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This paper investigates the use of constrained surrogate models to solve the multi-design optimiza-
tion problem of a flexible hydrofoil. The surrogate-based optimization (EGO) substitutes the complex
objective function of the problem by an easily evaluable model, constructed from a limited number of
computations at carefully selected design points. Associated with ad-hoc statistical strategies to propose
optimum candidates within the estimated feasible domain, EGO enables the resolution of complex op-
timization problems. In this work, we rely on Gaussian processes (GP) to model the objective function
and adopt a probabilistic classification method to treat non-explicit inequality constraints and non-explicit
representation of the feasible domain. This procedure is applied to the design of the shape and the elastic
characteristics of a hydrofoil equipped with deformable elements providing flexibility to the trailing edge.
The optimization concerns the minimization of the hydrofoil drag while ensuring a non-cavitating flow,
at selected sailing conditions (boat speed and lifting force). The drag value and cavitation criterion are
determined by solving a two-dimensional nonlinear fluid-structure interaction problem, based on a static
vortex lattice method with viscous boundary layer equations, for the flow, and a nonlinear elasticity solver
for the deformations of the elastic components of the foil. We compare the optimized flexible hydrofoil
with a rigid foil geometrically optimized for the same sailing conditions. This comparison highlights the
hydrodynamical advantages brought by the flexibility: a reduction of the drag over a large range of boat
speeds, less susceptibility to cavitation and a smaller angle of attack tuning range.

1 INTRODUCTION

Created in 1851, the America’s Cup trophy is one of the old-
est international sports competition. The race opposes two
sailing boats, representing a defender and a challenger yacht
clubs, that race one against the other to be the winner of the
America’s Cup match races. In each edition, specific rules
are provided by the defender in accordance with the Deed of
Gift, which define the format of the regatta, the location of
the races and restrictions on the type of boats allowed to com-
pete. When a challenging yacht club wins the match races, it
becomes the defender and gains the stewardship for the next
America’s Cup edition.

The 35th edition, to take place in June 2017, will be raced
on so-called AC50s catamarans with size fixed to 50 feet,
equipped with hydrofoils and wing-sails. The hydrofoils are
expected to be a key component of the AC50s performance,
and the competing teams are dedicating a growing fraction of
their design effort to their optimization in comparison to older
yacht design approach [36]. The optimization aims at design-
ing hydrofoil with a minimal drag force over a whole range
of boat speeds (BS), while ensuring a sufficient lift force for

the boat to fly, especially at the lowest BS. The design of the
hydrofoil is restricted by the “AC Class Rule” documents. In
particular, the rule number 11.11 states: “Daggerboard com-
ponents shall be rigidly fixed to each other and the dagger-
board shape shall not be adjusted while racing.” One possible
way to comply with this rule, while allowing for some adap-
tivity of the shape with the BS, is to design a hydrofoil com-
posed of rigidly mounted components, undergoing large elas-
tic deformations under the hydrodynamical loads and without
crew adjustments. For instance, a reduction of the hydrofoil
camber, with increasing BS and hydrodynamic loads, can be
obtained using a flexible trailing edge.

Drag reduction by shape optimization is an important re-
search topic, with many applications in domains ranging from
aeronautic to wind-energy recovery. Multiple studies have
been proposed, based on physical models with different levels
of complexity. For instance, the geometrical optimization of
an airfoil with a two-dimensional steady flow model is con-
sidered in [35] when the unsteady flow situation is treated
in [41]. Complex optimizations for a range of Mach numbers
of a two-dimensional airfoil have been performed by [24], and
the robust optimization for uncertain flows and geometries is



considered in [29]. The numerical optimization of hydrofoils
is to our knowledge much rarer, and the hydrofoil literature
generally focuses on the stability [18], wake energy reduc-
tion [21], and free surface elevation [14] aspects.

This paper reports the development and application, in part-
nership with the Groupama Team France (GTF) design team,
of an Efficient Global Optimization (EGO) procedure tailored
to the flexible hydrofoil optimization problem. We restrict
ourselves to the optimization of a two-dimensional hydrofoil
consisting of rigid forward and trailing parts, connected by a
deformable element. The objective of the optimization is the
reduction of the hydrodynamic drag at several BS and lift con-
ditions, with cavitation constraints. Cavitation is indeed an
important concern for the hydrofoil performance [39], but its
numerical prediction remains a difficult problem, as shown for
instance in [23, 9, 11, 2]. These difficulties explain that cav-
itation aspects are usually not considered in hydrofoil shape
optimization, unless when the objective is precisely to delay
the cavitation, such as in [47].

The optimization of flexible hydrofoils raises many chal-
lenges. First it requires multi-design variables to prescribe
the foil geometry at rest (unloaded shape), on the one hand,
and the elastic properties and the internal structure of the de-
formable parts, on the other hand. Second, the evaluation of
the performance of a given design requires the resolution of a
fully nonlinear fluid-structure interaction (FSI) problem, pos-
sibly combining different boat speeds, with a numerical cost
that inherently limits the number of designs that can be eval-
uated. Finally, considering constraint on non-cavitating flow
requires an appropriate treatment of constraints that are costly
evaluate for a given design. As a matter of fact, the numeri-
cal optimization requires dedicated techniques to circumvent
the computational complexity of the problem. In the present
work, the numerical modeling involves the coupling of the
two-dimensional vortex lattice method solver XFOIL [10], to
compute the flow, with the structural ARA software developed
by K-EPSILON [13], to compute the hydrofoil deformations.
Even for this two-dimensional modeling, the computational
times prevent the direct optimization based on the FSI solu-
tion with standard methods.

