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Abstract- This paper studies control strategies using modified 
transformation matrices when five-phase machines operate in one- 
open-phase faults. The basic idea of these methods is to maintain the 
rotating field under asymmetrical conditions as the same as in healthy 
condition by determining new transformation matrices. The 
dimension of the new matrices is equal to the number of remaining 
healthy phases in post-fault conditions. There have been different 
ways to determine the new transformation matrices applied for 
different types of five-phase machines in recent decades. In this study, 
an overview and analyses on these methods will be presented. In 
addition, advantages and drawbacks of these control strategies are 
clarified by numerical results. 

Keywords- reduced-order transformation matrices; 5-phase 
machines; open-phase faults; fault-tolerant control; back-EMF 
waveform; current references; torque control 

I. INTRODUCTION 

Multiphase machines have been used in many applications in 
recent decades because of their advantages such as low torque 
pulsation, fault tolerance, adequacy to low voltage supply and 
reduced per phase power rating [1], [2]. The design, modeling and 
control strategies in healthy mode of operation are analyzed in [3]. 
The most common faults, which occur in electrical machine 
drives, are open-circuited faults of stator windings of the machine 
and power converters [4]. Many strategies have been proposed to 
determine optimal current references to maximize torque with 
given copper losses when one or more phases of the machines are 
open-circuited. In [5], strategies for four, five, six and seven-phase 
induction machines have been proposed to determine optimal 
current references to maintain the magnetomotive force in 
degraded mode the same as in healthy condition. However, these 
methods in [5] deal with only fundamental components of current.  

In this paper, methods using reduced-order transformation 
matrices for fault-tolerant control of 5-phase machines in one open 
phase faults will be analyzed. Several papers [6]–[13] consider 
only sinusoidal back-EMF machines imposed by fundamental 
harmonic currents while paper [14] dealing with non-sinusoidal 
back-EMF machines proposes an injection of the third harmonic 
currents. In fact, [15] introduces the use of third harmonic 
components of current to five-phase permanent magnet motor 
drives with quasi-rectangular back EMFs in an open phase fault. 
However, high torque ripples still exist in [15] even when the 

speed is controlled perfectly. The present paper aims at giving a 
general view and verifying the applicability of methods using 
adjusted transformation matrices in fault-tolerant control.  

It is organized as follows: section II describes the basic model 
of a 5-phase machine; in section III, the analysis of control 
strategies using reduced-order transformation matrices in a single 
open-circuit fault is demonstrated. 

II. FIVE-PHASE MACHINE MODELING 

To identify the machine model, these following assumptions 
are considered: 5-phase windings are equally shifted and wye-
connected; the machines with sinusoidal or trapezoidal back-
EMFs are considered; the saturation of the magnetic circuits is not 
considered in the calculation of the back-EMFs and fluxes; and no 
reluctance effect.  

Clarke and Park transformations are applied to convert the 
machine parameters from natural (𝑖௔ , 𝑖௕ , 𝑖௖ , 𝑖ௗ, 𝑖௘) frame to α-β 
൫𝑖ఈଵ, 𝑖ఉଵ , 𝑖ఈଷ, 𝑖ఉଷ , 𝑖଴൯ and d-q frames ൫𝑖ௗଵ, 𝑖௤ଵ, 𝑖ௗଷ, 𝑖௤ଷ, 𝑖଴൯ as 
expressed in equations (1-4). In α-β and d-q frames, the real five-
phase machine is equivalent to three fictitious machines (the first 
machine, the second machine and the homopolar machine). Each 
fictitious machine consists of a given group of harmonic 
components [16]. It is assumed that the fundamental component is 
considered in the first fictitious machine while the third harmonic 
component is in the second fictitious machine. Other higher 
harmonic components are neglected. The zero-sequence current is 
zero (𝑖଴ = 0) because of the wye-connected winding; therefore, it 
cannot contribute to torque generation [17]–[19].  
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where [𝑻𝑪𝒍𝒂𝒓𝒌𝒆] and [𝑻𝑷𝒂𝒓𝒌]  are the Clarke and Park transformation 
matrices in healthy operation;  𝛿 = 2𝜋/5 is the spatial phase shift 
angle; 𝜃 is the electrical angle of the machine.  

