Marin method [34] is based on stress invariants, and can be

expressed through Eq. (10):

⎛

⎝
⎜

⎞
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2,

1

2
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2

(10)

where √J2,a and √J2,m are the amplitude and the mean value of the
square root of the second invariant of the stress deviator, and σ−1 is the
fully reversed fatigue strength in bending or tension. For pure torsion
tests, it can be expressed as follows:

⎜ ⎟⩽ −⎛
⎝

⎞
⎠

−τ σ τ
σ3

· 1 3 ·
a

m

uts

1
2

(11)

As given by Eq. (11), the Marin method is sensitive to the mean
shear stress, and is represented by an ellipse in the Haigh torsional
diagram. The von Mises relationship is conserved; therefore, the ratio
between the fully reversed axial (σ−1) and the fully reversed torsional
fatigue limit (τ−1) is equal to √3, which is not verified experimentally
for this steel. The fully reversed axial fatigue limit σ−1 of this steel has
been determined in an axial fatigue campaign through a staircase
method according to ISO 12107:2012 [56] with a step of 10MPa, and a
value of σ−1= 615MPa has been obtained [57]. Therefore, the fatigue
ratio κ= σ−1/τ−1 is equal to 1.42.

The Findley method [33] is a critical plane approach that is based
on the plane that maximises the damage function as given by:

= ∗ + ∗f ϕ θ τ ϕ θ α N ϕ θ( , ) ( , ) · ( , )a F max (12)

Once the pair of angles (φ∗, θ∗) have been obtained for which this
function is a maximum, the fatigue indicator parameter as given by Eq.
(10) is computed, where αF and λF are material parameters that can be
identified from endurance fatigue limits, and are usually the fully re-
versed axial and torsional fatigue limits (σ−1 and τ−1).

∗ + ∗ ⩽∗ ∗ ∗ ∗τ ϕ θ α N ϕ θ λ( , ) · ( , )a F Fmax (13)

Fig. 6. Normalized Haigh torsional diagram showing eight different cast irons [9,26–30]
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Findley's method can be applied analytically to pure torsion tests
(14):

⩽
+ − −

+
τ

λ α λ α τ α τ
α

· ·
1a

F F F F m F m

F

2 2 2 2 2 2

2 (14)

The constants αF and λF depend on the value of the fatigue ratio κ=
σ−1/τ−1. When κ is equal to 2.0, which corresponds to the Tresca
criterion, αF becomes 0.0, so that the mean shear stresses produce no
effect on the torsional fatigue strength. For materials that follow the
Rankine maximum principal stress criterion, that is: κ ≈ 1, the pre-
dicted influence of the mean shear stress is very high. This theory ex-
plains the fact that the influence of mean stress is small for the torsion
of ductile metals, but is strong for the torsion of cast irons.

The Froustey and Laserre method [43] is based on energetic con-
siderations. When this method is applied to the pure torsion case,
analytic Eq. (15) is derived:

⎜ ⎟⩽ −⎛
⎝

⎞
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−τ τ κ τ
σ

· 1 ·
a

m

uts
1

2
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Eq. (15) is an ellipse in the Haigh torsional diagram τm–τa. A visual
inspection of the terms indicates that the derived formula is similar to
that of Marin, but the experimental fatigue ratio κ is taken into account
instead of the von Mises relationship.

Some methods do not take into account the mean shear stress effect,
as the Crossland stress invariant method [35], and other methodologies
such as the ones based on the mesoscopic theory, namely the Papado-
poulos integral method [52] and the Dang Van critical plane method
[51].

4. Testing procedure

4.1. Material

The material that was used in this fatigue campaign was high-
strength 34CrNiMo6 steel that was provided by Thyssen–Krupp in 30-
mm cross-section diameter forged bars. The heat treatment consisted of
normalization at 900 °C, followed by quenching in oil and tempering at
570 °C. The resulting microstructure was ductile-tempered martensite.

The certified chemical composition is presented in Table 1. The
monotonic mechanical properties of this steel are given in Table 2, and
show a ductile behaviour.