We then rely on a surrogate model to reduce the computa-
tional burden of optimizing complex systems with costly ob-
jective function estimation [40]. Specifically, we use Gaus-
sian processes [22] surrogate models with Efficient Global
Optimization (EGO) strategies [20], that have been previ-
ously applied to aerodynamic drag reduction [19], vibration
reduction for rotating aircrafts [15], optimization of FSI prob-
lems [1] and sail trimming optimization [37]. The classifi-
cation approach for discontinuous or binary constraints pro-
posed in [6] is extended to the treatment of the cavitation con-
straints in the optimization procedure. In our approach, The
admissible domain is approximated using Least-Squares Sup-
port Vector Machine (LS-SVM) [42] regression from the pre-
vious observations. An original contribution of the work is
a new probabilistic treatment of the constraints which is de-
signed to mitigate the risk of exploring unfeasible solutions
(which yield a cavitating flow).

This optimization procedure used in the present work is

briefly described in Section 2, while Section 3 discusses the
formulation of the optimization problem for the flexible hy-
drofoil, including the definition of the optimization variables
and a brief discussion of the numerical models. Section 4
presents the optimization results, emphasizing on impact of
the flexibility of the performance of the optimal hydrofoil. In
particular, these performances are contrasted with the case of
a rigid hydrofoil optimized for the same conditions. We have
tried to provide as much as possible quantitative results, but
for confidentiality reasons related to the partnership with the
GTF design team, some values can not be provided and only
trends are reported. Finally, conclusions and recommenda-
tions for future development are given in Section 5.

2 GP-BASED CONSTRAINED OPTIMIZATION

The objective is to estimate the solution xopt of the following
abstract optimization problem

min
x∈Ω
P(x), s.t. Q(x) ≥ 0,

where x ∈ Rd is the vector of control variables, Ω the op-
timization domain, P : Ω 7→ R the objective function and
Q : x 7→ Rm is the vector of constraints. Even in the un-
constrained case, m = 0, finding the global optimum of P
can be very costly, in particular when its evaluation is nu-
merically expensive. The use of surrogate models for P is
then a classical solution to reduce the computational burden
of complex systems optimization [40]. We use Gaussian pro-
cesses (GP) [22] which, owing to their statistical nature, pro-
vide both a prediction of the objective function and a mea-
sure of the uncertainty (variance) in the prediction. These
features are appealing in optimization, as they can be used
to derive rigorous optimization strategies based on the maxi-
mization of the Expected Improvement (EI) criterion, leading
to methods referred globally as the Efficient Global Optimiza-
tion (EGO) [20] methods. In Section 2.1 we review the con-
struction of the GP model for P and the resulting optimiza-
tion strategy in the unconstrained case. The constrained case
is considered in Section 2.2.

2.1 UNCONSTRAINED EGO USING GP

Consider a set of n training inputs points Xn = {x1, . . . ,xn},
each associated to a noisy observation yi of the objective func-
tion. Specifically, it is assumed that yi = P(xi) + εi, where
the εi are Gaussian measurement noises, assumed for simplic-
ity independent and identically distributed with variance σε2.
The GP construction considers thatP is a realization of a zero-
mean multivariate Gaussian process with covariance function
CP . In this work, we consider the multidimensional squared
exponential covariance functions defined by

CP (x,x′; Θ)
.
= θ1

d∏
i=1

exp

(
−(xi − x′i)

2

2l2i

)
+ θ2, (1)

where Θ = {θ1, θ2, l1, l2, . . . , ld} is a vector of hyper-
parameters to be inferred from the observations. Denoting
C(Θ) ∈ Rn×n the covariance matrix with entries Ci,j(Θ)

.
=



CP (xi,xj ; Θ), 1 ≤ i, j ≤ n, the joint Gaussian distribution
of the noisy observations vector, Yn = (y1, . . . , yn)T, and the
predicted observation y(x) is given by(

Yn

y(x)

)
∼ N

(
0,

[
C + σε

2I k(x)

kT(x) κ(x) + σε
2

])
. (2)

In (2) we have denoted κ(x)
.
= CP (x,x; Θ), k(x)

.
=

(CP (x,x1; Θ) · · ·CP (x,xn; Θ))T and I the identity matrix of
Rn. From the conditional rules of joint Gaussian distribu-
tions [34], the best prediction P̂n(x) of P(x), i.e. the mean of
y, and the prediction variance σ̂2

P (x) are given by

P̂n(x) = kT(x)
(
C(Θ) + σε

2I
)−1

Yn, (3)

σ̂2
P (x) = κ(x) + σε

2 − kT(x)
(
C(Θ) + σε

2I
)−1

k(x). (4)

The hyper-parameters Θ and noise variance σε2 can be de-
termined by maximizing the log-marginal likelihood [34] us-
ing an evolution strategy algorithm [16]. More details on GP
meta-models can be found in [34].

