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deformations to compare different RVE types in the non-linear regime. 
Unlike other canonical boundary conditions, the uniform traction boundary 
conditions result in nearly identical effective responses for all types of the 
RVE indicating that it is less sensitive with respect to the underlying micro-
structure. The numerical examples furnish adequate informations to serve 
as benchmarks. 
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Abstract

Although both computational and analytical homogenization are well-established today, a thorough and systematic

study to compare them is missing in the literature. This manuscript aims to provide an exhaustive comparison of the

numerical computations and the analytical estimates such as Voigt, Reuss, Hashin–Shtrikman and composite cylinder

assemblage (CCA). The numerical computations are associated with canonical boundary conditions imposed on either

tetragonal RVE, hexagonal RVE or circular RVE using the finite element method. The circular RVE is employed to capture

an effective isotropic material response suitable to be compared with the associated analytical estimates. The analytical

results from CCA are in excellent agreement with the numerical results obtained from the circular RVE. We observe

that the circular RVE renders identical responses for both linear displacement and periodic boundary conditions. In

addition, the behavior of periodic and random micro-structures with different inclusion distributions are examined

under various boundary conditions. Strikingly, for some specific micro-structures, the effective shear modulus does

not lie within the Hashin–Shtrikman bounds. Finally, numerical simulations are carried out at finite deformations

to compare different RVE types in the non-linear regime. Unlike other canonical boundary conditions, the uniform

traction boundary conditions result in nearly identical effective responses for all types of the RVE indicating that it is

less sensitive with respect to the underlying micro-structure. The numerical examples furnish adequate informations

to serve as benchmarks.

Keywords: Homogenization, Hexagonal RVE, Circular RVE, Hashin–Shtrikman bounds, CCA, Composites

1. Introduction

Heterogeneous materials possess more complex behavior compared to their associated constituents. Therefore, com-

posites have been the subject of an increasing interest in many engineering applications in the past decades. The
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mechanical behavior of heterogeneous materials is highly dependent on their micro-structural characteristics. Con-

ducting experiments on numerous materials with various phases is not practical. Also, performing a numerical sim-

ulation on the whole macro-structure would include a huge number of variables which is extremely complicated, if

not impossible. As a result, micro-mechanically based determination of the overall response of composites is of great

significance.

Multi-scale methods have been developed to determine the overall response of heterogeneous media in terms of

the constitutive behavior of their underlying microstructures. Multi-scale methods are categorized into concurrent

methods and homogenization methods. In the concurrent methods [1–4], the problems at the microscopic and macro-

scopic scales are solved simultaneously, which requires a strong coupling between the two scales . In the homoge-

nization method [5–15], the micro-problem and macro-problem are solved separately. Homogenization pioneered by

Hill [16, 17] and Ogden [18] relies on (i) the assumption of the separation of the length scale between the micro- and

macro-problem and (ii) the energy equivalence between the two scales known as the Hill–Mandel condition [16, 19].

Furthermore, the homogenization methods fall into analytical homogenization and computational homogenization.

Pioneering contributions in analytical homogenization include [20–29] and later extended in [30–38]. See [39] for

some comparisons of analytical and computational approaches of micro-mechanics. Despite providing useful in-

formation, the analytical homogenization approach requires certain simplifications on the microstructure such as its

geometry and distribution pattern. On the contrary, the computational homogenization method is capable of dealing

with such complexities, thus it has been widely adopted in the past decades, see [40–55] among others. For detailed

reviews on computational homogenization, see [56–58] . Computational homogenization is essentially based on cal-

culating the macroscopic quantities from the solution of a boundary value problem at the micro-scale. Recently, a

number of methods have been developed to reduce the computational cost and increase the accuracy of multi-scale

analysis [59–63].

The average-field theory [64, 65] is employed in order to bridge the microscopic quantities to their macroscopic

counterparts. This theory relates the properties of continua at the macro-scale to the volume averages of their counter-

parts at the micro-scale. In doing so, the boundary conditions at the micro-scale are chosen such that the Hill–Mandel

condition is satisfied. A broader group of admissible boundary conditions to fill the gap between the homogeneous

boundary conditions was drived in [66]. The computational implementation algorithms of DBC and PBC are dis-

cussed in [67, 68]. The effects of various boundary conditions on the overall behavior of periodic unidirectional linear

composites has been investigated in [69]. Furthermore, [70–72] proposed a mixed-type boundary condition composed

of linear displacement boundary conditions and constant traction boundary conditions to obtain an elasticity tensor

that lies between the elasticity tensors obtained from homogeneous boundary conditions. For further details on the

2
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Table 1: Definitions of frequently used abbreviations and notations

DBC : displacement boundary condition M{•} : macroscopic {•} B : body of the domain

PBC : periodic boundary condition {•}N : Neumann part of {•} ∂B : boundary of the domain

TBC : traction boundary condition {•}D : Dirichlet part of {•} F : deformation gradient

CCA : composite cylinder assemblage {•}0 : {•} at material configuration ϕ : nonlinear deformation map

HSB : Hashin–Shtrikman bounds {•}t : {•} at spatial configuration N : unit normal vector

f : volume fraction ν : Poisson ratio t : traction vector

SR : stiffness ratio κ : bulk modulus ψ : free energy density

RVE : representative volume element λ : first Lamé parameter P : Piola stress

{•}p : prescribed {•} µ : second Lamé parameter A: Piola tangent

formulation, implementation and application of appropriate boundary conditions in the context of the computational

homogenization, see [73–79].