III. FAULT-TOLERANT CONTROL METHODS USING REDUCED-
ORDER TRANSFORMATION MATRICES IN DEGRADED MODE 

 Overview of the recent methods 

In healthy mode, the three subspaces 1-1, 3-3 and zero-
sequence associated respectively to the first, third and fifth 
harmonics are orthogonal to each other, which makes the control 
currents in these subspaces independent. Therefore, constant 
torque is easy to produce even if the electromotive forces contain 
the first, third and fifth harmonics. When phase a is open-circuited 
(Fig. 1), the first harmonic of current interacts with all the 
harmonics of electromotive forces. As a result, an asymmetric 
condition in the rotating field appears and torque pulsations are 
produced. The imposed current references of healthy mode are 
often unsuitable in this case; hence, these current references need 
to be modified in degraded modes [20]. The basic idea of these 
methods is to preserve the sinusoidal M.M.F under asymmetrical 
conditions. In [6], H. Ryu et al. introduces new transformation 
matrices for five-phase PMSM machines according to the concept 
that every harmonic component of the current and voltage, which 
can contribute to the torque positively, can be equivalently 
represented as dc components even under asymmetrical fault 
conditions. Therefore, the fundamental currents in d-q frame are 
kept constant as in heathy case with the new transformation 
matrices. H. Guzmán et al. in [7], [8] proposes new transformation 
matrices for 5-phase induction machines to preserve symmetrical 
models of resistive, leakage inductance and back-EMF with time-
invariant coefficients in asymmetrical fault conditions. In [9], 
[10], B. Tian et al. constructs a model based on the concept similar 
to the studies in [7], [8] for 5-phase PMSM machines using sliding 
mode control to eliminate the speed pulsation. In [11], [12], H. 
Zhou et al. develops new orthogonal reduced-order transformation 
matrices derived by the fault-tolerant references. These studies use 
a remedial field-oriented control (RFOC). In [13], a control 
strategy is proposed by A. Seck et al. for a permanent magnet 
synchronous generator with single open phase by applying Particle 
Swarm Optimization to find elements of a new transformation 
matrix. All researches above have not considered the non-
sinusoidal back-EMF machines as well as non-sinusoidal current 
references. In those methods, only fundamental currents cannot 
eliminate torque ripples with the non-sinusoidal back-EMFs. 
Thus, G. Liu et al. in [14] proposes a new model for non-sinusoidal 
back-EMF machines. The torque ripples caused by the third 
harmonic air-gap flux is analyzed and eliminated by imposing 
third harmonic currents in the rotating frame. The next section 
analyzes these methods with more details and a five-phase 
machine described in Table 1 is used for validations. 

 
Fig. 1. Asymmetrical condition of the rotating field of a five-phase machine when 

phase a is open-circuited 

TABLE I. ELECTRICAL PARAMETERS OF CONVERTER AND MACHINE 

Parameter Value 

Stator resistance R (Ω) 1.4 

Phase inductance L (mH)  10.1 

Mutual inductance 𝑀ଵ (mH) 3.1 

Mutual inductance 𝑀ଶ (mH) -1.05 

Mutual inductance 𝑀ଷ (mH) -5.3 

Number of pole pairs p 3 
Speed-normalized amplitude of 1st harmonic back-EMF 𝐸௠ଵ 
(V/rad/s) 

1 

Speed-normalized amplitude of 3rd harmonic back-EMF 𝐸௠ଷ 
(V/rad/s) 