Let x̂n be the optimum of P̂n(x). It is expected that x̂n ≈
xopt if the approximation error P̂n − P is small enough. The
advantage of minimizing P̂n instead of P is that GP models
are usually inexpensive to evaluate compared to the original
objective function. To control the error in the approximation,
one proceeds sequentially by adding progressively new obser-
vation points in the area of interest. A deterministic optimiza-
tion procedure would choose the next point xn+1 as the opti-
mal point of P̂n. However, the GP model provides probabilis-
tic information that can be exploited to propose more robust
strategies based on merit functions, which combine the pre-
diction and its variance. In this work, we use the Augmented
Expected Improvement (AEI) merit function [17], which es-
timates the expected progress in the objective, taking into ac-
count the noise in the observed values and the prediction vari-
ance:

AEI(x) = EI(x)

1− σε√
σ̂2
P (x) + σε2

 , (5)

where the Expected Improvement EI(x) is defined by

EI(x) = σ̂2
P (x) [u(x)Φ (u(x)) + φ (u(x))] , (6)

u(x) =
P̂n(x∗,n)− P̂n(x)

σ̂2
P (x)

, (7)

with Φ and φ the cumulative and density functions of the stan-
dard Gaussian distribution, and x∗,n ∈ Xn is the current ef-
fective best solution (see [17]). The optimum xn+1 of the
AEI is added to Xn, and P is evaluated at the new point pro-
viding yn+1. Setting n ← n + 1, a new iteration can start
updating the GP model with the new observation. Overall,
each iteration requires one computation of the objective and
the resolution of two optimization problems: a first one for
the hyper-parameters of the GP model, and a second one to
find the AEI optimum. The iterations of the GP-based opti-
mization problem are continued until a stopping criterion is
satisfied or the resources allocated to the optimization have
been exhausted.

2.2 EGO UNDER CONSTRAINTS, A CLASSIFICATION
BASED APPROACH

EGO methods with inequality constraints was considered
in [38]. The key idea was to rely onm additional surrogates to
estimate the constraints Qi(x). For Gaussian Process models,
one can easily determine the probability Pi(Qi ≥ 0|x) that a
constraint Qi is satisfied at x and, assuming the independence
of the constraints probability, to come up with the consoli-
dated probability P (Q ≥ 0|x) = Πmi=1Pi(Qi ≥ 0|x). This
probability is used to modify the unconstrained AEI criterion
and favor feasible regions:

AEIQ(x) = AEI(x)P (Q ≥ 0|x).

Although effective in many problems, this GP modeling of the
constraints faces several limitations. First, its computational
cost increases with the number m of constraints and can be
an issue for problems with large m. Second, the approxima-
tion by GP models assumes a sufficient smoothness of the Qi,
which must be evaluable for almost every x ∈ Ω. This rules
out the case of binary constraints (feasible / infeasible) and
models having no solution for Q(x) � 0. Finally, the ap-
proach is also limited to situations where the feasible domain
has an explicit representation in terms of the constraints. The
optimization of hydrofoils reaches some of these limitations
as it is difficult to express feasible geometries in terms of con-
straints on design parameters, while some values may lead to
uncomputable solutions.

Classification methods recently proposed in [6] are better
suited to deal with discontinuous or binary constraints in a
GP-based optimization procedure. The binary classifier con-
siders two classes C+ and C− over Ω, corresponding to the
feasible and unfeasible domains respectively. Each xi of Xn

is equipped with a value zi = ±1 depending on its mem-
bership C±. To predict the class of a new point x we in-
troduce a classification function h : x ∈ Ω → R, such that
z(x) = signh(x). A Least-Squares Support Vector Machine
(LS-SVM) [42] is used to construct h. The LS-SVM method
extends the original Support Vector Machine (SVM) classi-
fier [45] to quadratic penalization, resulting in a linear (but
non-sparse) system to be solved (see below). Further details
and discussion on SVM and LS-SVM methods can be found
in [7].

The LS-SVM method [42] is a linear classifier, for C+ and
C−, in a feature space induced by the transformation φ : Ω→
F :

h(x) = wTφ(x) + b. (8)

Here, w and φ(x) are the weights and features vectors, while
b ∈ R is a constant. The feature space F is generated by
a reproducing kernel r : Ω × Ω → R representing the inner
product between images in F of vectors: r(x,x′) = φ(x) ·
φ(x′). We use the classical Gaussian kernel,

r(x,x′) = exp

(
−‖x− x′‖2

2λ2

)
, (9)

with scale factor λ ∈ R to be adjusted. The LS-SVM parame-



ters (w, b) satisfy the primal constrained optimization problem

min
w,b,e

1

2
‖w‖2 + γ

1

2

n∑
i=1

e2i ,

s.t. zi = wTφ(xi) + b+ ei i = 1, . . . , n,

(10)

with trade-off parameter γ ∈ R+ (to be fixed) and relaxation
variables ei allowing for miss-classification. The Lagrangian
of this optimal problem is

L (w, b,α, e) =
1

2
‖w‖2 + γ

1

2

n∑
i=1

e2i

−
n∑
i=1

αi

(
wTφ(xi) + b+ ei − zi

)
,

(11)

where the αi ∈ R are the Lagrange multipliers of the con-
straints. Denoting z = (z1 · · · zn)T, the optimality conditions
of the Lagrangian are used to derive a linear system for the
dual model parameters b and α = (α1 · · ·αn)T,R + γ−1I 1

1T 0

α
b

 =

z

0

 , (12)

where R ∈ Rn×n is the kernel matrix with Ri,j = r(xi,xj).
This system is solved via a Cholesky factorization [7], and h
in (8) is expressed in terms of dual model parameters to obtain

h (x) =

n∑
i=1

αir(xi,x) + b. (13)

The LS-SVM classifier depends on two parameters, γ and
λ, to be fixed when solving (12). We rely on a Leave-One-Out
procedure to determine γ and λ that minimize the Predicted
Residual Sum-of-Squares (PRESS) criterion [3],

PRESS =

n∑
i=1

(
zi − ẑi(−i)

)2
, (14)

where ẑi
(−i) is the predicted output z(xi) of the LS-SVM,

when the i-th training point (xi, zi) is disregarded from the
construction of the classifier. A simple expression for the pre-
dicted residuals is proposed in [8],

zi − ẑi(−i) =
αi

D−1
ii

i = 1, . . . , n, (15)

where the D−1
ii are the diagonal entries of the inverse of D,

the matrix of system (12). The authors of [8] also provide an
explicit expression to compute D−1

ii during the factorization
of D. The minimization of the PRESS (14) for λ and γ is
performed with the CMA-ES algorithm [16].