This steel shows a homogenous microstructure that is comprised of
fine tempered martensite, with a banded orientation of the inclusions in
the longitudinal section that are not visible in the transverse section
(Fig. 7a and b). As it was observed in other previous investigations
related to the 34CrNiMo6 steel, porosity and many inclusions of man-
ganese sulphide and alumina with different sizes were found [58,59],
being round-shaped and small, with maximum defect size equal to
√area≈ 5 µm.

4.2. Specimens and testing machine

Fatigue tests were performed on standard hourglass specimens
whose dimensions are given in Fig. 8. Hourglass-shaped specimens
were chosen because this geometry allows for the concentration of
failures in a limited specimen area and reduces the scatter. Similar
specimens have been used in previous campaigns in quenched and
tempered steels, as in [22]. The value of the stress concentration factor
in torsion ktt is lower in this case than in the cited campaign, and a
value of ktt = 1.03 has been obtained according to the Peterson for-
mulas for stress concentration [60].

The specimens were manufactured according to the recommenda-
tions of ASTM E-466 [61]. After the machining processes, the following
residual stresses were measured at the surface of the machined speci-
mens: −340MPa in the tangential direction and −280MPa in the

longitudinal direction. The machined specimens were subjected to a
stress-relieve heat treatment at 190 °C for 24 h to reduce residual
stresses that were induced by machining, following the procedure of
Nascimento et al. [62] to avoid Tempered Martensite Embrittlement
(TME). This stress relieving process allowed to reduce the residual
stresses of the machined specimens to −250MPa in the tangential di-
rection and −220MPa in the longitudinal direction. These stresses
disappear within 10 µm in depth direction. The final process was a
conventional polishing with progressively finer emery papers from
P800 to P4000, to obtain a mirror finish. The residual stresses of the
polished specimens were measured at the surface, taking a value of
−30MPa in the longitudinal and tangential directions. A final average
roughness Ra=0.03 µm was measured.

Fatigue tests were performed in the laboratories of the ENSAM at
the Bordeaux campus (France), on a servo-hydraulic bending-torsion
fatigue machine with multiple actuators, a maximum available torque
of 150 N·m and at 50 Hz. This testing machine was used previously in
other multiaxial fatigue campaigns, such as those of Froustey–Lasserre.
[63].

The bending moment was controlled during the tests and was set to
0.0 N·m to ensure that the loading case was pure torsion. The run-out
was fixed at 2× 106 cycles, according to the recommendations for this
type of steel [64]. The failure criterion was defined as a 10% loss in
specimen rigidity, as was conducted in other similar campaigns of
torsional fatigue with mean shear stresses [22]. This enabled the test to
be interrupted with cracks of an approximately 0.5-mm depth on 10-
mm-diameter specimens.

5. Results and experimental correlation with multiaxial fatigue
models

5.1. Fatigue test results

A fatigue campaign of torsional fatigue with five levels of mean
shear stresses has been performed, namely τm=0, 150, 250, 350 and
500MPa, with a total number of 83 specimens considering all the tests.
Tests were stopped at a maximum fatigue life of 2×106 cycles, based
on the recommendations for the number of cycles of the fatigue limit for
this type of steel [64] and a previous campaign of a similar material
[24]. The inclined part of the S–N curves and the subsequent staircases
were determined following the ISO standard method [56]. This proce-
dure enables to optimise the number of specimens, so that the first run-
out for the inclined part of the S-N curve can be used to start the
staircase process. For the superimposed static shear stress of
τm=500MPa, the slope of the S–N curve was nearly horizontal, so
testing was limited to the staircase. In Fig. 9, the S–N curves are pre-
sented, and show a measurable effect of the mean shear stresses for the
entire fatigue-life range: 5× 104 < N < 2×106 cycles.

Based on the recommendations of previous campaigns [12], the
staircase for the fully reversed torsional fatigue limit τ−1 was per-
formed with a higher number of specimens, as such data are usually
used to adjust the multiaxial fatigue methods, and therefore they are
convenient to reduce the uncertainty. The obtained values of the tor-
sional fatigue strengths at 2×106 cycles are shown in Table 3.

The results for 2×106 cycles are plotted in a Haigh torsional dia-
gram, Fig. 10, and are interpolated through a polynomial line. The
results show that the effect of the mean shear stresses is negligible as
long as the maximum shear strength τmax is below the torsional yield
strength τyp. The results show a convex upward function in the Haigh

Table 1
Chemical composition of 34CrNiMo6 steel (at.%).

