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In this paper, a new model based on bubble-bubble interactions is proposed for cavitation. Unlike the 
well-known existing models (Rayleigh-Plesset, Gilmore), which are derived from the local balance 
equations in the vicinity of a single cavitation bubble, the present approach is based on the mutual 
interaction between two spherical bubbles of different sizes. The mass and momentum conservation 
equations, coupled with the local flow divergence, lead to two equations for the evolution of the bubble 
radii and one equation for the local pressure. The bubble size variations predicted by the model are 
found in close agreement with the previous experimental data reported by Ohl [“Cavitation incep-
tion following shock wave passage,” Phys. Fluids 14(10), 3512–3521 (2002)]. The distinct radii of 
bubbles located close to each other, as well as the premature collapse of small bubbles during the 
initial stage of cavitation inception, are correctly reproduced by the model. The results generally show 
that bubble/bubble interactions play a primary role in the physics of cavitation inception, which is a 
preponderant phenomenon in cavitation-induced noise and erosion. The influence of the size of the 
nuclei on these interactions is discussed. During the expansion phases, the variations in the local flow 
divergence only slightly affect the growth of the big nuclei, which is mainly governed by their inter-
action with the neighboring bubbles, while it triggers the expansion of the small nuclei. Conversely, in 
the compression phase, the behavior of the bubbles is not influenced anymore by the initial size of the 
nuclei. It is also shown that large amplitude pressure variations resulting from the multiple collapses of 
small bubbles should be taken into account, in addition to the ambient pressure evolution, to calculate 
the instantaneous local pressure in the liquid and eventually evaluate the flow aggressiveness and the 
resulting erosion. 
 https://doi.org/10.1063/1.5052257

I. INTRODUCTION

Cavitation consists in the development of vapor bubbles in
a liquid submitted to a local pressure drop. This phenomenon
is usually considered as nearly isothermal in water at ambient
temperature. Cavitation is inevitable in many industrial devices
that involve high speed liquid flows, such as naval and sub-
marine propellers, rocket engine pumps, water turbines, and
hydraulic systems in general. It has several detrimental effects,
such as noise, vibrations, and erosion on solid surfaces, the lat-
ter resulting from the local high-speed jets and intense pressure
waves generated during the bubble collapses. The mechanisms
of bubble implosion and subsequent erosion have been exten-
sively studied in the last decades [see, for example, Philipp
and Lauterborn (1998) or Brujan and Matsumoto (2012)],
and the damage due to cavitation was measured, for exam-
ple, by Fortes-Patella et al. (2000) with three-dimensional
laser profilometry. The study of cavitation is generally a chal-
lenging task, especially because of its problematic effects on
high technology devices. On the scientific level, the influence
of parameters such as interfacial tension, viscosity, quality
of the liquid, surface properties (Ezzatneshan, 2017), and
particle-bubble interactions (Li et al., 2018) on cavitation
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inception and bubble collapse is still an open question in
hydrodynamics.

Investigation of cavitating flows is strongly connected to
the development of specific experimental techniques, which
enabled improving the understanding of this complex phe-
nomenon in the last two decades (Arakeri, 1975; Dowson and
Taylor, 1979; Lush and Peters, 1982; Franc and Michel, 1985;
Kubota et al., 1992; Tassin Leger and Ceccio, 1998; Tassin
Leger et al., 1998; Astolfi et al., 2000; Arndt, 2002; Stutz and
Legoupil, 2003; Coutier-Delgosha et al., 2007; and Ceccio,
2010). It is now well-known that the behaviour of cavitating
flows is greatly influenced by several factors, among which
the gaseous micro-inclusions contained in the liquid, which
are called cavitation nuclei. The dynamics of a population of
these cavitation nuclei in a water tunnel has been investigated,
for example, by Liu et al. (1993).

When cavitation occurs, the microscopic air or vapour
bubbles contained in the liquid progressively grow and become
macroscopic bubbles mainly composed of vapour. However,
at cavitation inception, Ohl (2002) shows that a multitude of
bubbles appear and coalesce before growing. At this stage of
incipient cavitation development, emissions of sound and light,
which are the signatures of bubble collapses, are reported by
Buogo and Cannelli (2002) and Takahashi et al. (2003). The
very premature collapse of small bubbles is thus confirmed
by these authors. These studies suggest that the development
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of cavitation does not consist in a linear growth of bubbles,
but rather in a complex process of bubble interactions, which
involves multiple production and collapse of microscopic bub-
bles. The process may be similar in visco-elastic materials that
mimic human tissues, as reported, for example, recently by
Oguri and Ando (2018).

Several types of cavitation models can be found in the
literature. They can be roughly classified into two different
groups: the two-fluid models and the single fluid models. The
first category treats the liquid and vapour phases as two dif-
ferent fluids (Grogger and Alajbegovic, 1998 and Sauer and
Schnerr, 2000). They are seldom used for cavitating flows
because the mass and momentum exchange terms between the
two phases are usually not available. On the other hand, the
single fluid models—also called homogeneous models—treat
both phases as a single continuous, homogeneous fluid, with an
average density. They are based on the classical balance equa-
tions for compressible or pseudo-compressible flows. They can
be divided into three groups, according to the closure equation
of the problem: (i) the barotropic models use a postulated equa-
tion of state that links the density to the pressure (Delannoy
and Kueny, 1990; Coutier-Delgosha et al., 2003; and Koop and
Hoeijmakers, 2006), (ii) the models based on a transport equa-
tion for the volume fraction of vapour, which includes a source
term for vaporization and condensation processes (Ishii, 1975
and Saito et al., 2003), (iii) the models that focus on bubble
evolution, which are usually based on the Rayleigh-Plesset
equation (Plesset, 1948) or the Gilmore equation (Gilmore,
1952). Since they are based on the equations that govern the
evolution of the cavitation nuclei, this third group of models
may be the most appropriate to predict the phenomena involved
in cavitation inception. Various expressions derived from the
initial Rayleigh-Plesset formulation have been proposed in the
last decades, to consider additional effects like viscosity, bub-
ble/bubble interactions, or surface tension [see, for example,
Mancas and Rosu (2016)].