The LS-SVM binary classifier is finally extended to a prob-
abilistic classification, relating h in (13) to the probability of
the class C+, denoted P (C+|x). A comparison of several
probability models for the LS-SVM classification is provided
in [43]. We use the sigmoid function [33] and expressing the
probability of C+ as

P
(
C+|x

)
=

1

1 + exp (Ah (x) +B)
. (16)

The parameters A and B of the sigmoid are determined by
minimizing the probability of misclassification, see [33, 25].
In practice, the probability P goes to 1 (resp. 0) as the clas-
sifier is certain that x is feasible and belongs to C+ (resp.
unfeasible and belongs to C−), while a value of P = 1/2 de-
notes a complete uncertainty in the classification. This can
occur because x is far from any observations in Xn or close
to the interface between the two classes.

Following [38] and [6], the probability of feasibility is used
to derive from the AEI a merit function and select a new point
xn+1 that yields the highest expected improvement while hav-
ing a high probability of feasibility. To this end, the authors
of [6] use a modified version of the sigmoid function in (16)
that accounts for the distances to the closest classified obser-
vations (in Xn). While improving the misclassification rate,
this modification results in a discontinuous merit function
which prevents the use of gradient-based optimization tools
to determine xn+1. Further, their strategy requires the addi-
tion of d+ 1 new observation points per iteration (to maintain
isotropy in the observation points distribution) with an associ-
ated cost deemed too important in our application. Instead, we
consider a sequential infilling strategy, selecting alternatively
one of the following definitions for xn+1:

xn+1 = arg max
x∈Ω

AEI(x)P (C+|x), (17)

xn+1 = arg min
x∈Ω

P̂n(x) s.t. P (C+|x) ≥ ρ, (18)

xn+1 = arg max
x∈Ω

[
AEI(x)P (C+|x)

(
1− P (C+|x)

)]
. (19)

The first definition in (17) corresponds to the extension of the
AEI favoring points with high chance of feasibility. The sec-
ond expression (18) directly minimizes the predicted objec-
tive, but enforcing a minimal probability ρ of feasibility; we
use ρ = 0.5. Finally (19) combines the feasibility and infea-
sibility probabilities to favor areas where the classification is
the most uncertain (P ∼ 0.5), with the objective to improve
the exploration of the feasible domain boundaries. In prac-
tice, the new points xn+1 are determined using CMA-ES al-
gorithms without [16] or with constraints [4], depending on
the considered definition.

As a final note, we remark that the optimization procedure
can generate points that are found unfeasible in the sense that
P(xn+1) cannot be computed. This is typically the case when
xn+1 corresponds to an impossible geometrical configuration,
or to an extreme situation for which the numerical code is not
able to converge. It that case, the point is deemed infeasible,
setting zn+1 = −1, but no value of the objective function is
provided and the construction of the GP model for P simply
disregard the missing data. As a result, the GP model of P
and the LS-SVM classification can involve different numbers
of observations.

3 HYDROFOIL OPTIMIZATION SETUP

This Section introduces the formulation of the constrained op-
timization problem for the flexible hydrofoil, as defined in
collaboration with GTF. Note that some details of the opti-
mization problem are omitted for confidentiality reasons. We



also briefly discuss the fluid and structural solvers used in this
work.

3.1 PROBLEM FORMULATION

The optimization of the hydrofoil uses control variables x

which parameterize the geometry of the hydrofoil at rest and
the elastic element that gives flexibility to the trailing edge.
The optimization concerns the minimization of the hydrofoil
drag force over a set of 4 sailing conditions, with an additional
set of 4 constraints designed to prevent the cavitation of the
flow. Each condition corresponds to a prescribed boat speed
and an hydrodynamic lift force developed by the hydrofoil.
Note that the 4 drag points and the 4 constraints correspond to
different conditions so the evaluation of the objective function
P and the vector of constraints Q at given x requires solving
8 fluid-structure interaction problems. The optimization prob-
lem is written as

min
x∈Ω

P(x) =

4∑
i=1

wiCdi
(x),

s.t.


Q1(x) = −Cpmin1

(x) ≤ λ1

Q2(x) = −Cpmin2
(x) ≤ λ2

Q3(x) = −Cpmin3
(x) ≤ λ3

Q4(x) = −Cpmin4
(x) ≤ λ4

.