C Si Mn P S Cr Mo Ni Fe

0.345 0.275 0.710 0.0075 0.003 1.565 0.237 1.565 Balance
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torsional diagram.

5.2. Fractographic analysis of the specimens

Fractographic analysis is not essential for the quantitative purposes
of this work, but it allows for an observation of the planes of failure and
the nature of the fatigue failure. As usually observed in the high cycle
fatigue region [22], crack initiation occurs at the very late stage of the
fatigue life: a macroscopic crack was not observed until very few cycles
before the final fracture. The number of initiated cracks increased with
the level of cyclic torsional stresses. For instance, three or more in-
itiated cracks existed for shear stress amplitudes that are equal to or
higher than 480MPa, irrespective of the mean shear stress that is ap-
plied.

Crack nucleation occurred in planes near the maximum shear stress
planes for mean shear stresses up to 350MPa, with maximum angular
deviations of 15° (Fig. 11). The cracks can be propagated in the max-
imum normal or maximum shear stress planes, irrespective of the mean
shear stress that was applied. The phenomenon of crack branching was
also observed.

However, a different pattern occurred for the 500-MPa mean-shear-
stress loading case: in some specimens, the observed macroscopic crack
was placed near the maximum principal stress plane (Fig. 12). This
observation can be explained through the aid of the mean shear stress in
Mode I; stage-II crack growth has already been observed by other in-
vestigators [25], and is caused by an increase in maximum plastic zone
size.

5.3. Correlation of the experimental results with multiaxial fatigue theories

In Fig. 13, the different predictions are represented in a Haigh tor-
sional diagram with the experimental results. In Table 4, the relative
errors (%) of the different theories are presented for N=2×106 cy-
cles. As observed, the Froustey–Lasserre method yields the best agree-
ment with the experimental results from the selected methods. Marin's

method shows a conservative behaviour because the von Mises re-
lationship is not verified. Findley's method overestimates slightly the
detrimental effect of the mean shear stresses for three out of four tests,
which show good agreement with the experimental results and an error
below 5%. The methods that not dependent on the mean shear stress
effect, such as the Crossland method and the methodologies based on
the mesoscopic approach, namely, the Dang Van [51] critical plane, or
the Papadopoulos [52] integral method, agree for the only testing result
below the torsional yield strength. For this case, the response is similar
to the energetic method of Froustey–Lasserre, as claimed in [65].
However, the error increases for high mean torsional stresses.

6. Development of a multiaxial fatigue criterion for a 34CrNiMo6
steel

6.1. Modelling of torsional fatigue with mean torsional stresses

An ellipse in the Haigh torsional diagram that fits the results of
34CrNiMo steel can be expressed through Eq. (16), which is a mod-
ification of the Marin criterion. In Eq. (16), “a” and “b” are constants
whose values are the longitudes of the vertical and horizontal axis,
respectively, of the ellipse that is drawn in the Haigh torsional diagram
τm–τa.
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Eq. (16) meets the condition for isotropic materials, that is, the
polarity of the mean shear stress has no influence, which results in a
symmetrical Haigh torsional diagram. This equation can be explained in
terms of a balance of energy of distortion: The elastic energy of dis-
tortion WD is proportional to the second invariant of the stress deviator
tensor J2. Therefore, Eq. (16) equalizes the energy that is stored for the
static torsional loading to the fatigue torsional loading, where “a” and
“b” are constants of the material. The constants “a” and “b” of Eq. (16)
represent respectively the alternating and static von Mises stress at
which the material fails [34]. The values of the constants “a” and “b”
can be determined by means of two different torsional fatigue tests,
namely the fully reversed and repeated torsional fatigue limits, τ−1 and
τ0, as explained in Appendix A: Derivation of the parameters.

However, Eq. (16) is not suitable for a general multiaxial fatigue
loading, as it is not sensitive to the hydrostatic stresses, and predicts a
similar influence of the mean shear and mean axial stress effects, which
is not in agreement with the experimental results for ductile materials
in the literature.

Table 2
Monotonic mechanical properties of 34CrNiMo6 steel.