Indeed, according to Ohl (2002), bubble-bubble interac-
tions, including the collapse of microscopic bubbles at the
early stage of cavitation development, should be considered for
accurate modelling of cavitation inception. However, although
such a phenomenon was clearly demonstrated by experimen-
tal studies, most of the current models do not include these
effects. Typically, the equation proposed by Gilmore (1952)
provides the evolution of a unique bubble submitted to a
pressure variation. Such a single-bubble model enables to pre-
dict correctly the evolution of one or several bubbles that
survive during the first stage of cavitation expansion. How-
ever, it does not take into account the vapour volume tran-
siently contained in all the bubbles that have disappeared
during that time. Most of the studies devoted to the cloud
of bubbles (Chahine, 1982; D’Agostino and Brennen, 1989;
and Kubota et al., 1992) make the hypothesis of a constant
number of bubbles. This assumption was also used by Kubota
et al. (1992) who proposed an initial cloud of n bubbles which
all undergo the same expansion. In an attempt to generalize
this approach, Chen and Heister (1996) considered a variable
number of bubbles with the hypothesis of no interfacial ten-
sion and without any exchange of volume between the bubbles.
Oguz and Prosperetti (1990) also studied the hydrodynamic

interactions of N bodies by impulse and virial theorems. They
applied this approach to the mutual interaction of two bub-
bles during free and forced oscillations. Their results enable
to explain the occurrence of stable bubble clusters initiated by
acoustic cavitation. More recently, Du et al. (2016) have devel-
oped a cavitation model that includes phenomena of bubble
breakup inside a cloud of bubbles, which provided simulations
in agreement with experiments for configurations of developed
cloud cavitation.

In the present study, attention is particularly focused on the
early stage of cavitation inception. A new model is proposed to
take explicitly into account the interactions between two bub-
bles and their subsequent growth or collapse. Indeed, in case a
single bubble in a control volume is submitted to a decreased
pressure, which results in liquid vaporization at the interface,
the bubble obviously receives the entire created vapour vol-
ume. Conversely, with at least two bubbles of different size in
a control volume, the interaction between the bubbles, due to
their different surface tensions, influences their evolution: it
mitigates the expansion of the small one, while it increases the
growth of the big one. This effect is called “volume exchange”
hereafter in this paper.

The present model is an extension of the preliminary
work from Adama Maiga et al. (2014). It enables to take into
account the phenomenon of very premature disappearance of
small bubbles and more generally includes possible interac-
tions between nearby bubbles through the previously defined
exchanges of volume. These ones induce a possible instability
between neighbouring bubbles what leads the small bubbles
to disappear for the benefit of the big bubbles. In the present
approach, the biggest bubble inside a control volume V c is
followed in its movement governed by the local flow velocity,
taking into account the contributions of the small bubbles also
located inside V c. This is a major originality of this model,
compared with the approach reported by Plesset (1948) and
Gilmore (1952), which focuses on a single bubble behaviour
to predict its volume variation according to the pressure evo-
lution. Using the divergence of the local velocity, the present
model enables to predict the bubble evolution as well as the
local pressure.

This paper is divided into three parts. In Sec. II, the model
is presented in detail. Section III is dedicated to the model
validation, using experimental measurements reported by Ohl
(2002). In Sec. IV, the influence of the collapses of the smallest
bubbles and volume exchanges on the bubble evolutions is
analyzed, and the pressure predicted by the model is discussed.

II. MODEL DESCRIPTION
A. Theoretical approach

The possible scenario of the typical evolution of a cloud
of vapour bubbles submitted to a pressure wave (tension fol-
lowed by pressure re-increase) is represented schematically in
Fig. 1. At the beginning, the cloud of bubbles expands rapidly.
Some of the small bubbles disappear between times t0, which
corresponds to cavitation inception, and t1. Indeed, surface
tension generates pressure differences at the bubble interfaces,
which induces a significant contraction of the small bubbles.
At the same time, the volume of the remaining bubbles has



FIG. 1. A possible scenario for the evolution of a cloud
of bubbles.

increased. Between times t1 and t2, the bubbles continue to
grow without any new collapse.

Between t2 and t4, the cloud is subjected to an opposite
process of contraction. At the beginning, between times t2 and
t3, the compression of the small bubbles is accelerated, while
some of the big bubbles still continue to grow. Between times
t3 and t4, all the bubbles almost disappear. From this schematic
evolution, it can be postulated that for a given expansion there
is a critical radius above which all bubbles will increase (when
the volume is submitted to expansion) and below which any
bubble will decrease (when the volume is submitted to contrac-
tion). This critical radius depends on various parameters, such
as the internal pressure inside the bubbles, the surface tension,
the number of bubbles, and the distance between them. It is
thus a function of local conditions, rather than a unique value.

Ideally, a large number of bubbles should be considered.
The purpose of this study is to build a simplified model that
includes the mechanisms of bubble/bubble interactions by
the exchange of volume. It has two objectives: (i) to deter-
mine the equation that governs the radius of the biggest local
bubble, taking into account the interactions with the nearby
bubbles, and (ii) to determine the local pressure. Hereafter the
assumptions, the definition of the control volume, the liquid
dynamics, the interface dynamics, and the equation for the
volume conservation are detailed successively.

B. Assumptions

The following assumptions are made:

(i) For the purpose of bubble modelling, the vorticity is
assumed to be zero, so the liquid flow is supposed to be
potential, and bubbles can be considered as sources.

(ii) The bubble deformation due to the influence of the other
bubbles is neglected. So, all bubbles are supposed to
remain spherical. The flow around bubbles is supposed
to be purely radial, and the evaporation or condensa-
tion is assumed to occur at the bubble interfaces, like
in the equations of Rayleigh-Plesset or Gilmore. The
slipping condition is thus not completely respected; the
potential of the system is simply the sum of the separate
potentials due to individual bubbles.

(iii) In the proposed model, the movement of bubbles with
regard to the fluid is not considered, so the drag is zero.
In addition, it is assumed that inertia forces and gravity
effects can be neglected.

(iv) It is also supposed that thermal effects and phenomena
of degassing play only a minor role in the prediction of
big bubbles’ evolution, which is the main objective of
this work.

C. Control volume and sequences

As shown in Fig. 2, the study is performed inside a con-
trol volume V c, which contains two bubbles. Subscript 2 will
be hereafter referred to the smallest bubble, while subscript
1 indicates the biggest one. The size of V c is determined by
the bubble concentration of cavitation nuclei denoted η. The
control volume V c is temporarily fixed, until one of the two
initial bubbles collapses. Volume V c is submitted to a uniform
average expansion resulting from the divergence of the average
velocity field divU. The presence of two bubbles results in the
additional possibility of volume exchange between them. Con-
sequently, the small bubble may shrink and implode, or not,
according to the conditions of expansion. If the small bub-
ble disappears, a new control volume is defined and enlarged
to contain a new nearby bubble. Then, a new sequence of
calculation is started.

The value of the new control volume Vn+1
c at sequence

n + 1 is given by Eq. (2.1), which expresses the conservation
of the volume fraction of vapour between sequences n and
n + 1. In Eq. (2.1), Vn

c is the control volume, Vn
v is the vapour

volume at the end of the previous sequence n, and Vn+1
v is

the new volume of vapour, i.e., the volume of the big bubble
increased by one of the new small bubbles

Vn
v

Vn
c
=

Vn+1
v

Vn+1
c

. (2.1)

D. Dynamics of the liquid

Figure 3 schematises the respective positions of bubbles
1 and 2, with Ox being the axis that joins their centre and 2d
being the distance between the centres.