(20)

Here, the Cdi
are the drag force coefficients, the wi > 0 are

prescribed weights, the Cpmini
are the minimum pressure co-

efficients, and the λi are the cavitation numbers defined by

λ =
p0 − pv

1
2ρU

2
0

. (21)

We have denoted U0 and p0 the reference velocity (that is,
the BS) and pressure, ρ the fluid density, and pv the sat-
urated vapor pressure. The reference pressure is taken as
p0 = patm + ρgh, where patm is the atmospheric pressure, g is
the gravity acceleration, and h is the immersion depth of the
hydrofoil. The minimum of the pressure coefficient is defined
by Cpmin = pmin−p0

0.5ρU2
0

, where pmin is the minimal pressure over

the hydrofoil surface. The simplest criterion to prevent cav-
itation is to ensure that the minimal pressure remains higher
than the vapor pressure: pmin ≥ pv . This condition can be
expressed in terms of cavitation number λ to obtain the con-
ditions on Cpmin to formulate the constraints in (20).

3.2 OPTIMIZATION PARAMETERS

For the optimization of the flexible hydrofoil, we started from
the baseline geometry previously optimized by GTF. This ge-
ometry was obtained using an evolutionary method [5]. The
shape of this hydrofoil was parameterized by a set of control
points supporting B-Splines basis functions [32]. Two sets of
20 control points were used to represent the upper and lower
hydrofoil sides using a fitting technique inspired from [46].

For the results presented in this paper, we decided to reduce
the set of geometric parameters in the following way. First,
the optimization is made only for the rear part of the hydrofoil,
the geometry of the leading part being kept the same as the

baseline hydrofoil along up to 70% of the chord length. The
forward part of the flexible hydrofoil is considered perfectly
rigid in the following. Second, the rear part of the unloaded
geometry is defined by rotating the sections of the baseline
hydrofoil by an angle p(s), where s is the reduced coordinate
along the chord of the baseline geometry. In practice, the ro-
tation is applied to the original control points of the baseline
geometry having s > 0.7; the rotation rule p(s) itself is spec-
ified using an additional B-Spline approximation based on 4

control points with 0.7 < s1 < · · · < s4 = 1 and having ro-
tation angle p1 to p4. The B-Spline approximation of p(s)

ensures a smooth connection between the deformed rear and
forward parts of the unloaded flexible geometry. The whole
procedure is illustrated in Figure 1. In the following, we shall
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Figure 1: Illustration of the unloaded geometry definition us-
ing a rotation of the baseline geometry. The top plot shows the
B-Spline approximation of the rotation rule p(s) based on the
rotation angles p1 to p4 at the control points. The bottom plot
compares the baseline (red) and unloaded flexible geometries,
the green vertical line indicating the chord position s = 0.7.

refer to the angles p1,...,4 as the 4 geometrical parameters of
the optimization problem.

The flexibility of the hydrofoil is obtained by inserting a
deformable element between the rigid forward part and the
trailing edge. The geometry of this element is defined using
its starting and ending points, expressed in chord length co-
ordinates before rotation, on the lower (s1 and s2) and upper
(ds1 and ds2) sides; this coordinates are illustrated in in Fig-
ure 2. This deformable element is assumed to be made of



an homogeneous material having a Young modulus ELST; it
is further reinforced by a beam (shown in black in Figure 2)
on the pressure surface (upper side). The elastic beam has a
Young modulus varying linearly between s1 and s2 with mean
EBeam and slope CBeam. Overall, the parametrization of the
deformable part involves 7 parameters (4 geometric and 3 re-
lated to the elastic properties) globally referred to as the struc-
tural parameters. Adding together the structural and geomet-
rical parameters makes the optimization variables x.

0.7 0.75 0.8 0.85 0.9 0.95 1

s1
s2

ds1

ds2

ELST

EBeam CBeam

Figure 2: Illustration of the structural parameters.

3.3 FLUID STRUCTURE INTERACTION SOLVER

Given the value of the optimization parameters x, the evalua-
tion of the objective function and the constraints of the opti-
mization calls for the resolution of several FSI problems (as
many problems as the set of conditions). We assume that these
problems have steady solutions for all values of the design pa-
rameters and we rely on a quasi-steady approach to treat the
coupling between the structural and fluid solvers.

For the flow solver, we rely on XFOIL [10] which has been
developed for many years and is widely used for many aero-
dynamic applications. While based on a two-dimensional air-
foil panel code method, XFOIL can provide viscous and invis-
cid analyses. It incorporates a two-equation integral formula-
tion of the viscous boundary layer and the approximate eN en-
velope method [44]; it allow the prediction of transition points
and separation bubble, through the resolution of the boundary
layer and the transition equations which is based on a New-
ton method. Further details on XFOIL are given in [10] and
it is compared with other CFD methods and solvers in [28].
We only mention that the setting of our optimization problem
imposes to enforce a prescribed lift force in the flow compu-
tation. This is achieved in XFOIL by determining the Angle
of Attack (AoA) that yields the requested lift force. Over-
all, XFOIL is simple to use and has a reasonable computation
cost on a classical workstation, in most of the cases, making
it a natural candidate to be coupled with a structural solver
(see for instance [26] for a recent FSI study of a wind turbine
blades using XFOIL).

The ARA software developed by K-EPSILON was used

to solve the structural model of the flexible trailing edge.
The solver was originally developed for FSI computations of
sails [13] and proposes various structural elements [12]. In
this work, the elastic part of the trailing edge is modeled by
2D Linear Strain Triangles (LST) [31] and Timoshenko beam
elements (see Figure 2). The nonlinear equilibrium solution
is computed by a Newton method with Aitken relaxation.