0.32 

 Categorization of reduced-order transformation matrix 
methods  

When phase a is opened, the current of phase a is equal to zero; 
hence, the Clarke transformation matrix from equation (3) 
becomes [𝑻𝑪𝒍𝒂𝒓𝒌𝒆

ᇱ ] as expressed in equation (5). The coupling 
between fundamental current and the third harmonic current is 
shown in equation (6). 
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𝑖௔ = 0 → 𝑖ఈଵ = −𝑖ఈଷ (6) 

The first, third and fifth row vectors of matrix [𝑻𝑪𝒍𝒂𝒓𝒌𝒆
ᇱ ] in 

equation (5) are no longer orthogonal to each other. Consequently, 
the third harmonics of current cannot make a rotating field 
independently of the first ones; therefore, the third components are 
the consequences of the first harmonic currents, leading to 
uncontrolled current and torque ripples. A new transformation 
matrix ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆

𝟏 ൧ needs to be determined with its dimension equal to 
the number of remaining healthy phases (4 by 4) as shown in 
equation (7). By using matrix ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆

𝟏 ൧, the currents of healthy 
phases in natural frame are projected onto the space αβz0 
including fundamental stationary plane α-β (𝑖ఈ, 𝑖ఉ), subspace z (𝑖௭) 
and zero-sequence subspace (𝑖଴). To control the currents in new 
subspaces independently (no coupling between these two 
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subspaces), the new fundamental plane α-β needs to be orthogonal 
to subspace 𝑧 even when 𝑖௭ is imposed to zero. It means that the 
first 3 row vectors of the new transformation matrix ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆

𝟏 ൧ must 
be perpendicular to one another. The orthogonality of the fourth-
row vector of ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆

𝟏 ൧ to other row vectors is not mandatory since 
the zero-sequence current (𝑖଴) is obviously zero due to the wye-
connected winding. 
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where 𝑖௕
ᇱ , 𝑖௖

ᇱ , 𝑖ௗ
ᇱ , 𝑖௘

ᇱ  are the new phase currents in natural frame of 
the five-phase machine. 

There are several ways to find the new transformation matrix 
ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆

𝟏 ൧ to preserve sinusoidal currents in α-β frame, leading to 
constant currents in d-q frame in single open phase fault. It means 
that currents 𝑖ఈ and  𝑖ఉ form a circle as shown in Fig. 2. Five 
methods using new transformation matrices in faulty modes will 
be analyzed in this section and summarized in Table 2. In methods 
(1-4), a new Park transformation matrix in equation (8) is used to 
convert currents and back EMFs into d-q frame, considering only 
fundamental components. Method (5) applies an extra matrix in 
equation (20) for the third harmonic components. 

ൣ𝑻𝑷𝒂𝒓𝒌
𝟏 ൧ = ൦

cos 𝜃
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0
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0
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0
0
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(1) Method 1 
The method in [6] is proposed for a sinusoidal back-EMF five-

phase PMSM with a new transformation matrix ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆
𝟏 ൧ as shown 

in equation (9) by eliminating the third row of equation (5). The 
reason for this elimination is the coupling between the first and 
third harmonic currents as expressed in equation (6). For the sake 
of simplicity, all elements of the fifth-row vector are set to 1 
without loss of orthogonality. Afterwards, the first row is adjusted 
by adding a coefficient x with the aim of respecting the 
orthogonality of matrix ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆

𝟏 ൧ and adjusting the symmetry of 
back-EMFs in degraded modes. Indeed, the first three row vectors 
in equation (9) are always orthogonal to each other regardless of 
the value of x because their dot products are always equal to zero. 