FIG. 2. Definition of a new control volume at the end of one calculation sequence.

The potential of the system can thus be expressed as

F(x, y, z) = −
1

4π

(
q1

‖XF − X1‖
+

q2

‖XF − X2‖

)
, (2.2)

withXF = (x, y, z), X1 = (−d, 0, 0), and X2 = (d, 0, 0). It can be
remarked that if the velocity of the bubbles due to their mutual
interaction is neglected, the potential becomes identical to the
one given by Oguz and Prosperetti (1990).

The velocity of the fluid on the line between the centres
is

v(x) =
1

4π

(
q1

(d + x)2
−

q2

(d − x)2

)
, (2.3)

with −d + R1 < x < d − R2, where R1 and R2 are the radii
of bubbles 1 and 2, respectively, and q1, q2 are their expan-
sion flow rate, respectively. The Navier-Stokes equation in the
x direction can be written as

∂v
∂t

+ v
∂v
∂x
= −

1
ρL

∂p
∂x

, (2.4)

where p is the local static pressure. Note that the viscosity
term in the Navier-Stokes equations vanishes when the mass
and momentum conservation is applied in the liquid around
the bubble, as the conservation mass requires that the veloc-
ity field has an expression of the general form v(x) = F(t)/x2

[for example, see Brennen (1995)].
By integrating Eq. (2.4) and using the velocity at the inter-

face of bubble i: vi = Ṙi =
qi

4πR2
i
, with Ṙi =

∂Ri
∂t , the following

expression is obtained:



p
ρL

+
1

32π2

(
q1

(d + x)2
−

q2

(d − x)2

)2

x2

x1

=
1

4π

[
q̇1

(d + x)
+

q̇2

(d − x)

]x2

x1

. (2.5)

Note that vi = Ṙi is an exact condition at the interface of
bubble i in the case of zero mass transport across the interface.
In our model, phase changes (vaporization and condensation)

FIG. 3. Schematic position of the two bubbles.



are supposed to occur at the bubble interfaces, but this expres-
sion of the velocity is still a good approximation (Brennen,
1995).

Equation (2.5) gives eventually the difference of pressure
in the liquid at the bubble interfaces

p1 − p2

ρL
=

q̇1

4πR1
−

q̇1

4π(D12 − R2)
−

q̇2

4πR2
+

q̇2

4π(D12 − R1)

−
q2

1

32π2R4
1

+
q2

2

32π2R4
2

+
q2

1

32π2(D12 − R2)4

−
q2

2

32π2(D12 − R1)4
−

q1q2

16π2R2
1R2

2

× *
,

R2
1

(D12 − R2)2
−

R2
2

(D12 − R1)2
+
-
, (2.6)

with ρL being the density of liquid,

qi = 4π · R2
i Ṙi, and q̇i =

∂qi

∂t
= 4π

(
2RiṘ

2
i + R2

i R̈i

)
. (2.7)

E. Dynamics of the interface

The equation of equilibrium at the interface of a bubble
can be expressed as

pi = pv + pgi − 4µL
Ṙi

Ri
− 2

σ

Ri
, (2.8a)

with i = 1, 2, Ṙi being the interface velocity of bubble i, σ
being the surface tension, µL being the dynamic viscosity, and
pi being the pressure in the liquid at the interface of the bubbles.
The pressure inside the bubbles equals the sum of the vapour
pressure pv and the gas pressure pgi . The latter is modelled by
the barotropic law of Laplace

pgi =

(
p0 +

2σ
Ri0
− pv

) (
Ri0

Ri

)3γ

, (2.8b)

where p0 is the reference pressure.
So, the difference of pressure in the liquid at the inter-

faces of the bubbles is given by Eq. (2.9). In the calculations

hereafter, it will be supposed that the partial pressure of the
gas in the bubbles is initially zero

p1 − p2 = 2σ

(
1

R2
−

1
R1

)
+ 4µL

(
Ṙ2

R2
−

Ṙ1

R1

)
+

(
pg1 − pg2

)
.

(2.9)

F. Volume conservation

In addition to the volume variations due to the exchanges
between the two bubbles, each of them is submitted to the
expansion of the control volume V c, which is related to the
average velocity divergence divU of the fluid contained in V c.
Hereafter, qm denotes the global flow rate due to this expansion,
qi is the expansion/contraction flow rate of bubble i, and qe is
the exchange flow rate between the two bubbles. The following
relations can be written as:

q1 + q2 = qm, (2.10)

q1 − q2 = qe, (2.11)

qm =

∫∫
Sc

U · n dS =
∫∫∫

Vc

divU dV = Vc · divU, (2.12)

where U is the velocity vector. So, the volume fraction of
vapour α(t)created during the sequence equals

α(t) =

∫
qmdt

Vc
=

∫
divUdt. (2.13)

The conservation of the total volume of bubbles gives

R3
1 + R3

2 = R3
10 + R3

20 +
3

4π

t∫
t0

qmdt, (2.14)

where R10 and R20 are the initial radii of the bubbles and t0 is
the time at the beginning of the sequence.

G. Equation for the radius R1

From Eqs. (2.6), (2.7), (2.9), and (2.10), the equation
governing the radius R1 is obtained

q̇1

4πR1

(
1 +

R1

R2
−

R1

D12 − R1
−

R1

D12 − R2

)
−

q2
1

32π2R4
1

*.
,
1 −

R4
1

R4
2

+
R4

1

(D12 − R1)4
−

R4
1

(D12 − R2)4
+

2R2
1

(D12 − R1)2
−

2R4
1

R2
2(D12 − R2)2

+/
-

+
µLq1

πρLR3
1

*
,
1 +

R3
1

R3
2

+
-
−

q1qm

16π2R4
2

*.
,
1 +

R2
2

(D12 − R2)2
−

R4
2

(D12 − R1)4
−

R4
2

R2
1(D12 − R1)2

+/
-

=
q̇m

4πR2

(
1 −

R2

D12 − R1

)
−

q2
m

32π2R4
2

*
,
1 −

R4
2

(D12 − R1)4
+
-

+
µLqm

πρLR3
2

−
2σ
ρLR1

(
1 −

R1

R2

)
+

1
ρL

(
pg1 − pg2

)
, (2.15a)

while the equation for the radius R2 is as follows:

q̇2

4πR2

(
1 +

R2

R1
−

R2

D12 − R2
−

R2

D12 − R1

)
−

q2
2

32π2R4
2

*.
,
1 −

R4
2

R4
1

+
R4

2

(D12 − R2)4
−

R4
2

(D12 − R1)4
+

2R2
2

(D12 − R2)2
−

2R4
2

R2
1(D12 − R1)2

+/
-

+
µLq2

πρLR3
2

*
,
1 +

R3
2

R3
1

+
-
−

q2qm

16π2R4
1

*.
,
1 +

R2
1

(D12 − R1)2
−

R4
1

(D12 − R2)4
−

R4
1

R2
2(D12 − R2)2

+/
-

=
q̇m

4πR1

(
1 −

R1

D12 − R2

)
−

q2
m

32π2R4
1

*
,
1 −

R4
1

(D12 − R2)4
+
-

+
µLqm

πρLR3
1

−
2σ
ρLR2

(
1 −

R2

R1

)
+

1
ρL

(
pg2 − pg1

)
. (2.15b)