A quasi-monolithic algorithm [12] is finally applied to cou-
ple the structural and flow solvers. Briefly, in this algorithm,
the resolution of the structural problem is nested inside the
iterations of the nonlinear steady flow solver. This approach
preserves the convergence rate and stability properties of the
monolithic approach. The resulting coupled solver is finally
driven by a utility that computes the set of FSI solutions re-
quired to estimate the objective function value and its con-
straints (20). This utility is itself nested into the optimiza-
tion driver that decides of the sequence of new optimal points
xn+1 to be evaluated.

4 RESULTS AND DISCUSSIONS

We now present the results of the optimization problem. In
particular, we contrast the optimal flexible hydrofoil with its
rigid counterpart optimized considering the same set of con-
ditions and constraints. This comparison concerns the char-
acteristics and performances of the two optimal hydrofoils.
We do not provide a comparison in terms of computational
times because the two optimizations use different strategies
and have significantly different complexities. Indeed, the op-
timization of the rigid hydrofoil although involving a larger
number of optimization variables has an objective function
and constraints much faster to compute than in the flexible
case (which requires the resolution of FSI problems) enabling
the application of evolutionary-based methods [5].

In the following, the rigid hydrofoil corresponds to the first
initial baseline geometry optimized by GTF, assuming a per-
fectly rigid hydrofoil. The unloaded flexible one has been op-
timized after 3 back and forth with GTF, by including imposed
flap angles that are function of the BS, in the GTF baseline hy-
drofoil optimization procedure. The flap angles correspond to
the optimal flexible trailing edge law.

4.1 SELECTION OF THE DESIGN VARIABLES

Still, the computational time for the optimization of the flex-
ible hydrofoil is an important aspect, and several tests were
made to determine an appropriate trade-off between the com-
putational and parametrization complexities, before arriving
at the set-up described in the previous Section 3.2 with the
11 optimization variables. For instance, one can fix the op-
timization variables related to the material properties, or the
geometry of the deformable element, or introduce more con-
trol points in the parametrization of the rotation rule, with dif-
ferent complexities of the optimization problem and different
computational times as a result. However, limiting the number
of optimization variables also impact the performance of the
optimal design. Without reporting all of our tests, we simply
illustrate here the effect of varying the dimensionality of the



optimization domain. Figure 3 shows the evolutions with the
computational time of the estimated minimum of the objective
function when considering different numbers of optimization
variables. The plot shows that the optimization problem with
nine variables needs ≈ 16 times more resources to converge,
compared to the case of five optimization variables, with close
optimal objectives in the two cases. The case with just two op-
timization variables is even less computationally demanding
but leads to a more noticeable drop in the performance at the
optimum.
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Figure 3: Convergence of the objective function minimum
with the computational time, for different numbers of opti-
mization variables.

4.2 OPTIMAL SHAPES AND PRESSURE DISTRIBU-
TIONS

Figures 4 and 5 show for 20 and 40 kts BS respectively, the
shapes of the rigid and flexible hydrofoils. These shapes are
depicted at their effective AoA giving the prescribed lift force.
The pressure coefficient distributions are also reported in the
top part of the Figures. At low BS (20 kts), in Figure 4, the
rigid and deformed shapes are seen to be not much differ-
ent; the rigid one has a higher AoA while the flexible one
is slightly more cambered. Regarding the Cp distributions,
the rigid case presents a minimum at the leading edge of
≈ −2.25, whereas in the flexible case the minimum peaks to
Cp ≈ −1.1 only, at the same location. This can be explained
as a less cambered geometry generally requires a higher AoA
to achieve the same lift force, while Cpmin usually increases
with the AoA. Anyway, the results indicate a poorer tolerance
to cavitation for the rigid hydrofoil in these conditions.

For 40 kts BS, shown in Figure 5, the two AoA are negative
and the rigid one presents again the largest deviation from
zero AoA. The deformation of the trailing edge is now pro-
nounced, in the flexible case, as it can be appreciated using
dashed black contour which corresponds to the unloaded flex-
ible geometry. The trailing edge deflection is ≈ 9.5 deg. The
minima of the pressure coefficients are now located approxi-
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Figure 4: Shapes and distributions of Cp at 20 kts BS for the
rigid and flexible hydrofoils.

mately at mid-chord with Cpmin ≈ −0.5 in the two cases. The
distortions in the Cp distribution observed at ≈ 0.8 percent of
the chord in the case of the flexible hydrofoil are due to the
transitions between the rigid parts and the deformable element
constituting the flexible hydrofoil.
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Figure 5: Shapes and distributions of Cp at 40 kts BS for the
rigid and flexible hydrofoils.

The flow around the flexible hydrofoil at 40 kts BS has
also been computed with a URANS transition model in or-
der to validate the Cp distribution predicted by XFOIL. For
that purpose, a structured mesh of the fluid domain around the
hydrofoil has been generated using ≈ 110 000 elements; the
flow was subsequently solved using FLUENT with the Tran-
sition SST turbulence model [27]. The computed pressure
coefficient distribution is reported in Figure 6, together with
the XFOIL prediction, highlighting the excellent agreement
between XFOIL and the Transition SST flow model. Small
differences in the Cp are visible only on the pressure side at



≈ 90% of the chord length, and the magnitude of the differ-
ences in the global hydrodynamic loads are 2.6% and 4.2% for
the lift and drag coefficients respectively. Thus, the Cp com-
puted by XFOIL can be considered reliable, even in the area
of the deformable element.

x

C
p

0 0.2 0.4 0.6 0.8 1

-0.5

-0.25

0

0.25

0.5

0.75

1

XFOIL
Transition SST

Figure 6: Distributions of Cp predicted by XFOIL and with
the URANS transition models.