TABLE 2. SUMMARY OF METHODS USING REDUCED-ORDER 
TRANSFORMATION MATRICES 

Method References x Applied Machines Orthog-
onality 

1 [6] 0.25 Sinusoidal back-EMF PMSM Yes 

2 [7]–[10] -1 
Induction Machine in [7], [8] 

and Non-sinusoidal back-EMF 
PMSM in [9], [10] 

No 

3 [11], [12] -- Sinusoidal back-EMF PMSM Yes 

4 [13] -- Sinusoidal back-EMF PMSG No 

5 [14] -1 Non-sinusoidal back-EMF PMSM No 

 
Fig. 2. The current references in fundamental α-β frame in post-fault conditions 

with any value of x in methods 1 and 2 

 
(a) 𝑥 = 0.25 

 
(b) 𝑥 = −1 

Fig. 3. The normalized fundamental back EMFs in α-β frame with different 
values of x in methods 1 and 2 

However, the first and fourth row vectors of ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆
𝟏 ൧ are 

perpendicular only when 𝑥 equals to 0.25. In addition, the 
expression of current 𝑖ఈ  in equation (10) shows that coefficient 𝑥 
is unable to affect the projection of current onto fundamental α-β 
frame since the sum of remaining healthy phase currents is always 
zero. However, there is an asymmetrical waveform of back EMFs 
in the new frame α-β as shown in Fig. 3a. The reason is that the 
sum of back EMFs in healthy phases is not equal to zero. 
Therefore, from equation (11), the value of 𝑥 affects the 
symmetrical characteristic of the back EMFs. 
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(2) Method 2 
The method in [7]–[10], developed from [6], is applied for 

five-phase induction and permanent magnet machines with 
coefficient 𝑥 in equation (9) equal to −1. In [7], [8], for an 
induction machine, the projections of currents, voltages and back 
EMFs onto the new fundamental frame α-β are obtained with the 
symmetrical characteristic. The back EMFs in the subspace α-β 
form a circle with 𝑥 = −1 as plotted in Fig. 3b. However, the 
fourth-row vector is not orthogonal to the first-row vector 
anymore, but it does not affect the control of current in the new 
fundamental subspace due to the wye connection. Authors in [9], 
[10] apply the same transformation matrices as in [7], [8] but for a 
non-sinusoidal back-EMF PMSM. Because the fundamental 
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components of currents interact with the third harmonic back-
EMFs, resulting in torque ripples. Therefore, a sliding mode 
control for speed is used. Nevertheless, the torque ripples as well 
as speed pulsation still exist. 

(3) Method 3 
In [11], [12], the new transformation matrix is proposed for a 

sinusoidal back-EMF five-phase PMSM according to (5) without 
an additional coefficient x as in equation (12). 
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𝑒ᇱሬሬሬ⃗ . (ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆
𝟑 ൧𝚤ᇱሬሬ⃗ )் (14) 

൦

𝑒ఈ

𝑒ఉ

𝑒௭

𝑒଴

൪ = ቄൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆
𝟑 ൧

ିଵ
ቅ

்

൦

𝑒௕

𝑒௖

𝑒ௗ

𝑒௘

൪ (15) 

where 𝑒ఈఉ௭଴ሬሬሬሬሬሬሬሬሬሬ⃗ = ൣ𝑒ఈ  𝑒ఉ 𝑒௭  𝑒଴൧ and 𝚤ఈఉ௭଴ሬሬሬሬሬሬሬሬሬ⃗ = ൣ𝑖ఈ  𝑖ఉ 𝑖௭ 𝑖଴൧ are the back EMF 
and current vectors in the new stationary subspaces respectively; 
𝑒ᇱሬሬሬ⃗ = [𝑒௕ 𝑒௖  𝑒ௗ  𝑒௘] and 𝚤ᇱሬሬ⃗ = [𝑖௕

ᇱ  𝑖௖
ᇱ  𝑖ௗ

ᇱ  𝑖௘
ᇱ ] are the back EMF and current 

vectors in natural frame respectively. 