To establish a computational homogenization framework, it is essential to identify a representative volume element

(RVE). A proper RVE must be selected such that it contains enough details to sufficiently represent the microstructure of

the material and it has to be small enough to be considered as a microstructure surrounded by copies similar to itself,

so as to fulfill the assumption of scale separation. In most cases, a proper RVE for a random microstructure is regarded

as the smallest possible structure which could sufficiently capture the macroscopic response of the macro-structure.

For more details on the definition of the RVE, see [80–85] among others. Although small, the RVE could still be too

complex for computational homogenization. Thus, instead of studying a complex RVE, one could construct a simpler,

however statistically similar RVE also referred to as SSRVE, see [86, 87]. Here, the term RVE indicates a simplified

micro-structure in the sense of SSRVE [86, 87] or SRVE [88]. In this contribution, we present a systematic study on the

computational and analytical homogenization by considering three types of RVEs; tetragonal, hexagonal and circular

RVE, shown in Fig. 1. Note that the cutout of a real micro-structure with random distribution of particles can eventually

result in isotropic effective behavior. While tetragonal and hexagonal packings are space-filling, only the circular RVE

can furnish isotropic effective behavior suitable for comparing with analytical solutions here and it is the only RVE

that could reach the maximum volume fraction of a real cutout of a material.

Table 1 provides a list of definitions for frequently used abbreviations in this manuscript as well as symbols and

notations used to describe the mathematical aspects of the problem. The rest of the manuscript is organized as fol-

lows. The theory including the governing equations at both scales, bridging between the scales and satisfying the

Hill–Mandel condition via appropriate boundary conditions is presented in Section 2. Material modeling and an-

alytical approaches are detailed in Section 3, followed by a thorough comparison of the numerical and analytical

3
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Figure 1: Complex RVE and its simplified counterparts. The inclusion volume fraction at the cutout could reach 100%. The cutout (left) shall be
understood as the RVE. Three simplified RVEs are suggested to be sufficient to replace the cutout, namely tetragonal RVE, hexagonal RVE and
circular RVE. For tetragonal RVE, the maximum reachable volume fraction is 78.53%. For hexagonal RVE this value is 90.59% and for circular
RVE it could reach its maximum value, which is 100%. The cutout of the real micro-structure can eventually result in isotropic effective behavior.
Both tetragonal and hexagonal packings are space-filling, hence intuitively are suitable candidates for a simplified RVE. However, only the circular
RVE can furnish isotropic effective behavior resembling the real micro-structure. Furthermore, the circular RVE is the only simplified RVE that
could reach the maximum volume fraction of a real cutout of the material.

methods to predict the effective response of heterogeneous materials. Section 4 extends the computational homoge-

nization framework to finite deformations and the effects of RVE type and boundary condition are examined. Section 5

summarizes this work and provides further outlook.

2. Computational homogenization

This section elaborates on the theoretical aspects of computational homogenization and bridging the scales. The

content of this section is fairly standard, however, in order to set the stage, the important aspects of computational

homogenization are briefly reviewed. A detailed expositions on the formulation of computational homogenization

and the associated numerical implementation can be found in [9, 56, 89–91] among others. Central to computa-

tional homogenization is the separation of the length scales between the micro- and the macro-scale. The key idea

of computational homogenization is to identify the effective properties at the macro-scale through averaging of the

micro-problem, see [92–98]. At the micro scale, it is assumed that the constitutive response of each phase is known.

Solving the associated boundary value problem at the micro-scale and proper averaging over the RVE renders the

overall response at the macro-scale. The micro-problem could be either strain-driven or stress-driven. In strain-driven

homogenization, the macroscopic deformation gradient is prescribed and the macroscopic stress is calculated. On the

contrary, the macroscopic stress is prescribed in stress-driven homogenization for an unknown macroscopic defor-

mation gradient. This contribution is based on first-order strain-driven computational homogenization based on the

deformation gradient and the Piola stress. In this section, the macro-problem is formulated first. This is then followed

by the micro-problem definition. Finally, the micro-to-macro-transition and the Hill–Mandel condition are addressed

afterwards.

4
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Figure 2: Computational homogenization graphical summary. The material configuration at the macro-scale MB0 with the boundary of ∂MB0 is
mapped to its spatial counterpart MBt with the boundary of ∂MBt . The non-linear map Mϕ maps points MX from the material configuration to
Mx in the spatial configuration. Line elements are mapped from the material configuration to the spatial configuration via MF. The domain B0 at
the micro-scale corresponds to the RVE. In a strain-driven homogenization framework, the macroscopic deformation gradient is the input of the
micro-problem and the macroscopic Piola stress is obtained by solving the boundary value problem at the micro-scale.

2.1. Macro-problem definition

Let a macroscopic continuum body take the material configuration MB0 at time t = 0 and the spatial configuration

MBt at time t > 0, as shown in Fig. 2. The boundaries of the body in the material and the spatial configuration are

denoted as ∂MB0 and ∂MBt, respectively. Moreover, MN and Mn define the material and spatial outward unit normal

vectors to the boundaries. The material point MX is mapped to its spatial counterpart Mx via the nonlinear deformation

map Mϕ as Mx = Mϕ(MX). The infinitesimal line element dMX from the material configuration is mapped to dMx in the

spatial configuration via the linear map MF as dMx = MF · dMX where MF = MGradMϕ is the macroscopic deformation

gradient. In addition, the Jacobian determinant MJ = det MF maps the infinitesimal material volume element dMV

to its spatial counterpart dMv via dMv = MJ dMV . Finally, the normal map MJMF-t transforms the directional surface

element from the material configuration dMS = dMS MN to the directional surface element in the spatial configuration

dMs = dMs Mn as dMs = MJ MF-t · dMS. The governing equations for the macro-problem are the balances of linear and

angular momentum. For a quasi-static case, the balance of linear momentum reads

MDivMP + Mbp
0 = 0 in MB0 ,

MP ·MN = Mt0 on ∂MB0 , with Mt0 = Mtp
0 on ∂MB0,N ,

Mϕ0 = Mϕp
0 on ∂MB0,D , (1)

5
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where Mbp
0 represents the body force density in the material configuration and MP defines the macroscopic Piola stress.