Figure 7 shows the differences in the thicknesses of the op-
timal rigid and unloaded flexible hydrofoils. The evolutions
of the camber along the chord for the loaded flexible hydro-
foil at several BS are also reported. These geometrical quanti-
ties are computed based on the distances in the direction nor-
mal to the deformed chord, following the classical conven-
tions. Although actual camber and thickness values are not
reported, for confidentiality reasons, the differences between
the two optimal geometries are evident. Specifically, the flexi-
ble hydrofoil in the unloaded configuration is thinner than the
rigid one between ≈ 0.3 and 0.9 percent of the chord length.
Regarding the camber distribution, the flexibility is seen to
have an important effect depending on the BS. In addition,
the shapes of the camber distribution of the flexible hydrofoil
differ significantly from the rigid one for all the BS shown.
Specifically, the maximum camber of the flexible foil at 20 kts
BS is more than twice that of the rigid one, while at 40 kts BS
it is less by roughly 20%. These evolutions of the apparent
camber distribution with the BS (and load in general) is one
of the hydrodynamical advantages brought by the flexibility.

4.3 ANGLES OF ATTACK AND CAVITATION CRITE-
RION

The effective AoA of the optimal hydrofoils is reported in
Figure 8 as a function of the BS. The previous observations
regarding the AoA are confirmed. The AoA of the rigid hy-
drofoil almost linearly decreases from ≈ 3.9 deg at 20 kts to
≈ −0.9 deg at 30 kts BS, and subsequently continues to de-
crease, but at a lower rate, when the BS increases further. For
the flexible case, the maximum of AoA is only ≈ 1.8 deg at
20 kts and decrease to≈ −0.1 deg at 25 kts BS. Then, unlike in
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Figure 7: Flexible hydrofoil thickness and camber distribu-
tions at several BS. The rigid hydrofoil case is also shown for
comparison.

the rigid case, the flexible hydrofoil keeps an almost constant
effective AoA between 0 and −1 deg for the rest of BS range,
instead of decreasing continuously in the rigid case. Again,
the flexibility can explain this behavior, as the deformation
of the trailing edge (and reduction of the camber) discharges
the foil when the BS increases. This discharge calls for fewer
changes in the AoA compared to the rigid case. Note that this
sort of automatic trimming, through flexibility, may also be
beneficial by saving some trimming efforts to the crew mem-
bers.
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Figure 8: Effective AoA as a function of BS.

Another positive impact of the flexible hydrofoil can be ap-
preciated in Figure 9 which reports the minima of the pressure
coefficients Cpmin for the two optimal hydrofoils, as a func-
tion of the BS. The dashed black curve corresponds to the
critical value based on the cavitation number (21). We thus
expect the optimal hydrofoils to have Cpmin greater than this



critical value over the whole range of BS considered. How-
ever, we recall that the cavitation criterion is enforced for a fi-
nite set of only 4 distinct values of the BS. For the maximal BS
shown, 40 kts, the two optimal foils, in fact, violate by a small
margin the criteria based on the cavitation number, which in-
deed is not explicitly enforced for this BS. As lower BS are
considered, till 25 kts, the two foils satisfy the non-cavitating
criterion by a large margin, suggesting that any constraints in
this range of BS would not be active. Finally, when the BS ap-
proaches 20 kts the behavior of the Cpmin differs between the
two hydrofoils: while for the flexible hydrofoil Cpmin remains
away from its critical value, it decreases sharply and even be-
comes significantly lower than its critical value in the rigid
case. Comparing the trends of the two hydrofoils, it can be
concluded that the flexibility yields a design with Cpmin much
less dependent on the BS, and therefore having lower chances
of violating the non-cavitating conditions for BS other than in
the constraints.
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Figure 9: Minimum of pressure coefficients Cpmin as a func-
tion of BS. Also shown is the cavitation number λ given
by (21).

4.4 DRAG PERFORMANCES

To complete the comparison between the flexible and rigid hy-
drofoil, we report in Figure 10 the drag coefficients as a func-
tion of the BS. The actual values are not shown, for confiden-
tiality reasons, but the plot allows to appreciate the improve-
ment brought by the flexible hydrofoil. Except for the lowest
BS (20 kts), the flexible hydrofoil has a drag coefficient Cd

consistently lower than for the rigid one. The improvement is
particularly significant at 25 and 40 kts BS, with roughly 20%

drag reduction at the highest BS. Again, these improvements
come from the flexibility which allows the hydrofoil to natu-
rally adapt its camber with the BS, with a thinner geometry at
rest and lower variations of the AoA in the BS range.

For BS between 20 and 25 kts, the hydrofoil drag is mainly
depending on the location of the transition point on the suc-
tion side, denoted xtr. As the AoA increases to satisfy the
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Figure 10: Drag Cd of the optimal hydrofoils as a function of
the BS.

required lift force, xtr moves toward the leading edge with a
sharp increase in the friction drag. Note that in XFOIL the lo-
cation of the transition point is computed whenever it appears
to be in the first 40% of the chord. Otherwise, it is set at this
maximal location. To highlight the importance of the tran-
sition point on the drag of the hydrofoil, Figure 11 presents
the evolutions of the flexible hydrofoil drag and the location
of the transition point as functions of the BS. The sharp drop
in the hydrofoil drag, around 22.5 kts BS, is clearly related to
the displacement of the transition point away from the leading
edge. Note that by using different weights and adding more
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Figure 11: Drag Cd and transition point location xtr for the
flexible hydrofoil as functions of the BS.

conditions in (20), one could further improve the hydrofoil
drag at low BS, by delaying the displacement of the transition
point, but to the detriment of the drag at higher BS.