All row vectors in equation (12) are orthogonal to one another 
when every row of matrix in equation (5) is modified. The first 
two row vectors are derived based on the current references in 
natural frame in [21] as shown in Fig. 4. The phasor angles of c-
current and d-current are unchanged while those of phase b and 
phase e are shifted 0.5𝛿 compared to the healthy case to 
compensate the loss of current in phase a. The same torque as in 
healthy mode can be preserved by increasing the amplitude of new 
current 1.382 times higher than the one in healthy mode.  

In equation (12), the third-row vector is defined to guarantee 
its orthogonality to the first two row vectors and make sure that 
current 𝑖௭ is equal to zero. Constant coefficients in the 
denominators of all elements of ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆

𝟑 ൧ are determined to change 
the amplitude of the current references in natural frame. This 
adjusting enables the machine to generate a torque in faulty mode 
equal to healthy mode. Additionally, in [11], [12], the authors 
tackle the problem of the asymmetrical back EMFs in α-β frame 
as presented in [6] by changing the way to calculate the projection 
of back EMFs onto the new stationary frame α-β as shown in 
equations (13-15). Specifically, the transpose of the inversion of 
the new transformation matrix is applied instead of the 
transformation matrix. Indeed, the inversion of ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆

𝟑 ൧ is different 
form its transpose. In addition, equations (13-14) prove that the 
product of current and back-EMF vector in the new stationary 
subspaces is the same as in natural frame with a transformation in 
equation (15). However, the experimental result in [11], [12] 
contains high torque ripples since the back EMFs of the 
experimental machine include high harmonic components. 

 
Fig. 4. New current references when phase a is opened in method 3 

(4) Method 4 
In [13], a new transformation matrix applied for a sinusoidal 

back-EMF five-phase PMSM is expressed in equation (16). The 
principle is that the first two row vectors of the matrix in equation 
(5) are unchanged while its third-row vector is eliminated. In 
addition, elements of the fourth-row vector of (5) become 4 scalar 
variables (𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସ). These variables need to be estimated by 
using Particle Swarm Optimization, according to two optimization 
criteria. The first criterion, copper loss minimization resulting in 
unbalanced phase currents, is derived with (𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସ) =
(0.6328 , −1, 1, −0.6328). The other criterion with balanced 
phase currents is obtained when (𝑘ଵ, 𝑘ଶ, 𝑘ଷ, 𝑘ସ) = ( −1, 1, −1, 1).  

ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆
𝟒 ൧ =

ଶ

ହ
൦

𝑐𝑜𝑠𝛿   
𝑠𝑖𝑛𝛿

𝑘ଵ

1

cos(2𝛿)   
sin (2𝛿)

𝑘ଶ

1

cos(2𝛿)
−𝑠𝑖𝑛 (2𝛿)

𝑘ଷ

1

   𝑐𝑜𝑠(𝛿)
−𝑠𝑖𝑛 (𝛿)

𝑘ସ

1

൪ (16) 

Simulation results in  [13] show that this method works with 
good performance when being applied to a purely sinusoidal 
machine. 

(5) Method 5 
In [14], the authors propose new transformation matrices for a 

non-sinusoidal back-EMF five-phase PMSM with an open phase. 
The healthy phases of the machine are imposed with non-
sinusoidal current references to eliminate torque ripples. The 
transformation matrices for the fundamental components are the 
same as in  [7]–[10] by using the matrix in equation (9) with 𝑥 =
−1. The new space for the fundamental currents and back EMFs 
is denoted as α1β1z101 to differ from the space for third harmonic 
components. The fundamental current and back EMFs in the new 
space are presented in Figs. 5a and 5b respectively. 