Only one of the two equations (2.15a) or (2.15b) is even-
tually used and coupled with Eq. (2.14) for the numerical
resolution. It will be denoted Eq. (2.15) hereafter.

If divU is known, Eqs. (2.14) and (2.15) lead to the deter-
mination of the evolution of radii R1 and R2. If all terms that
depend on D12 are neglected in the left-hand term of Eq. (2.15),
the remaining term is similar to the one reported by Plesset
(1948). However, the right-hand side term depends only on qm,
i.e., on the expansion rate, whereas it depends on the pressure
given in Plesset (1948).

Equations (2.14) and (2.15) show that the evolutions of
bubbles 1 and 2 are strongly connected, whereas in the pre-
vious model proposed by Oguz and Prosperetti (1990), each
bubble evolution is governed by a linearized Rayleigh-Plesset
equation where the pressure field is modified to take into
account the influence of the other bubble. In addition, the
present expression of the bubble evolution as a function of
the velocity divergence ensures a better conservation of the
total volume of vapor created in the control volume V c, which
is mandatory to model the volume exchange between the two
bubbles.

In the particular case divU = 0, the present model enables
to reproduce the condensation of the small bubbles for the
benefit of the big ones, whose number progressively decreases
until only one remains. This well-known phenomenon is called
Ostwald ripening. Conversely, the cavitation models based on
the evolution of a single bubble lead in such a case to stable
isolated bubbles.

H. Equation for the pressure

The local pressure p at the point M depends on the dis-
tance between M and the bubbles. So, the mean pressure should
be obtained by a technique of homogenization. In the present
study, it is supposed that this averaged pressure is the pressure
pc at equal distance between the two bubbles. With this hypoth-
esis and since the distance 2d between bubbles is much larger
than the bubble radius, by taking into account the dynamics
in the liquid and at one bubble interface, two equations are
available to determine the pressure pc, one for each bubble.
The one associated with the big bubble is used here because
the objective is to characterize the flow according to the vis-
ible two-phase structure, i.e., the big bubbles. The following
equation is thus obtained:

pc

ρL
=

q̇1

4πR1

(
R1

D12 − R1
− 1

)
+

q2
1

32π2R4
1

× *
,
1 −

64R4
1

D4
12

+
R4

1

(D12 − R1)4
+

2R2
1

(D12 − R1)2
+
-

+
q1qm

16π2R4
1

*
,

32R4
1

D4
12

−
R4

1

(D12 − R1)4
−

R2
1

(D12 − R1)2
+
-

−
q1

πρLR3
1

+
q̇m

4πD12

(
2 −

D12

D12 − R1

)
−

2σ
ρLR1

+
pg1

ρL
.

(2.16)

Apart from the terms that depend on D12, this equation is
the same as the Rayleigh-Plesset one, rewritten as a function of

q1 expansion flow rate of the big bubble. In the present model,
Eq. (2.16) is used to calculate the pressure.

I. Initial conditions

Equation (2.14) is a second order equation that requires
two initial conditions. In the initial state, the radius R10 is given,
and R20 = kR10 where the parameter k is given.

The two initial velocities Ṙi0 are calculated using
Eq. (2.17). Ṙi0 is the sum of two contributions: one is derived
from linearization of Eq. (2.15) without the terms qm and the
second one is due to the expansion associated with divU0 the
velocity divergence at time t = 0

Ṙi0 =
ω1ω2

ω2 − ω1

(
Rg − Ri0

)
exp(ω2t) +

Vci · divU0

4πR2
10

, (2.17)

with ω1 = −
2

Re −

√
4

Re2 + 2
We , ω2 = −

2
Re +

√
4

Re2 + 2
We ,

We =
ρLR3

g

σ ·T2
c

the Weber number, Re =
ρLR2

g

µLTc
the Reynolds num-

ber, T c a characteristic time, Rg the average initial radius of the
bubbles, divU0 the initial velocity divergence, R10 the initial
radius of the big bubble, and V ci the control volume containing
the bubble i. The control volume containing the big bubble is

Vc1 =
1
η

, (2.18)

where η is the concentration of cavitation nuclei. In the calcu-
lations performed in Sec. III, T c = 1 µs and Rg = 1 µm. The
control volume containing the small bubble is

Vc2 =
R3

20

R3
10

· Vc1 =
k3

0

η
. (2.19)

So, the initial control volume is

V0
c =

1
η

(
1 + k3

0

)
. (2.20)

Assuming here for the sake of simplicity a cubic control
volume where each bubble is located at the centre of each half
control volume, the distance between the bubble centres is

D12 =
1
2

3
√

V0
c . (2.21)

Depending on the conditions of expansion, the small bub-
ble may disappear or not. A new sequence is started only after
the small bubble has disappeared. It is considered that it disap-
peared if its radius reaches one tenth of its initial value, which
corresponds to a volume 1000 times smaller than the initial
one. To start a new step of the calculation, a new control vol-
ume is defined and enlarged to contain a new nearby bubble,
which requires transition conditions.

J. Transition between sequences n and n + 1

At the transition between two sequences, the radius R1

is constant. The radius R2 is initialized as a function of the
previous radius R1, according to the following condition:

Rn+1
20 = kRn

1, (2.22)

where the parameter k defines the radius of the smallest bubble
that interacts with the big one: effects of smaller bubbles are
neglected. For example, if k = 0.5 in the calculations, only the



FIG. 4. Experimental setup. Reproduced with permission from “Cavitation
inception following shock wave passage,” Phys. Fluids 14(10), 3512–3521
(2002). Copyright 2002 AIP Publishing LLC.

bubbles whose volume is smaller than 12.5% of the big bubble
volume are neglected.

The initial velocity Ṙn+1
1 of the big bubble must also be

updated at the beginning of the new sequence, since the control
volume has changed. The best condition, which preserves the
respective roles played by the small and the big bubbles, has
been found to be the following equation:

Ṙn+1
1

(
Vn+1

c

)2γexp/3
= Ṙn

1
(
Vn

c
)2γexp/3, (2.23)

with γexp = −1 in the expansion phase and γexp = 1 during the
contraction phase.