The traction Mt0 acts on the boundary ∂MB0. The prescribed traction that acts on the Neumann portion of the boundary

∂MB0,N ⊂ ∂MB0 is denoted as Mtp
0 . The displacement that is applied to the boundary ∂MB0 is Mϕ0. The prescribed

displacement Mϕp
0 acts on the Dirichlet part of the boundary ∂MB0,D ⊂ ∂

MB0. The balance of the angular momentum at

the macro-scale reads

MP · MFt = MF · MPt , (2)

which is equivalent to the symmetry of the Cauchy stress.

2.2. Micro-problem definition

As illustrated in Fig. 2, the notations for the micro-problem mimic the macro-problem without the left superscript

“M”. The kinematics of the micro-problem such as points, line elements, surface elements and volume elements from

the material to spatial configuration read

x = ϕ(X) , dx = F · dX , ds = J F-t · dS , dv = J dV . (3)

Due to the scale separation assumption, the body forces vanish at the micro-scale. The balance of linear momentum

for the micro-problem holds as

DivP = 0 in B0 , P · N = t0 on ∂B0 , with t0 = tp
0 on ∂B0,N , ϕ0 = ϕp

0 on ∂B0,D . (4)

Finally, the balance of angular momentum reads

P · Ft = F · Pt . (5)

2.3. Micro-to-macro transition

The micro-to-macro transition is essentially a proper averaging of the quantities at the macro-scale to link them with

their counterparts at the micro-scale. The advantage of the micro-to-macro transition is that no assumptions are re-

quired regarding the constitutive behavior of the material at the macro-scale. This method is capable of incorporating

geometrical and physical nonlinearities without additional effort. As it is depicted in Fig. 2, the macroscopic deforma-

tion gradient is applied to the microstructure and the micro-problem is solved as a classical boundary value problem

6
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using the finite element method. The macroscopic Piola stress is then computed via proper averaging of the micro

Piola stress.

The macroscopic deformation gradient and Piola stress are related to their microscopic counterparts via averages

over the volume or the boundary of the RVE as

MF = 〈 F 〉 =
1
V0

∫
B0

F dV =
1
V0

∫
∂B0

ϕ ⊗ N dA and MP = 〈 P 〉 =
1
V0

∫
B0

P dV =
1
V0

∫
∂B0

t0 ⊗ X dA . (6)

Moreover, the Hill–Mandel condition necessitates the incremental energy equivalence between the two scales which

reads

MP : δMF !
=

1
V0

∫
B0

P : δF dV , (7)

as the volume average over the RVE. Hill’s lemma, transforms Eq. (7) into a surface integral according to

1
V0

∫
B0

P : δF dV − MP : δMF =

∫
∂B0

[δϕ − δMF · X] · [t0 −
MP · N] dA . (8)

Inserting Hill’s lemma (8) into the Hill–Mandel condition (7) yields

∫
∂B0

[δϕ − δMF · X] · [t0 −
MP · N] dA !

= 0 , (9)

which shall be understood as the Hill–Mandel condition in terms of a surface integral over the boundary of the RVE.

Various boundary conditions can fulfill the Hill–Mandel condition a priori, see [99, 100]. Among all the boundary

conditions that satisfy the Hill–Mandel condition, of practical significance are the canonical boundary conditions (i)

linear displacement boundary condition (DBC), (ii) uniform traction boundary condition (TBC) and (iii) periodic

displacement and anti-periodic traction (PBC) imposing

DBC : ϕ = MF · X , TBC : t0 = MP · N and PBC : [ϕ − MF · X] and [t0 −
MP · N] , (10)

on the boundary of the RVE. For strain-driven computational homogenization here the condition MF=〈 F 〉 is a priori

satisfied for both DBC and PBC. However, this is not the case for TBC and the condition MF=〈 F 〉 shall be regarded

as a constraint. It is noteworthy that all the above boundary conditions satisfy the balance of angular momentum at

the macro-scale. It is commonly accepted that DBC and TBC overestimate and underestimate PBC, respectively.

7
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3. Numerical versus analytical homogenization

In this section, first the material modeling of the problem is presented. This is then followed by a brief review of

the analytical methods developed to determine the overall response of composites for small strain linear elasticity.

Finally, a thorough comparison of numerical and analytical results for various RVE types is provided.

3.1. Material modeling

The constituents of heterogeneous materials at the micro-scale are assumed to be hyper-elastic with known behavior.

The bonding between the matrix and inclusion is considered perfect. Both matrix and inclusion behave according to

the free energy density

ψ(F) =
1
2
µ
[
F : F − 2 − 2 log J

]
+

1
2
λ log2 J , (11)

associated with a neo-Hookean response with Lamé parameters λ and µ whereby the bulk modulus associated with

the plane-strain condition of interest here relates to the Lamé parameters as κ = µ + λ. Using the Coleman–Noll

procedure, the Piola stress is derived as

P =
∂ψ

∂F
= µ

[
F − F-t

]
+ λ log J F-t . (12)

The corresponding fourth-order Piola tangent tensor reads

A =
∂P
∂F

= µ
[
I⊗I + F-t⊗F-1

]
+ λ

[
F-t ⊗ F-t − log J F-t⊗F-1

]
. (13)

The nonstandard tensor products ⊗ and ⊗ of two second-order tensors A and B are the forth order tensorsD = A⊗B

and C = A⊗B, respectively, with the components Di jkl = AikB jl and Ci jkl = AilB jk.