4.5 OPTIMAL HYDROFOIL AT 30 KTS

To illustrate the importance of the selected conditions used
in the definition of the objective function, we optimize an-
other rigid hydrofoil based on the minimization of the drag
and non-cavitating constraint in (20) based on the unique con-
dition corresponding to 30 kts BS. The design variables are re-
duced to the 4 geometrical angles p1,...,4 and we refer to this
optimized hydrofoil as the Rigid 30 kts one.

Table 1 compares the AoA, Cpmin and Cd of the flexible
and Rigid 30 kts hydrofoils at 30 kts BS. The Rigid 30 kts
case has a lower incidence, with a drag reduction of roughly
1.2% compared to the flexible case. The two Cpmin are rela-
tively close and far from the criterion based on the cavitation
number λ. The closeness of the two hydrofoils at this BS of

Rigid 30 kts Flexible Difference
AoA −0.36◦ −0.81◦ 0.55

Cpmin −0.605 −0.627 0.035

Cd – – −0.012

Table 1: Comparison of the hydrodynamical characteristics of
the Rigid 30 kts and flexible solutions at 30 kts BS.

30 kts can be further appreciated from Figure 12, where shown
are the two distributions of Cp and the shapes plotted at the
same AoA for comparison purposes. The main difference in
the pressure coefficient is the smoother character of the dis-
tribution in the Rigid 30 kts case, which can be explained by
the absence of the localized elastic deformations present in
the flexible case. However, the differences between the two
distributions are small as one could have expected from the
similarity of the shapes and effective AoA.
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Figure 12: Shapes and Cp distributions for the flexible and
Rigid 30 kts solutions at 30 kts BS.

However, as soon as the BS departs from 30 kts, the flex-
ible hydrofoil exhibits a lower drag compared to the Rigid
30 kts one. This can be appreciated in Figure 13 which re-
ports the differences in the drag coefficients, with positive

values in favor of the flexible case. Note that these consis-
tent improvements were not necessarily expected as the Rigid
30 kts case does not enforce any non-cavitating conditions at
BS other than 30 kts. Therefore, the Rigid 30 kts optimiza-
tion may have produced a cavitating design with lower drag
for other BS. Note also the higher drag for the flexible hydro-
foil, at 20 kts BS, where the cavitation criterion is actually not
satisfied by the rigid solution.
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5 CONCLUSIONS

An advanced multi-design constrained optimization method
has been proposed in this paper for the design of a two-
dimensional hydrofoil with a flexible trailing edge. Surrogate-
model based optimization, with inequality constraints, have
been used to enable the optimization of the hydrofoil at a rea-
sonable computational cost. The surrogates are constructed
and updated using a limited number of carefully selected res-
olutions of the fully nonlinear fluid-structure interaction prob-
lem. The nonlinear FSI solver used in this work couples
a two-dimensional vortex lattice method code for the flow
around the hydrofoil with a static structural solver, based on
linear stress triangle and Timoshenko beam elements, for the
hydrofoil deformations. The optimization involves 4 parame-
ters describing the rotation of a base geometry, and seven elas-
tic parameters describing the properties of the elastic bound
between the rigid leading part and trailing edge of the hydro-
foil. These parameters are sought to globally minimize the
hydrofoil drag forces in selected conditions (boat speeds and
lift forces), while constraints were introduced to ensure non-
cavitating conditions.

The performances of the resulting optimal flexible hydro-
foil have been compared to the rigid case optimized for the
same set of conditions. It was found that the flexible hydro-
foil performs globally better over the whole set of conditions,
compared to the rigid one. In fact, the flexible hydrofoil was
found to have drag forces lower than that of the rigid one the



whole range of boat speeds, except around 20 knots where
the two cases have essentially the same drag force. The im-
provement in the drag force brought by the flexibility is par-
ticularly noticeable for the highest boat speeds (≥ 35 knots)
and around 25 knots. A closer inspection of the optimal so-
lutions revealed that not only the flexible hydrofoil performs
better for most conditions, but its angle of attack varies with
the boat speed in a tighter range to achieve the prescribed lift
conditions, compared to the rigid case. In particular, the flex-
ible hydrofoil has a much smaller angle of attack at low boat
speed, which immediately translates into a higher minimum
of pressure and less susceptibility to cavitation.

Overall, the optimization clearly evidences the various ad-
vantages of considering a hydrofoil with a flexible trailing
edge. In particular, it demonstrates that, if correctly designed,
the flexible trailing edge allows for an auto-adaption of the
hydrofoil camber line and angle of attack with the boat speed,
with a global reduction of the drag and lower cavitation risk.

Future developments will concern the optimization of a
three-dimensional flexible hydrofoil with the use of more ad-
vanced flow models to account for the three-dimensional ef-
fects, turbulence, and more complex cavitation criteria. We
are currently exploring multi-fidelity strategies [30] to tem-
pered the increase in the computational costs in the three-
dimensional case. Another aspect requiring further investi-
gation is the dependence of the transition point displacement
as a function of the hydrofoil angle of attack at lower boat
speed range. Indeed, we believe that the flexible trailing edge
could be effective in producing enough lift for the platform to
take off at a lower boat speed.
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