The principle to find a new transformation matrix for the third 
harmonic components is like the fundamental ones. Thus, the 
MMF and back EMFs of the third harmonic components are 
expected to be the same as in healthy condition. Equations (17-18) 
present the conversions of the third harmonic currents and the third 
harmonic back EMFs from natural frame into the new space 
α3β3z303 including the third harmonic plane α3-β3, subspace z3 
(𝑖௭ଷ) and zero-sequence subspace (𝑖଴ଷ). Indeed, the new Clarke 
transformation matrix ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆

𝟓 ൧ in equation (19) is obtained by 
removing the first row of the matrix in equation (5). This row 
vector is associated to the first harmonic current 𝑖ఈଵ which is 
coupled with the third harmonic current 𝑖ఈଷ. The second row of 
the matrix in (5), related to 𝑖ఉଵ, is remained and associated to a 

b

c

d

e

a

bc

d e

a

𝟐𝜹

0.5𝜹

2𝜹

𝜹

𝜹
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subspace called 𝑧ଷ. The third and fourth rows of the matrix in (5) 
associated to the third harmonic subspace α3-β3 are reused. In 
equation (19), a coefficient x is added to the row vector related to 
𝛼ଷ to ensure the symmetrical characteristic of the third harmonic 
back-EMFs (𝑥 is equal to −1). 

൦

𝑖௭ଷ

𝒊𝜶𝟑

𝒊𝜷𝟑

𝑖଴ଷ

൪ = ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆
𝟓 ൧

⎣
⎢
⎢
⎡
𝑖௕ଷ

ᇱ

𝑖௖ଷ
ᇱ

𝑖ௗଷ
ᇱ

𝑖௘ଷ
ᇱ ⎦

⎥
⎥
⎤

;             ൦

𝑒௭ଷ

𝒆𝜶𝟑

𝒆𝜷𝟑

𝑒଴ଷ

൪ = ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆
𝟓 ൧ ቎

𝑒௕ଷ

𝑒௖ଷ

𝑒ௗଷ
𝑒௘ଷ

቏ (17-18) 

ൣ𝑻𝑪𝒍𝒂𝒓𝒌𝒆
𝟓 ൧ =

ଶ

ହ
൦

𝑠𝑖𝑛𝛿   
𝑐𝑜𝑠2𝛿 + 𝑥 
−𝑠𝑖𝑛 (2𝛿)

1

     

sin (2𝛿)  
𝑐𝑜𝑠𝛿 + 𝑥

𝑠𝑖𝑛𝛿
1

  

  −𝑠𝑖𝑛 (2𝛿)
 𝑐𝑜𝑠𝛿 + 𝑥
−𝑠𝑖𝑛 (𝛿)

1

     

  − 𝑠𝑖𝑛 (𝛿)
𝑐𝑜𝑠2𝛿 + 𝑥

𝑠𝑖𝑛 (2𝛿)
1

൪ (19) 

ൣ𝑻𝑷𝒂𝒓𝒌
𝟓 ൧ = ൦

0
0
0
0

0
𝑐𝑜𝑠3𝜃

−𝑠𝑖𝑛3𝜃
0

0
𝑠𝑖𝑛3𝜃
cos3𝜃

0

0
0
0
1

൪ (20) 

where (𝑖௕ଷ
ᇱ , 𝑖௖ଷ

ᇱ , 𝑖ௗଷ
ᇱ , 𝑖௘ଷ

ᇱ ) are new third harmonic phase currents in 
natural frame; (𝑒௕ଷ,𝑒௖ଷ,𝑒ௗଷ,𝑒௘ଷ) are the third harmonic 
components of back EMFs in natural frame; (𝑖ఈଷ, 𝑖ఉଷ, 𝑖௭ଷ, 𝑖଴ଷ)  and 
(𝑒ఈଷ, 𝑒ఉଷ, 𝑒௭ଷ, 𝑒଴ଷ) are currents and back EMFs in the new space 
α3β3z303 respectively. 

The third harmonic components of currents and back EMFs in 
the new space α3β3z303 are symmetrical as shown in Fig. 6.  
Accordingly, the fundamental and third harmonic currents can be 
controlled independently, and their waveforms in natural frame 
are shown in Fig. 7. The total phase currents in natural frame are 
the sum of the corresponding first and third harmonic currents as 
presented in Figs. 8a. The non-sinusoidal back EMFs, with the 
third harmonic component equal to 32% of the first harmonic one, 
are presented in 8b. The ripple-free torque, when phase a is open-
circuited, is the same as the torque in healthy operation as plotted 
in Fig. 9a.  