Small strain linear elasticity relates the stress σ to the strain ε according to the linear relation σ = C : ε in which

the strain ε and the fourth-order constitutive tensor C can be related to their counterparts at finite deformations via

ε = 1
2

[
Ft + F

]
− I and C = A|F=I = µ

[
I⊗I + I⊗I

]
+ λ

[
I ⊗ I

]
, (14)

and the stress σ reads

σ = Lin P = P|F=I +A|F=I :
[
F − I

]
= 2µε + λ

[
ε : I

]
I . (15)

8
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3.2. Analytical estimates at small strains

Analytical methods in homogenization have been established to derive a relation for the overall response of heteroge-

neous media. Analytical methods are based on certain simplifying assumptions so as to achieve an explicit analytical

solution. In this section the most significant and extensively used analytical estimates are briefly listed. Throughout

this manuscript, the matrix and inclusion properties are identified by the subscripts 1 and 2, respectively.

Voigt bounds correspond to a uniform strain field within the RVE resulting in the upper limit for the effective overall

response of the material as

κ = [1 − f ]κ1 + f κ2 and µ = [1 − f ]µ1 + fµ2 . (16)

where f is the inclusion volume fraction. Note that the uniform-strain assumption violates the balance of linear

momentum, in general. Thus, Voigt bounds shall only be understood as an upper unreachable bound. Reuss bounds

correspond to a uniform stress field within the RVE leading to the lower limit for the effective response of the material

as

κ =
κ1κ2

[1 − f ]κ2 + f κ1
and µ =

µ1µ2

[1 − f ]µ2 + fµ1
. (17)

The uniform-stress assumption violates the compatibility of the strain field and thus, Reuss bounds shall only be

understood as a lower unreachable bound.

Hashin and Rosen [24] proposed a predictive model based on a Composite Cylinder Assemblage (CCA) to obtain

the bulk and shear moduli of transversely isotropic composites having circular inclusions in hexagonal and random

arrays. The effective coefficients in this approach are frequently used to date. In this method, the upper and lower

bounds on the bulk modulus coincide and read

κU = κL =
κ1

[
µ1 + κ2

]
+ fµ1 [κ2 − κ1]

µ1 + κ2 + f [κ1 − κ2]
, (18)

where the subscripts “U” and “L” denote the upper and the lower bounds, respectively. While the mathematical proce-

dure of determination of bounds for the shear modulus has been addressed precisely in [24], closed form expressions

9
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for the bounds for the shear modulus, for the first time, are given here as

µU = µ1



2 f
[
κ1 + µ1

] [ µ2 − µ1

µ2κ1 + µ1κ1 + 2µ1µ2

]

f
[
µ2 − µ1

] [
κ1 + 2µ1

]
µ2κ1 + µ1κ1 + 2µ1µ2


3
[
1 − f

]2
[

κ1

κ1 + 2µ1

]2

f 3

[
µ2κ2

[
κ1 + 2µ1

]
− µ1κ1

[
κ2 + 2µ2

][
κ1 + 2µ1

] [
κ2µ2 + µ1

[
κ2 + 2µ2

]] ] − 1
− 1

 + 1

+ 1


,

µL = µ1



2 f
[
κ1 + µ1

] [ µ2 − µ1

µ2κ1 + µ1κ1 + 2µ1µ2

]

f
[
µ2 − µ1

] [
κ1 + 2µ1

]
µ2κ1 + µ1κ1 + 2µ1µ2


3
[
1 − f

]2
[

κ1

κ1 + 2µ1

]2

f 3

[
µ2κ2

[
κ1 + 2µ1

]
− µ1κ1

[
κ2 + 2µ2

][
κ1 + 2µ1

] [
κ2µ2 + µ1

[
κ2 + 2µ2

]] ] +
κ1

κ1 + 2µ1

− 1

 + 1

+ 1


.

(19)

Shortly afterwards, Hashin [101] used the variational approach in [23] to derive bounds on the overall response of

fiber composites with transverse isotropy. The aim of this approach was to tighten the bounds proposed by Reuss and

Voigt. The Hashin–Shtrikman bounds for the overall bulk and shear moduli read

κU = κ1 +
f

1
κ2 − κ1

+
1 − f
κ1 + µ1

, κL = κ2 +
[1 − f ]

1
κ1 − κ2

+
f

κ2 + µ2

,

µU = µ1 +
f

1
µ2 − µ1

+
[1 − f ][κ1 + 2µ1]

2µ1[κ1 + µ1]

, µL = µ2 +
[1 − f ]

1
µ1 − µ2

+
f [κ2 + 2µ2]

2µ2[κ2 + µ2]

,

(20)

for stiffness ratios less than one. The upper and the lower bound switch for stiffness ratios more than one.

The Hashin and Shtrikman variational principle [23, 101] is well-known to provide the best bounds indepen-

dent of the phase geometry and are formulated only in terms of the phase properties and inclusion volume fraction.

Hill [25] also derived bounds on five different effective properties of composites with transversely isotropic geometry.

Walpole [27, 102] utilized piece-wise uniform polarization and rederived these bounds in a more general fashion.