Monotonic properties Symbol Value

Ultimate tensile strength σuts 1210MPa
Yield strength σyp 1084MPa
Elongation at fracture A 12.2%
Reduction of area Z 60.2%

a. Longitudinal section b. Transverse section
Fig. 7. Microstructure of 34CrNiMo6 steel.
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6.2. Extension of the Crossland method to take into account the mean shear
stress effect

The Froustey–Lasserre method offers excellent agreement for this
ductile material in the torsional fatigue loading case with mean shear
stresses. However, its application to axial fatigue loading with mean
axial stresses yields a symmetrical Haigh diagram σm–σa. It is accepted
in the literature that the Haigh diagrams are non-symmetrical, with an
increasing trend for the mean compressive stresses due to the effect of
the hydrostatic stresses. The application of Eq. (16) to the uniaxial case
results in a symmetrical Haigh diagram σm–σa, which contradicts the
experimental results for most ductile steels [57,66]. Moreover, Cross-
land [35] demonstrated that mean compressive hydrostatic stresses
benefited the torsional fatigue limit, and he proposed a linear function
to model their effect.

According to the conclusions of the extensive review of the multi-
axial fatigue methods performed by Papuga [45], the mean stress effect
is the most important factor in determining the accuracy of a multiaxial
fatigue method. As mentioned in [35], Crossland remarked on the need
for an extension of the theory that he had proposed to include the

Fig. 8. “Hourglass” specimen used in torsional fatigue tests. Dimensions in millimetres.

Fig. 9. S–N curves with different levels of mean shear stress.

Table 3
Obtained torsional fatigue strengths at 2× 106 cycles.

τm (MPa) τa (MPa) Standard Deviation (MPa) No. specimens (staircase)

0 432.5 7 15
150 428.6 5 7
250 409.1 7 7
350 394.3 3 7
500 337.1 5 7
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mean-shear-stress effect. The Eq. (16) can be modified by adding the
maximum hydrostatic stress σH,max, to take into account the beneficial
effect of the compressive hydrostatic stresses. The extension of the
Crossland method to take into account the mean shear stress effect is
expressed by means of Eq. (17):
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Eq. (17) conserves the linear influence of the maximum hydrostatic
stress on the von Mises stress amplitude, and takes into account the

mean-shear-stress effect.
The determination of the parameters can be done with 3 different

tests in order to determine the 3 constants “a”, “b” and “c”. The values
of the constants “a” and “b” can be adjusted by means of two different
torsional tests, as there are no hydrostatic stresses involved in the pure
torsion tests. The value of the constant “c” can be adjusted by using
another test in which the maximum hydrostatic stress takes a non-zero
value, as the fully reversed axial fatigue limit σ−1. The algebraic de-
termination of the values of the constants “a”, “b” and “c” is presented
in Appendix A, and their values shown in Eqs. (18a)–(18c):

= −a τ 1 (18a)
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Fig. 10. Torsional Haigh diagram with the experimental results at 2×106 cycles.

Fig. 11. Surface crack patterns in the failed specimens: (a) τa = 440MPa; τm=0MPa; Ncycles= 1,026,120, (b) τa= 430MPa; τm=150MPa; Ncycles= 812,704,
(c) τa= 440MPa; τm=250MPa; Ncycles= 174,792, (d) τa= 405MPa; τm=350MPa; Ncycles= 709,944.
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The proposed method is applied to the 34CrNiMo6 steel, and the
parameters for this material are shown in Table 5. The application of
the method presented in Eq. (17) to the Haigh torsional diagram is
represented in Fig. 14 and in the Haigh axial diagram in Fig. 15, to-
gether with the experimental results in torsion and axial fatigue
loading. In Tables 6 and 7, the relative errors of the proposed method
are presented for the torsional and axial fatigue loading cases respec-
tively.

The proposed method predicts an asymmetric shape in the Haigh
diagram (Fig. 15), with an increase in fatigue strength for low to
medium values of mean axial compressive stresses, and a decrease of
the fatigue strength for tensile mean loads, giving support to the
modelling based on the detrimental effect of the maximum hydrostatic
stresses proposed by Crossland.