So, from one sequence to the next, the radius R1 is
unchanged, the radius Rn+1

20 is calculated using Eq. (2.22),
Vn+1

c is calculated using Eq. (2.1), and the velocity Ṙn+1
1 is

calculated using Eq. (2.23).

III. MODEL VALIDATION

To validate the model, comparisons with the experimental
results are performed hereafter. For this purpose, the time evo-
lution of the velocity divergence divU must be introduced into
the model, which subsequently predicts (i) the size evolution
of the bubbles and (ii) the pressure variation. So, it requires
the experimental determination of the velocity field or volume
fraction of vapour (to obtain divU), the bubble size (to be com-
pared to the evolution of the big bubble in the model), and the
bubble collapses (to be compared to the behavior of the small
bubble in the model) in a cavitating flow. Complexity of such
flows makes very hazardous the measurements of these dif-
ferent unknowns: indeed, opacity of cavitation areas induces
significant difficulties in flow visualization, and light reflection
on bubble interfaces is a major drawback in the application of
PIV (Particle Image Velocimetry) for velocity measurements.
In addition, estimations of void fractions have been based until
recently on observations, which did not enable to obtain such
data with reasonable precision.

The validation of the model is performed hereafter based
on the experimental study reported by Ohl (2002). To the best
of our knowledge, this experiment is the only one in the lit-
erature where the radius of the cavitation bubbles and the
pressure are both measured as a function of time at cavita-
tion inception. The experiment is realized in a water basin
made of stainless steel with glass windows on its four sides
(Fig. 4).

The shock wave which is at the origin of the pressure
drop is generated with an electromagnetic shock-wave gen-
erator at the bottom of the container. Two configurations are
considered: (i) free passage of the shock wave in the negative
x direction and (ii) reflection of the shock wave from a rigid
reflector located at the top (x = 0), inducing a combination of
wave propagations in the negative and positive directions. The
pressure is recorded with a fiber optic hydrophone, and the
resulting pressure evolution is modeled by the following mul-
tiparameter curve fitted in a least-square sense to the sampled
data reported in Ohl (2002):

p± =
1
2


p10 exp(−α1(t ± x/c)) + p20 exp(−α2(t ± x/c))

∗ cos

*
,

3∑
i=0

νi((t ± x/c))i+
-
2π(t ± x/c) + φ




∗ [1 + tanh(n1(t ± x/c))] ∗ [1 + tanh(n2(∆ − (t ± x/c)))].

(3.1)

With c being the speed of sound, other constants are given in
Table I.

The liquid used for the experiment is degassed water
characterized by an oxygen content of 3 mg/l. The initial con-
centration of nuclei is not reported. With some simplifying
assumptions, the liquid velocity in the x direction is modelled
with a plane wave assumption

ul = −
1
ρlc

p−(t, x) +
1
ρlc

p+(t, x), (3.2)

where p− and p+ denote the pressure waves travelling from
negative x and from positive x, respectively. The velocity
divergence divU can be derived from this liquid velocity

divU =
∂ul

∂x
= −

1
ρlc

∂p−(t, x)
∂x

+
1
ρlc

∂p+(t, x)
∂x

. (3.3)

The final expressions of divU and its time derivative are
given in the Appendix.

A. Case of a single pressure wave

In the first part of Ohl’s experiment, the study is con-
ducted without the reflector. Thus, in the expressions of the
velocity and velocity divergence, only the pressure wave

TABLE I. Values of constants in Eq. (3.1).

P01 = 2.275 × 107 Pa P02 = 2.77 × 106 Pa α1 = 1.767 × 106 s�1 α2 = �9.987 104 s�1

n1 = 4.674 × 107 s�1 n2 = 5.106 s�1 υ0 = −3.21 × 103 s−1 υ1 = 2.16 × 1010 s−2

υ2 = −1.03 × 109 s−3 υ3 = −1.08 × 107 s−4 φ = 7.44 ∆ = 7 × 10−6 s



FIG. 5. Evolution of the pressure and the velocity diver-
gence in the OHL experiments.

moving towards the negative x will be considered. Figure 5
shows the time evolutions of (i) the non-dimensional pres-
sure measured in the experiment and (ii) the non-dimensional
velocity divergence divU based on Eq. (3.3). The reference
values are the maximum pressure and divergence values.

Figure 5 exhibits two successive steps: (i) the initial pres-
sure wave results in a large pressure peak, which is correlated
with a negative velocity divergence. This overpressure results
in the collapse or fragmentation of the big nuclei. This first
period where divU < 0 is thus characterized by a contrac-
tion of the vapour volume (condensation). (ii) The second step
where divU > 0 (after t = 4 µs) corresponds to an expansion
of the vapour volume (vaporization).

Based on a theoretical analysis, Ohl shows that only
the germs smaller than 1.5 µm can survive to the passage
of the initial pressure wave. For comparison of the model
with the experimental measurements, a bubble of initial radius
R0 = 1.25 µm is thus considered hereafter. The influence of the
first contraction phase (divU < 0 for t < 4 µs) on these germs
can be neglected, so divU can be considered as equal to zero
in this first phase.

q̇m and qm are obtained using Eq. (2.12), using the exper-
imental velocity divergence and its partial time derivative.
These two quantities allow determining the evolutions of the

bubble radii [Eq. (2.15)] and comparing them with the experi-
mental observations and measurements. Figure 6 displays the
time evolution of the bubble radii R1 and R2 predicted by the
model for a nuclei concentration of 15 000 germs/cm3 (this
value will be discussed below) and two different values for k:
0.5 and 0.8, respectively.

The results exhibit successive implosions of all small
bubbles in the vicinity of the big one (42 and 15 col-
lapses in the first 4 µs for k = 0.5 and 0.8, respectively).
It reveals that even bubbles slightly smaller than the big
one cannot develop under the influence of the big bubble.
This result is consistent with Ohl’s experimental observa-
tions, which is a major improvement compared with previous
models such as Gilmore or modified Rayleigh-Plesset, which
were found unable to reproduce the experimental observa-
tions (Ohl, 2002; and Adama Maiga et al., 2014). Indeed, in
the first version of the present model (Adama Maiga et al.,
2014), some interactions were neglected, and although some
bubble collapses were predicted at the first moments of
the experiment, a small bubble eventually managed to
develop close to the big one. So, the present result con-
firms that all interactions between bubbles should be consid-
ered in order to model correctly the first stage of cavitation
development.

FIG. 6. Evolution of the radii R1 and R2.