His method also includes anisotropic constituents and disk-shape fiber composites. All aforementioned bounds were

independent of phase geometry and they were only applicable on three types of geometries; laminated, isotropic and

transversely isotropic. Later, Willis [29] manipulated the Hashin–Shtrikman bounds by inserting the two-point cor-

relation function to account for more general cases of phase geometry. If the two-point correlation function involves

radial, cylindrical or disk symmetry, the above mentioned bounds could be readily recovered. See [103] for more
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Figure 3: Packing network for each RVE. Tetragonal RVE packing (left). Hexagonal RVE packing (center) and the circular RVE packing (right).
The boundaries of the tetragonal and hexagonal RVEs completely match.

details on the derivation of explicit forms for the Willis bounds.

3.3. Numerical examples

This section provides a comprehensive comparison between the analytical estimates and computational results through

a series of numerical examples for etragonal, hexagonal and circular RVEs. Figure 3 shows the packing of these RVEs.

The area of each RVE is set to 1 so that the inclusion area corresponds to the volume fraction f . Obviously, the volume

fraction f could not exceed a certain value for the tetragonal and hexagonal RVEs, see Fig. 4. All the examples are

solved using our in-house finite element code and discretized using bi-quadratic Lagrange elements.

In order to provide a thorough and systematic comparison of the numerical and analytical results, the overall bulk

modulus Mκ, shear modulus Mµ and Poisson ratio Mν of transversely isotropic composites are examined. Figure 5

clearly illustrates all the cases investigated in what follows. Five different stiffness ratios of 0.01, 0.1, 1, 10 and

100 are considered for each RVE. The stiffness ratio represents the ratio of the inclusion to matrix (incl./matr.) Lamé

parameters. Stiffness ratio less than one corresponds to a more compliant inclusion within the matrix and in the limit

of incl./matr.→ 0, the inclusion represents a void. On the contrary, the stiffness ratio more than one corresponds to a

stiffer inclusion compared to matrix and in the limit of incl./matr.→ ∞, the inclusion acts as a rigid fiber. Throughout

Figure 4: Maximum reachable volume fraction for each RVE. For the circular RVE, the inclusion can embed the whole RVE due its geometry.
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Figure 5: Different stiffness ratios for various RVE types. The columns correspond to RVE types and the rows correspond to the stiffness ratios.
Matrix parameters remain the same throughout the examples while inclusion parameters vary in order to produce the required stiffness ratios. The
stiffness of the inclusion is identified by a color scheme varying from light to dark.

all the examples, the matrix properties are set to λ1 = 10, µ1 = 10 while the inclusion parameters vary to generate the

predefined stiffness ratios.

Figure 6 shows the effective bulk modulus Mκ with respect to the volume fraction f for all the cases depicted

in Fig. 5. For the tetragonal and hexagonal RVEs, five individual lines represent the analytical estimates of Voigt and

Reuss together with the numerical results corresponding to DBC, PBC and TBC. The RVEs in tetragonal and hexagonal

packings are space-filling but cannot capture the isotropic behavior of the effective material. On the contrary, the

circular RVE renders isotropic behavior and thus, comparison with the Hashin–Shtrikman and CCA approaches is

justifiable. Voigt and Reuss bounds always provide reliable bounds. As expected, PBC is bounded with TBC from

below and DBC from above. Moving from the tetragonal RVE towards the circular RVE, we observe that the numerical

results tend to converge until they totally coincide at the circular RVE. Therefore, different boundary conditions result

in same responses when the RVE is circular. Less difference between the numerical results is observed for low volume

fractions. As previously mentioned, the CCA upper and lower bounds coincide while the Hashin–Shtirkman bounds

do not. For incl./matr. < 1, a remarkable agreement is observed between the numerical results, CCA and the upper

HSB (Hashin–Shtrikman bound) and for incl./matr. > 1, the numerical results, CCA and the lower HSB coincide. For

incl./matr. = 1, all the results coincide since the domain is uniform.
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Figure 6: Effective bulk modulus versus volume fraction f . Zoom boxes are included to provide more clarity when the results are less distinguish-
able. The numerical results are shown by lines with points on top of them whereas the analytical results are shown using lines solely. HSB stands
for Hashin–Shtrikman bounds. Composite cylinder assemblage is denoted as CCA.

Figure 7 shows the effective shear modulus Mµ versus the volume fraction for different RVEs as well as stiffness

ratios. It is observed that different boundary conditions, in general, provide more distinguishable effective values
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Figure 7: Effective shear modulus versus volume fraction f . Zoom boxes are included to provide more clarity when the results are less distinguish-
able. The numerical results are shown by lines with points on top of them whereas the analytical results are shown using lines solely. HSB stands
for Hashin–Shtrikman bounds. Composite cylinder assemblage is denoted as CCA.

compared to the previous case. Nevertheless, as we move from the tetragonal RVE towards the circular RVE, PBC

moves towards DBC and ultimately coincides with it. Thus, prescribing PBD and TBC to the circular RVE yield
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Figure 8: Overall moduli versus stiffness ratio in a logarithmic scale. Two specific volume fractions are considered that are represented in each
row. A good agreement of the results is observed for the volume fraction f = 25%. Increasing the volume fraction to f = 75% leads to more
distinguishable results. More accordance between the results is observed for the bulk modulus Mκ compared to the shear modulus Mµ. The zoom
boxes provide for further clarity.