Moreover, by adding the maximum hydrostatic stress term in the
proposed multiaxial damage function, the mean stress effect is in-
creased in axial compared with the torsion case, which explains why
the effect of mean stress is higher in the axial and bending directions
than for torsion of ductile materials. This result has been documented in

the review of the experimental results.
Although the proposed function (17) has been developed and ver-

ified experimentally for the 34CrNiMo6 steel, it could be used for other
isotropic ductile materials. Its application should be limited to isotropic
materials in the range that is defined by other authors for Crossland-
based methods [32], 1.25 < κ < √3, which includes mild steels and
low-alloy steels [67] and aluminium alloys. A large database of mate-
rials with the values of the κ ratio can also be found in [45]. The upper
limit of the proposed method arises because, in the von Mises re-
lationship (κ= √3), the method becomes the Marin function, which
was devised for materials where there was no effect of hydrostatic
stresses. For a lower fatigue ratio κ, the theoretical influence of the
hydrostatic stresses increases, which increases the effect of mean axial
stresses but preserves the low influence of the mean shear stresses, as
demonstrated in the review of the experimental results on steels and
aluminium alloys. Sines [31] states that, for very low fatigue ratios
(approximately κ < 1.25), which correspond to materials with large
defects, such as cast irons [9,26–30], and cast aluminium alloys [68,69]
the nature of the fatigue failure changes, and the failure can be de-
scribed through a maximum normal stress criterion. As shown in the
review of the experimental results on cast irons, the effect of the mean
shear stresses is strong for materials with large defects, and the pro-
posed function will underestimate the mean-shear-stress effect for this
type of materials.

Finally, from a computational cost point of view, it can be said that
this method, which pertains to the class of the stress invariants
methods, is one order of magnitude less demanding than the critical
plane methods in terms of computational cost, and two orders of
magnitude when compared to the integral methods [70].

7. Conclusions

The detrimental effect of the mean shear stresses on torsional fa-
tigue strength is measurable for the studied range of fatigue life, be-
tween 50,000 and 2× 106 cycles. Mean shear stresses had a minor
impact on the torsional fatigue strength at 2× 106 cycles of the
34CrNiMo6 steel as long as the maximum shear stress was below the
torsional yield strength. In fact, the experimental points that represent
the fatigue strength at 2× 106 cycles as plotted in the Haigh torsional
diagram show a nearly horizontal slope for the intersection with the
axis of ordinates (Fig. 10).

The invariants-based method of Marin [34], the critical-plane-based
criterion of Findley [33], and the energetic method of Froustey–-
Lasserre [43] were compared with the experimental results. The Marin
method showed a conservative behaviour (19–26.5% of error), whereas
the Findley criterion was slightly conservative, with a mean value of the
error of 7.9%. The energetic Froustey–Laserre method showed excellent
agreement for all tests, with a mean value of the error of 1%. The
methods that were based on the mesoscopic approach, which are in-
dependent of the mean shear stress, exhibit a similar behaviour to the
energetic approach as long as the maximum shear stress is below the
torsional yield strength, which confirms the statements of Morel et al.
[65]. The agreement of the methods of Papadopoulos and Dang Van is
excellent (error < 1%) for the only loading case (τm=150MPa) in
which the yield strength is not exceeded.

The experimental results on torsional fatigue show that the mean
shear stress effect cannot be neglected, especially when the maximum
yield strength is exceeded. The mean shear stress effect can be modelled
with the elliptical relationship shown in Eq. (16). The physical inter-
pretation of the proposed model to deal with mean shear stresses is a
balance of the energy of distortion. The resulting Haigh torsional dia-
gram is an ellipse, and respects the condition for isotropic materials of
the independence of the polarity of the mean shear stress.

Fig. 12. Surface crack patterns in the failed specimen: τa= 340MPa;
τm=500MPa; Ncycles= 944,988.
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Finally, taking advantage of the formulation of the proposed tor-
sional fatigue modelling, represented in Eq. (16), a multiaxial fatigue
criterion is developed as an improvement of the Crossland method to
take into account the mean shear stress effect. The extended method is
be expressed by means of Eq. (17). This multiaxial fatigue function
combines the functions of Marin and Crossland. The proposed method
meets the observed experimental behaviour in torsional fatigue of a
34CrNiMo6 steel, and offers a low mean-shear-stress sensitivity for low
static torsional loads, which increases gradually with the mean shear
stress.