The different expansions of the big bubble obtained for
k = 0.5 and k = 0.8 are due to the number of collapses of
small bubbles in the two calculations, before the expansion.
Indeed, Adama Maiga et al. (2014) have shown in a previous
study that the implosion of the small bubbles in the first stage
of cavitation tends to favor the development of the big local
bubbles.

Figure 7 displays the time evolutions of the big bubble
radius R1 predicted by the model for different values of the ini-
tial concentration of nuclei. The predicted radii are compared
to the values measured in the experiments. The evolutions
given by the Gilmore and Rayleigh-Plesset equations are also
drawn on the same graph.

The results provided by the new model show that the
initial concentration of nuclei significantly influences the bub-
ble evolution. The lower the initial concentration is, i.e.,
the fewer the germs are present in the liquid, the larger the
big bubble becomes. Indeed, previous studies (Adama Maiga
et al., 2014; and Adama Maiga et al., 2015) have already
shown that germs enhance the interactions between bubbles,
which eventually slow down the bubble development. The
results show that the best agreement between the experimen-
tal and numerical radii is obtained for an initial concentration
η0 = 15 000 nuclei/cm3. This value is lower than the one
considered previously by Yuan et al. (2001), while it is also
slightly higher than those measured in Maeda et al. (1991)
or Liu et al. (1993). However, it should be noted that in
these studies, the germs smaller than about ten microns could
not be detected. In addition, in the present configuration,
the initial pressure peak at the beginning of the experiments
tends to fragment the biggest germs and thus to increase the
number of nuclei. The value η0 = 15 000 nuclei/cm3 will
be applied in all the calculations presented hereafter in the
paper.

In this case, the new model predicts very well the explo-
sive growth phase of the bubble: the start of the expansion,
the radius evolution, and the maximum value exhibit a nice
agreement with the experimental observations. Conversely,
the radius derived from the Gilmore and Rayleigh-Plesset
equations are in poor agreement with the measured one. Both

models predict a very early growth of the bubble, and also
a very early decrease in the radius for t > 6 µs. It confirms
that the models based on the evolution of a single bubble
are not appropriate to reproduce the early stages of cavitation
inception.

In the experimental study, Ohl observed that the cavitation
bubbles become visible at t ≈ 4 µs, but without really explain-
ing why they appear at that time. In the present model, the
increase in the vapor volume requires a positive divU, which
happens precisely in the experiments at t ≈ 4 µs (see Fig. 5).
The good agreement between the experimental and simulated
radius evolutions suggests that determining the time evolution
of the bubble as a function of divU may be the best option for
a correct prediction of cavitation inception. It can also explain
why the previous models, which relate the bubble evolution
to the local pressure, are not able to predict successfully the
growth of the bubbles at the right time.

B. Bubbles submitted to combined positive
and negative pressure waves

In the second part of the Ohl’s experiment, a reflector was
placed at the top of the setup, so the liquid in the container
is submitted to both the incoming wave (towards negative x)
and the reflected wave (towards positive x) with a small time
delay between the two contributions. Time t = 0 is the time
where the first wave reaches the reflector. In his study, Ohl
has focused the analysis on an horizontal thin band located
at about 1.5 mm below the reflector, where the the bubble
size evolutions are recorded at 1 × 106 frames/s. The author
observes some large differences in the maximum radius of
bubbles located as close as 0.3 mm to each other and also some
premature collapses of the smallest bubbles. Both phenomena
cannot be reproduced with the Gilmore equation (Ohl, 2002).
In the present modelling, it is assumed that the reflector is ideal,
i.e., the pressure wave is entirely reflected. In addition, the
pressure waves resulting from the expansions and collapses of
the neighboring bubbles are neglected. Thus, as in the first part
of the study, the flow velocity divergence is given by Eq. (3.3)
with both terms included (Fig. 8).

FIG. 7. Evolution of the big bubble radius: comparison
between the present model, the experiments, the Gilmore
model, and the Rayleigh-Plesset model.



FIG. 8. Velocity divergence in the case of combined positive and negative
pressure waves.

In his experiments, Ohl reported the evolution of two spe-
cific bubbles. Their position is 1.267 mm and 1.573 mm below
the reflector, respectively, and they will be denoted bubble a
and bubble b hereafter. For the modelling of these two bubbles,
two options can be considered as follows:

(1) As the positions of the bubbles are different, it can be
assumed that the bubbles a and b will not interact with
each other. In this case (denoted case #1 hereafter),
they are considered as two separate bubbles, each of
them having its own control volume with a small neigh-
boring bubble. Their evolutions are thus disconnected
and should be very similar, since only their position is
slightly different. Bubble 1 is considered at the position
of bubble a and bubble 2 at the position of bubble b.

(2) In case #2, both bubbles are located in the same control
volume, so the two bubbles see the same pressure wave
at the same time. In the model, bubble 1 will be bubble a
and bubble 2 will be bubble b, as it was observed in the
experiments that bubble b is smaller than bubble a, from
the first instant it is detected to the maximum expansion
of both bubbles.

Figure 9 shows the evolution of the two bubbles in case
#1, for several values of the initial radius R10 of bubble 1, from

1.25 µm (value applied previously) up to 5 µm. The experi-
mental data reported by Ohl are also indicated.

The start of the expansions was detected at t = 2.8 µs
and t = 3.8 µs for bubbles a and b, respectively, but the
framerate was 1 image per microsecond, so the uncertainty
on these values is significant. Here the model predicts in
all simulations a start of the two bubble expansions around
t = 3 µs, which is thus consistent with the observations. The
slight delay between the two bubbles is due to their differ-
ence of location (bubble a being about 0.3 mm closer to the
reflector, so it sees the reflected wave earlier than bubble b).
Compared with the bubble of Sec. III A (without the reflec-
tor), which was expanding at 4 µs after the passage of the
shock wave, the growth of the bubbles happens significantly
earlier here because of the combined incoming and reflected
waves.

For R10 = 1.25 µm, the maximum radius of bubble a
is bigger than those for R0 = 3 µm and 5 µm and signifi-
cantly overestimated, compared with the experiments. Similar
to the case studied in Sec. III A, this difference in the bubble
expansion is due to the number of collapses of small bub-
bles before the expansion phase: 36, 18, and 12 collapses for
R10 = 1.25, 3, and 5 µm, respectively. The best agreement
with the experiments for the radius evolution of bubble 1 is
obtained for R10 = 5 µm. The presence of germs of this size,
even though theoretically the initial pressure peak tends to
make them collapse or fragment, can be explained by the first
passage of the incident low pressure wave, after the pressure
peak, which can promote the development of germs larger than
1.5 µm.