identical response. PBC renders the most sensitive numerical result to the RVE type for shear deformation. In contrast

to the previous case, there is no coincidence between CCA and Hashin–Shtrikman bounds. A striking agreement is

observed between CCA lower bound and TBC and between CCA upper bound and DBC/PBC. A counterintuitive
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CCAHSB DBCTBC PBCVOIGT & REUSS

Figure 9: Illustration of the insensitivity of the Hashin–Shtrikman bounds to micro-structure’s constituents. Similarly, Voigt and Reuss bounds do
not distinguish between the fiber and matrix The numerical results depicted in this figure correspond to the circular RVE. CCA solution totally
agrees with the numerical results. The first column shows incl./matr = 0.1 where the inclusion and the matrix Lamé parameters are set to 1 and
10, respectively and the fiber’s volume fraction is f . The second column corresponds to incl./matr = 10 where the inclusion and the matrix Lamé
parameters are set to 10 and 1, respectively and the x-axis shows 1 − f instead of f . The third column shows the subtraction of the results in the
first and the second column.

observation is that for incl./matr. < 1, DBC and PBC together with CCA upper bound overestimate the upper HSB

and for incl./matr. > 1, TBC together with CCA lower bound underestimate the lower HSB. This observation shall be

compared with Hashin’s remark in [104] mentioning that it has never been shown that his bounds on shear modulus

are the best possible bounds. Clearly, we observe that his bounds on shear modulus do not serve as “bounds” at least

not for CCA in the sense of the Voigt and Reuss bounds.

So far we have studied the effects of the variation of the volume fraction on the overall macroscopic response.

Figure 8 demonstrates the variation of the effective moduli with respect to the stiffness ratio. Two different volume

fractions of f = 25% and f = 75% are considered corresponding to the top row and the bottom row, respectively.

As expected, all the results coincide at incl./matr. = 1. The gap between the results widens as stiffness ratio recedes

from one. The difference between the numerical and analytical results are more distinguishable for the shear modulus

Mµ compared to the bulk modulus Mκ. We observe better agreement between the numerical results for the hexagonal

16

Page 17 of 32

http://mc.manuscriptcentral.com/mams

Mathematics and Mechanics of Solids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

RVE compared to the tetragonal RVE. For the bulk modulus, the transition of the numerical results coinciding with

the upper and the lower HSB for different stiffness ratios is more obvious in this figure. Another shortcoming of the

Hashin–Shtrikman bounds is that similar to Voigt and Reuss bounds, they cannot distinguish between the matrix and

the fiber. Figure 9 sheds light on this issue by providing a comparison of the analytical estimates and the numerical

results obtained using the circular RVE. The first column correspond to a certain properties for the matrix and fiber. In

the second column, the properties are switched and the results are illustrated with respect to matrix volume fraction

1 − f . The third column shows the subtraction of the results associated with the first and second column. We observe

that in contrast to the numerical results and CCA, the Voigt, Reuss and Hashin–Shtrikman bounds are incapable of

distinguishing between the matrix and the fiber hence, the difference between the responses vanishes in the right

column. Figure 10 illustrates the numerical results of various material properties with respect to volume fraction for

the circular RVE. As observed previously, when the RVE is circular, DBC and PBC always render identical response.

For the bulk modulus, DBC coincides with TBC while for the shear modulus, TBC underestimates DBC, as expected.

Somewhat strikingly, for the Poisson ratio TBC overestimates DBC though. Another counterintuitive observation is

that although the Poisson ratio of the fiber and matrix are identical, the overall Poisson ratio is dependent to the fiber

volume fraction and is not constant.

Heterogeneous materials generally possess non-periodic or random composition to some extents. Clearly, the

distribution pattern of the inclusions influences the overall material response, see [105, 106]. The next set of numerical

study aims to highlight the effects of different morphologies of the micro-structures on the effective properties. To do

so, we consider several RVEs with identical volume fractions of f = 15% and with random and periodic distribution of

inclusions undergone the three canonical boundary conditions. The periodic micro-structure is modeled such that the

inclusions of the same size are uniformly distributed throughout the RVE whereas the random micro-structures contain

inclusions with different sizes and no specific order. The numerical results corresponding to the circular RVE with the

same volume fraction as well as CCA and Hashin–Shtrikman bounds are also included for the sake of completeness.

This study is performed for two stiffness ratios of 0.1 and 10 and the results are depicted in Figs. 11 and 12. The

variation of the effective bulk modulus, shear modulus and Poisson ratio with respect to increasing the number of

inclusions within the microstructure are examined. The lower Hashin–Shtrikman bound in Fig. 11 and the upper

Hashin–Shtrikman bound in Fig. 12 are eliminated since they do not fit within the given range. We shall highlight that

for each level of the random micro-structure, almost ten samples with different distribution patterns are investigated.

That is, the effective responses shown in Figs. 11 and 12 do not correspond only to the micro-structures depicted at

the bottom but reflect the average of the effective responses obtained from ten samples.

In both types of the microstructures and for both stiffness ratios, the results from DBC, PBC, and TBC tend to
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TBC PBC DBC

Figure 10: Illustration of different moduli versus volume fraction for two different stiffness ratios. The numerical results depicted in this figure
correspond to the circular RVE. Each column corresponds to a specific material property and each row stands for specific stiffness ratio. Only
numerical results are included for the Poisson ratio since analytical estimates do not provide physically meaningful results.

converge to an effective response as the number of inclusions increases sufficiently. This trend is smoother for the

periodic micro-structure compared to the random micro-structure where some fluctuations are present. We observe

that due to the periodicity of the periodic micro-structure, PBC remains constant and TBC and DBC tend to approach

to it from below and above, respectively. Somewhat interestingly, for the bulk modulus, the numerical results indicate

that for random micro-structures and for both stiffness ratios, the circular RVE provides closer overall response to

the overall response of the true RVE obtained by PBC. This is justified by the fact that increasing the number of

inclusions within the random micro-structure resembles increasing the level of isotropy. Nonetheless, for the periodic

micro-structure, increasing the number of inclusions does not alter the anisotropy of the material due to the uniform

distribution of the inclusions. To be more precise, a proper case that could resemble an isotropic material suitable to

be compared with analytical bounds is the random micro-structure with a large number of inclusions and randomness.