The proposed method takes into account the beneficial effect of the
mean compressive axial stresses in uniaxial fatigue, as is well-

documented in the literature, and that the Marin and Froustey–Lasserre
methods do not predict. By including the maximum hydrostatic stress
term in the multiaxial damage function, the mean stress effect in the
axial direction is increased compared with the torsion case, which in-
dicates that the mean stress is higher in the axial direction than in
torsion for ductile materials, which has been documented in the ex-
perimental results.

The application of the proposed method should be limited to iso-
tropic materials whose fatigue ratio κ= σ−1/τ−1 is within the range
1.25 < κ < √3, which includes mild steels, low-alloy steels, and alu-
minium alloys. However, it is not suitable for materials with large de-
fects such as cast irons and aluminium cast alloys.

Fig. 13. Torsional Haigh diagram with predictions from various theories and experimental results at 2×106 cycles.

Table 4
Relative errors (%) of the different theories at 2× 106 cycles.

Error in τa (%) at 2× 106 cycles. (+) Conservative/(−) Non-conservative

τm (MPa) Marin Findley Froustey–Laserre No effect hypothesis

150 19.1 5.7 0.7 −0.9
250 19.0 6.9 −1.0 −5.7
350 22.1 10.0 0.0 −9.7
500 26.5 8.6 −3.8 −28.2

Table 5
Parameters of the proposed method applied to 34CrNiMo6 steel.

Parameters τ−1 τ0 σ−1 a b c

Values for 34CrNiMo6 steel 432.5 765.0 615.0 432.5 819.5 1145.1
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Fig. 14. Proposed method in a torsional Haigh diagram and experimental results at 2× 106 cycles.

Fig. 15. Haigh diagram with prediction from the proposed method together with the axial fatigue experimental results on 34CrNiMo6 steel [57].

Table 6
Relative errors in τa (%) of the proposed physical theory for N=2×106

cycles. Positive values mean conservative results predicted by the theory,
negative values non-conservative results.

τm (MPa) Proposed model (Eq. (17))

150 0.8
250 −0.6
350 0.8
500 −1.6
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Appendix A. Derivation of the parameters of the proposed multiaxial fatigue model

The derivation of the parameters takes into account previous works as those of Papadopoulos et al. [32] and Papuga et al. [44] to derive the
parameters. Three different tests will be necessary to adjust the parameters, namely the fully reversed axial and torsional fatigue limits σ−1 and τ−1,
and the repeated torsional fatigue limit τ0.

A.1. Fully reversed torsion fatigue test

The fully reversed torsion is suitable for the determination of the parameter “a” of Eq. (17), as the mean value of the second invariant of the
deviator tensor J2,m is equal to zero. Moreover, in pure torsion tests, there are no hydrostatic stresses involved. The application of the fully reversed
torsional fatigue limit τ−1 to Eq. (17) yields the following Eq. (A1):
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Therefore, the parameter “a” takes the value of the fully reversed torsional fatigue limit τ−1, as shown in Eq. (A2):

= −a τ 1 (A2)

A.2. Repeated torsion fatigue test

The repeated torsional fatigue limit τ0 is suitable for the determination of the parameter “b”, as the there is no hydrostatic energy involved in this
test and the parameter “a” has previously been determined. The application of this test to Eq. (17) yields Eq. (A3):
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Therefore, the parameter “b” can be expressed through Eq. (A4):

=
−

−( )
b τ

2 1 τ
τ

0

2·
0

1 (A4)

A.3. Fully reversed axial fatigue test

In the pure torsional fatigue tests, the hydrostatic stress is equal to zero. Therefore, an additional test with a non-zero maximum hydrostatic
σH,max is needed to derive the parameter “c”. The fully reversed axial fatigue test satisfies this condition, and it is usually applied in the derivation of
the parameters, as the value of J2,m is equal to zero. The maximum hydrostatic stress takes a value of σ−1/3. The quantity √J2,a takes a value of σ−1/
√3. The application of this test to Eq. (17) yields Eq. (A5):
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The parameter “c” can be expressed by means of Eq. (A6):

=
−
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(A6)
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