Conversely, the model does not reproduce the smaller size
of bubble b reported by Ohl (2002). The radius of the sec-
ond bubble is thus significantly overestimated. In addition, the
behavior of both bubbles after t = 6 µs is not consistent with the
experiments: in the model, both bubbles shrink significantly
before stabilizing, while in the experiments, all bubbles at the
location of bubble a continue to expand until t = 13 µs, and
bubbles located close to bubble b collapse and rebound.

Figure 10 shows the results in case #2, where a single
calculation is performed with bubbles a and b in the same
control volume.

FIG. 9. Model prediction in case #1.



FIG. 10. Evolution of the two bubbles denoted a and b
in case #2: comparison between the present model and
the experiments for different values of the nuclei size.

Now a close agreement with the experimental data is
obtained for both bubbles with the initial germ size R10 = 5 µm:
the maximum size of bubble 2 is about half the radius of bub-
ble 1, similar to bubbles b and a in the experiments. Bubble 2
collapses at t ≈ 6 µs, which is also consistent with the exper-
imental observations at the location of bubble b. It confirms
that the mutual interactions between bubbles located in the
thin band studied by Ohl are of primary importance in the
dynamics of the bubbles and, more particularly, the dispari-
ties in bubble expansion and the collapse of multiple small
bubbles in the vicinity of bigger bubbles that continue to
grow.

This validation shows that the new model can be coupled
with a computational fluid dynamics (CFD) flow calculation
in the future: in each cell of the domain, the local velocity
divergence would enable to determine the time evolution of
the bubbles located inside, including the rate of collapses of
the smallest bubbles.

IV. DISCUSSION

In this section, the analysis is focused on the effect of the
size of the initial nuclei on the bubble evolutions, and the local
pressure predicted by the model at mid-distance between the
two bubbles. For this purpose, the model is applied to the

configuration presented in Sec. III A, i.e., the single pres-
sure wave leading to bubbles growing at t ≈ 4 µs in Ohl’s
experiment.

A. Influence of the nuclei size on the bubble growth

In Sec. III, it has been shown that small initial germs
usually lead to larger expansions of the big bubble. This
phenomenon is studied here in more details by considering
three sizes of initial nuclei, namely, R10 = 1 µm, 10 µm, and
100 µm. Figure 11 represents the time evolutions of the big
bubble radius obtained for these values. The results basically
confirm that small nuclei lead to larger bubble expansion rates:
for R10 = 1 µm, the maximum radius reached by bubble 1
is about 400 µm, while it is only 90 µm for R10 = 10 µm.
For R10 = 100 µm, the bubble only slightly expands up to
120 µm.

To discuss these differences, it should be noted first
that the initial void fraction varies significantly between the
three cases, as the concentration of nuclei is kept constant
η0 = 15 000 nuclei/cm3. The resulting void fractions are
α0 = 6 × 10−6%, 6 × 10−3%, and 6%, respectively. In the
two first cases, interactions between bubbles in neighbouring
control volumes can certainly be neglected, while in the latter,
such interactions may not be negligible, although they are not
considered in the present modelling.

FIG. 11. Evolution of the big bubble radius for different
initial radii.



FIG. 12. Evolution of the small bubble radius for differ-
ent initial radii.

However, the local interaction between the two bubbles
is the main reason for the different results. Figure 12 shows
the time evolution of the small bubble, for the three sizes of
initial nucleus. The number of collapses is 47 for R10 = 1 µm,
9 for R10 = 10 µm, and only 2 for R10 = 100 µm. It con-
firms the conclusion of Adama Maiga et al. (2014) with a
simplified version of the present model, who showed that the
interactions between bubbles and the collapses of small bub-
bles result in volume exchanges between bubbles, which favor
the expansion of the local big bubbles.

To understand the mechanisms of bubble expansion,
Fig. 13 represents the time evolutions of the flow rates qm

(due to the expansion/contraction of the control volume,
according to the sign of divU) and qe (due to the volume
exchange between the two bubbles) defined in Sec. II. The
highest value of qm is used to obtain non-dimensional val-
ues of all flow rates. Note that the qe curves for R10 = 1 µm
and R10 = 10 µm are almost superimposed in Fig. 13, i.e.,
the evolutions of qe in the two cases look similar at this
scale.

For t < 4 µs, the divergence is set to zero in the calcula-
tions: qm = 0 so q1 = −q2, which means that any variation in
the volume of bubble 1 is related to the same opposite varia-
tion for bubble 2, due to their mutual interaction. During this
time, the volume of the big bubble increases, while the volume

of the small bubbles decreases until their collapse (see Figs. 11
and 12). It results in a positive qe according to its defini-
tion [Eq. (2.11)]. For 4 µs < t < 6.2 µs, divU has become
positive (see Fig. 5), which promotes the expansion of both
bubbles. Indeed, bubble 2 grows explosively, like bubble 1, for
R10 = 1 µm and R10 = 10 µm. Conversely, it continues to shrink
(but more slowly) in the case of R10 = 100 µm (see Fig. 12).
During that time, qe is negative for the two smallest values
of R10, which means that bubble 2 expands faster than bub-
ble 1 (q2 > q1), while it remains positive (but smaller than
previously) for R10 = 100 µm, so the interaction between the
two bubbles in this case is weakly affected by the evolution
of divU. Finally, for t > 6.2, divU becomes negative after the
pressure has re-increased, and a contraction phase is started,
where qm is negative. It generally favors the compression of
the bubbles, but bubble 1 almost stabilizes in the three cases
(i.e., q1 ≈ 0, see Fig. 11), while bubble 2 does shrink and
even collapse (see Fig. 12), so q2 is negative and qe becomes
positive, as can be shown in Fig. 13. During that period,
the big bubble volume remains nearly constant, although
qm is negative, because of the interaction with the small
bubble.

These general trends suggest that during the expansion
phases, the variations in divU only slightly affect the growth
of the big nuclei, which is mainly governed by their interaction

FIG. 13. Evolution of the non-dimensional flow rates
qm(due to expansion/contraction) and qe (due to the
volume exchange between the two bubbles).



FIG. 14. Evolution of the relative qe for 3 values of the
initial nuclei.

with the neighboring bubbles, while it triggers the expansion
of the small nuclei. Conversely, at the start of the compression
phase, the behavior of the bubbles is not influenced anymore
by the nucleus initial size: in all cases, the biggest bubbles will
survive and keep almost the same size.

To get some more information about the influence of the
nucleus size on the bubble/bubble interactions, the relative
exchange flow rates qR

e are shown in Fig. 14

qR
e =

qe

Vnucleus
=

dVe
dt

Vnucleus
=

dVR
e

dt
, (4.1)

with V e being the “volume exchange” between bub-
ble 1 and bubble 2 and VR

e being the relative “volume
exchange.” Figure 14 enables to analyze the qe varia-
tions for the three initial sizes of nuclei, although the
order of magnitudes of the flow rates is strongly differ-
ent, due to the large differences between the nuclei volumes
(Vnucleus R10 = 100 µm/Vnucleus R10 = 1 µm = 106).