Looking at the shear modulus, for the random micro-structure with large number of inclusions, the material response

lies within the Hashin–Shtrikman bounds for incl./matr. = 0.1. However, for incl./matr. = 10, the lower Hashin–
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Figure 11: Illustration of the evolution of the effective properties versus the degree of periodicity and randomness for periodic and random macro-
structures. Three different boundary conditions of DBC, PBC and TBC are imposed to two different micro-structures having different distribution of
inclusions for stiffness ratio of 0.1. The volume fraction is set to 15%. The size of the RVE remains constant as we increase the level of periodicity
or randomness. The horizontal axis shows the degree of periodicity and randomness for the periodic and random microstructure, respectively. The
micro-structures for some levels are depicted at the bottom of the figure. Analytical bounds, as well as numerical results for circular RVE are
included to provide further information.

Shtrikman bound is violated and fails to provide a proper bound on the shear modulus. For the Poisson ratio, unlike

the shear modulus and the bulk modulus, TBC provides the stiffest response whereas DBC renders the most compliant

response.

The studies carried out so far assumed that the inclusion is located at the center of the RVEs. Here we examine

the effect of the inclusion eccentricity by comparing the effective response of the three RVE types due to the canonical
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Figure 12: Illustration of the evolution of the effective properties versus the degree of periodicity and randomness for periodic and random macro-
structures. Three different boundary conditions of DBC, PBC and TBC are imposed to two different micro-structures having different distribution
of inclusions for stiffness ratio of 10. The volume fraction is set to 15%. The size of the RVE remains constant as we increase the level of periodicity
or randomness. The horizontal axis shows the degree of periodicity and randomness for the periodic and random microstructure, respectively. The
micro-structures for some levels are depicted at the bottom of the figure. Analytical bounds, as well as numerical results for circular RVE are
included to provide further information.

boundary conditions for different volume fractions as well as different stiffness ratios. Figures 13 and 14 provide the

deformed shapes of the RVEs as well as the overall response of the material due to volumetric expansion and simple

shear, respectively, for incl./matr. = 0.1. The numerical examples correspond to small-strain linear elasticity but

deformations are magnified for the sake of illustration. Additionally, the distribution of [σ11+σ22]/2 for the expansion

case and σ12 for the shear case is displayed throughout each RVE. Each block includes four cases corresponding to
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numerical results for centeric and off-centeric inclusion undergone expansion for incl./matr. = 0.1
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Figure 13: Stress distribution within the RVE undergone simple shear for both centric and off-centric inclusions when the inclusion is more
compliant to the matrix (incl./matr. = 0.1). The distribution of the stress component [σ11 + σ22]/2 is shown throughout the RVE. Two volume
fractions f = 15% and f = 30% are considered. CCA bounds on the overall bulk modulus are given for comparison. PBC always lies within
TBC and DBC. Three main rows correspond to three boundary conditions and three main columns correspond to three different RVEs. For each
boundary condition the centric and off-centric inclusion as well as two different volume fractions are examined.

the centric and off-centric inclusion for different volume fractions. CCA lower and upper bounds are also included to

serve as a comparison.

The difference between the results is more distinguishable for f = 30% than f = 15%. As expected, the effective

bulk modulus for f = 30% is, in all cases, less than its counterpart for f = 15%. For all the RVEs, when DBC

is prescribed, the off-centric inclusion leads to a stiffer response compared to the centric one. In contrast, if TBC

is imposed, the effective modulus corresponding to the RVE with off-centric inclusion underestimates the one with
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numerical results for centeric and off-centeric inclusion undergone shear for incl./matr. = 0.1
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Figure 14: Stress distribution within the RVE undergone simple shear for both centric and off-centric inclusions when the inclusion is more
compliant to the matrix (incl./matr. = 0.1). The distribution of the stress component σ12 is shown throughout the RVE. Two volume fractions
f = 15% and f = 30% are considered. CCA bounds on the overall shear modulus are given for comparison. PBC always lies within TBC and
DBC. Three main rows correspond to three boundary conditions and three main columns correspond to three different RVEs. For each boundary
condition the centric and off-centric inclusion as well as two different volume fractions are examined.

centric inclusion. When the inclusion is at the center of the circular RVE, all the results are identical for a given

volume fraction. Somewhat interestingly, when PBC is employed, the overall response becomes independent of the

inclusion position for the tetragonal and hexagonal RVEs. However, for the circular RVE, the material renders stiffer

response for the centric inclusion than off-centric one. Figures 15 and 16 are the counterparts for Figs. 13 and 14,

respectively, corresponding to incl./matr. = 10. The effective moduli at f = 30% for all the cases here, are larger than

their counterparts at f = 15%. The remainder of the observations in Figs. 15 and 16 are similar to those made from
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numerical results for centeric and off-centeric inclusion undergone expansion for incl./matr. = 10
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Figure 15: Stress distribution within the RVE undergone volumetric expansion for both centric and off-centric inclusions when the inclusion is
stiffer to the matrix (incl./matr. = 10). The distribution of the stress component [σ11 +σ22]/2 is shown throughout the RVE. Two volume fractions
f = 15% and f = 30% are considered. CCA bounds on the overall bulk modulus are given for comparison. PBC always lies within TBC and
DBC. Three main rows correspond to three boundary conditions and three main columns correspond to three different RVEs. For each boundary
condition the centric and off-centric inclusion as well as two different volume fractions are examined.