 Summary of studied methods 

When phase a is open-circuited, types of the machines (related 
to back-EMF waveforms) have a strong effect on torque pulsations 
of the machines. The methods (1-4) in [6]–[13] propose only new 
transformation matrices for only fundamental components of 
currents and back EMFs. 

 

(a) 

 

(b) 
Fig. 5. The first harmonic components of current and back EMF in new stationary 

space α1β1z101 in method 5 

 
(a) 

 
(b) 

Fig. 6. The third harmonics of current (a) and back EMF (b) in new stationary 
space α3β3z303 in method 5 

 
(a) 

 
(b) 

Fig. 7. The fundamental currents (a) and third harmonic currents (b) in natural 
frame at 10 rad/s in method 5 

 
(a) 

 
(b) 

Fig. 8. Non-sinusoidal phase current references (a) and non-sinusoidal back 
EMFs (b) at 10 rad/s using method 5 when phase a is opened  

 
(a) 

 
(b) 

Fig. 9. Torques in healthy case and in single open phase fault with a non-
sinusoidal back-EMF machine at 10 rad/s using method 5 (a) and using methods 

(1-4) (b)  

If methods (1-4) in references [6]–[13] are applied for 
machines with non-sinusoidal back EMFs, the interactions 
between the fundamental harmonics of currents and the third and 
other high harmonic components of back EMFs will cause torque 
ripples as shown in Fig. 9b. Thus, in those papers, different control 
strategies are applied such as sliding mode control, remedial field-
oriented control and model predictive control to reduce the torque 
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pulsations if the experimental back EMFs are not sinusoidal. 
However, the torque ripples still exist in these systems.  

Only method 5 in [14] is able to solve the problem of third 
harmonic components theoretically by using new transformation 
matrices for the third harmonic components as discussed in the 
previous subsection. However, the experimental results show that 
torque ripples are produced in [14] with single open phase fault. 
The presence of torque ripples can be explained by the control of 
non-constant current references in d-q frame at high speed or the 
existence of other high harmonic components of back EMFs in the 
experimental machine.  

In all studied methods above, the current in subspace z (iz) is 
used for optimization criteria or torque ripple elimination. 
Criterion Lowest Jules Losses (LJL) results in minimizing copper 
losses in which the amplitudes of phase currents are different in 
healthy phases. With criterion Equal Jules Losses (EJL), copper 
losses are distributed equally in every phase and healthy phase 
currents have the same amplitude. Using these methods, the new 
transformation matrices need to be determined for each case of 
open phase fault. For example, a new transformation matrix for 
open phase fault in phase a is unable to be applied for an open 
phase fault in phase b, c, d and e, and vice versa. As a result, the 
calculations and data storage will be challenges in practical 
applications. 

IV. CONCLUSIONS 

The paper has given an overview of several methods using 
reduced-order transformation matrices for fault-tolerant control 
for a five-phase machine in single open phase fault. The paper has 
analyzed the basic ideas and strategies to find the new 
transformation matrices. With methods (1 to 4) in [6]–[13], the 
fundamental components of current and back EMFs are 
considered to obtain constant torque. However, these methods are 
no longer suitable for non-sinusoidal back EMF machines due to 
torque ripples. The fifth method in [14] proposes the new 
transformation matrices for non-sinusoidal back EMFs. Thus, 
non-sinusoidal current references are taken into account to 
produce a ripple-free torque. This method has high potential to 
apply to all non-sinusoidal back-EMF multiphase machines with 
a certain number of phases. However, a drawback of all methods 
above is that a new matrice need to be defined for a specific open 
phase fault.   
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