Figs. 13 and 14 hence, their discussion is omitted for the sake brevity.

4. Extension to finite deformations

All the previous examples were only valid at small strains. The main objective of this section is to extend the numerical

studies presented in the last section to finite deformations setting. In doing so, two load cases of volumetric expansion

and simple shear are prescribed and the effective material response is computed via proper averaging. The examples
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numerical results for centeric and off-centeric inclusion undergone shear for incl./matr. = 10
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Figure 16: Stress distribution within the RVE undergone simple shear for both centric and off-centric inclusions when the inclusion is stiffer to the
matrix (incl./matr. = 10). The distribution of the stress component σ12 is shown throughout the RVE. Two volume fractions f = 15% and f = 30%
are considered. CCA bounds on the overall shear modulus are given for comparison. PBC always lies within TBC and DBC. Three main rows
correspond to three boundary conditions and three main columns correspond to three different RVEs. For each boundary condition the centric and
off-centric inclusion as well as two different volume fractions are examined.

carefully analyze the overall material response for various boundary conditions and stiffness ratios. Unlike in small-

strain linear elasticity, for finite deformations it is not possible to define an effective material parameter such as bulk

modulus or shear modulus. Therefore, in what follows the apparent macroscopic quantity of interest is the stress itself.

For instance, for volumetric expansion, the xx-component of the Piola stress and for simple shear, the xy-component

of the Piola stress are the macroscopic properties of interest.

Figure 17 shows the variation of the macro Piola stress with respect to the volume fraction for various RVEs
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Macroscopic Piola stress vs. volume fraction for different RVEs
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Figure 17: Macro Piola stress with respect to the volume fraction f for various types of RVE. The first row is associated with the volumetric
expansion and thus the macroscopic stress component of interest is MPxx. The bottom row corresponds to the simple shear deformation and thus
the macroscopic stress component of interest is MPxy. Each column corresponds to specific RVE. At each plot, different boundary conditions for a
specific RVE are examined.

obtained from different boundary conditions. The first row represents the volumetric expansion case while the second

row corresponds to the simple shear, both at 20% deformation. First consider the first row corresponding to the

expansion case. As expected, PBC is bounded with TBC from below and DBC from above. For the tetragonal

RVE, the results from different boundary conditions mostly deviate form each other as the volume fraction increases.

However, as we move towards the circular RVE the results get closer to each other and coincide eventually. Next

consider the second row corresponding to the shear case. For this case, more difference between the numerical results

is observed in comparison to the expansion case. The results from PBC are closer to TBC for the tetragonal RVE.

For the hexagonal RVE PBC renders closer response to DBC and for the circular RVE they result in identical response.

These observation elucidates the sensitivity of PBC to the RVE type.

Figure 18 depicts the variation of the macro Piola stress with respect to the volume fraction for different boundary

conditions. The top row correspond to the expansion case and the bottom row correspond to the simple shear case.
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Macroscopic Piola stress vs. volume fraction for different boundary conditions
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Figure 18: Macro Piola stress with respect to the volume fraction f for boundary conditions. The first row is associated with the volumetric
expansion and thus the macroscopic stress component of interest is MPxx. The bottom row corresponds to the simple shear deformation and thus
the macroscopic stress component of interest is MPxy. Each column corresponds to specific boundary condition. At each plot, different RVE types
for a specific boundary condition are examined.

As mentioned before, the circular RVE is able to reach to higher volume fractions compared to the other RVEs. For

DBC, it is observed that the stress corresponding to the hexagonal RVE is bounded between the tetragonal RVE from

above and the circular RVE from below. For PBC, the same observation is made when expansion is applied. However,

when shear is applied, tetragonal RVE results in the lowest Piola stress while the hexagonal and circular RVE render

different relative behavior depending on the volume fraction. For TBC, there is a remarkable coincidence between all

the numerical results for both expansion and shear case. This means that TBC is indifferent to the type of the RVE.

This observation highlights the importance of frequently disregarded TBC in computational homogenization.
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5. Conclusion and outlook

In summary, we have presented a systematic comparison on the overall behavior of heterogeneous materials via

both analytical and computational homogenization. It is clearly demonstrated that in contrast to the Voigt and Reuss

bounds, for some cases the Hashin-Shtrikman bounds do not provide reliable bounds on the shear modulus. Three

different material properties i.e. bulk modulus, shear modulus and Poisson ratio were comprehensively studied for

various RVEs, boundary conditions and micro-structures. Our findings show that among all the simplified RVE types,

the circular RVE serves as the most suitable RVE to predict overall isotropic material behavior due to its intrinsic feature

to capture isotropy. The influence of the inclusion eccentricity on the effective modulus of the material is examined.

For both the tetragonal and hexagonal packings, the numerical results based on PBC are indifferent with respect to

the inclusion position in the RVE. The numerical results are then extended to the finite deformation setting and it is

observed that TBC shows less sensitivity with respect to the RVE type. This conclusion is particularly interesting since

TBC is often disregarded in computational homogenization. Our next immediate extension of this contribution deals

with a complimentary study accounting for size effects. Further extensions of this work include three-dimensional

analysis as well as including more complex analytical estimates.
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