Figure 14 confirms that for t < 4 µs, the qe evolutions
depend strongly on the nucleus size: qe generally decreases for
R10 = 1 µm, it is almost stable for R10 = 10 µm (not speaking
about the multiple collapses), and it continuously increases for
R10 = 100 µm. These differences can also be seen in Fig. 11:
as qe = 2q1 (since qm = 0), the qe evolution is correlated with

the slope of the big bubble radius evolution. It suggests that
when divU = 0, nuclei of all sizes can expand, if they interact
with smaller nearby nuclei. In this case, their expansion rate
depends on their size: the bigger they are (or they become),
the slower they grow.

For 4 µs < t < 6.2 µs, we can see now the differences
between the two smallest nuclei: at t = 4 µs, qe decreases
very suddenly, and its negative peak is much more intense for
R10 = 1 µm than for R10 = 10 µm. It means than q2 becomes
much higher in the latter case, as can be seen in Fig. 12, where
the expansion of bubble 2 is the most explosive. So, it confirms
that during the expansion phases (divU > 0), the bubble/bubble
interactions promote the fast expansion of the smallest nuclei,
while the biggest ones are only slightly influenced (see the
case R10 = 100 µm, where the qe evolution is not significantly
altered after t = 4 µs).

B. Local pressure

In addition to the time evolution of the bubbles’ diameter,
the model also provides Eq. (2.16) to determine the pressure pc

at equal distance between the two bubbles. The time evolution
of pc is shown in Fig. 15, together with the pressure measured
in the experiments (Ohl, 2002). Four successive steps can be
observed:

FIG. 15. Pressure evolution obtained (i) with the model
for R10 = 1 µm and the initial concentration η0 = 15 000
nuclei/cm3 and (ii) in the experiments.



(1) From t = 0 to 2 µs, the measured pressure is positive.
During this step, the model predicts several intense pres-
sure peaks, which are the signatures of the collapses of
the small bubbles. In each new sequence, the initial small
bubble is proportional to the big one, which means that
each new small bubble considered in the calculation is a
little bit bigger. As a result, the intensity of the pressure
peaks also increases during that period, so the collapse
of the small bubble is more and more violent. These
multiple collapses are consistent with the experimental
observations, as no bubble growth was observed during
that period.

(2) For 2 µs < t < 4 µs, the measured pressure becomes
negative. As described previously, all existing mod-
els based on the pressure evolution would predict an
intense vaporization, while the present model still pre-
dicts a systematic collapse of all small bubbles and
only a slight growth of the big one, since divU is
still negative during that period of time. This is also
in agreement with the observations reported by Ohl.
Indeed, cavitation inception does not necessarily hap-
pen when the pressure decreases below the vapor pres-
sure. A delay in cavitation inception is observed, for
example, in Venturi type sections or hydrofoil suc-
tion side, where cavitation does not develop at the
Venturi throat or foil leading edge, even if the local
pressure is lower than the vapor pressure, but slightly
downstream.

(3) The large pressure drop at t ≈ 4 µs is related to
the dynamics of the big bubble. Indeed, the pressure
Eq. (2.16) depends on the radius of the two bubbles: it
is similar to the classical equations that give the evo-
lution of the bubble as a function of pressure, but here
it provides the pressure evolution. As the big bubble
begins its explosive growth at t = 4 µs, the local pres-
sure necessarily drops at the same time. Conversely,
the ambient pressure measured in the experiments has
become negative at t = 2 µs, much earlier.

(4) During the last 4 µs of the simulation, pc increases until
a new bubble collapses. In this phase, apart from the
pressure peak due to this collapse, the pressure evolution
is fairly close to the ambient pressure measured in the
experiment.

Obviously, the local pressure evolution predicted by the
model is significantly different from the ambient pressure mea-
sured far from the bubbles. In the present case, numerous
pressure waves due to the bubble collapses are obtained, which
is of primary importance for the modeling of the damage and
erosion due to cavitation. After the start of the big bubble
expansion, the pressure in the middle of the two bubbles fol-
lows the evolution of the ambient pressure. So, in the very
first instants of cavitation inception as well as later during
the cavitation development, large amplitude pressure varia-
tions resulting from the multiple collapses of small bubbles
should be taken into account, in addition to the ambient pres-
sure evolution, to calculate the instantaneous local pressure in
the liquid and eventually evaluate the flow aggressiveness and
the resulting erosion.

The results also confirm that water can undergo negative
pressure without cavitation (Briggs, 1950; and Zheng et al.,
1991). The pressure drop measured by Ohl is about 80 bars,
and the local negative peak predicted by the model at the begin-
ning of the expansion phase is even higher. When the initial
concentration of nuclei is reduced in the simulations, the inten-
sity of this peak is reduced. This tendency is in agreement with
the well-known observation in the cavitation experiments—the
purer the water is, the more intense the pressure drop must be
to initiate cavitation.

V. CONCLUSION

In this study, a new model for cavitating flows is pro-
posed. Its originality consists in taking into account the inter-
actions between bubbles located close to each other, which
was called “exchange of volume.” More specifically, the model
predicts the dynamic behaviour of two non-identical bubbles
located in a control volume. Both bubbles are submitted to an
expansion/contraction law derived from the local flow velocity
divergence. Depending on their mutual interaction, the small
bubble may shrink and thereby contribute to the expansion of
the nearby big bubble, or grow and thus slow down the big
bubble development. If the small bubble eventually collapses,
the control volume is redefined to include a new one, and the
next sequence of simulation is initiated. The evolution of the
big bubble during the successive sequences provides the infor-
mation of the local variation in the volume fraction of vapour,
and the pressure evolution at mid-distance between the two
bubbles is also predicted.

Validation of the proposed model was performed in the
configuration of the experiment conducted by Ohl (2002) for
the analysis of cavitation inception. It focuses on the first
microseconds of the expansion of one or several bubbles. Com-
parison of the time evolution of the bubble radius predicted
by the model with the one measured by Ohl have shown a
close agreement, while the Rayleigh-Plesset or Gilmore equa-
tions failed to reproduce some major features observed in the
experiments, like the time of bubble explosive growth. A more
complex test case was also studied, where nearby bubbles grow
at different rates, before some of them collapse while the other
survive. This behavior was also well reproduced by the new
model, which demonstrates the capability of this approach to
simulate the very first moments of vapour development.

The present simulations generally show that bub-
ble/bubble interactions are a primary mechanism of cavitation
inception. Indeed, the development of the bubbles depends not
only on the local velocity divergence resulting from the flow
conditions but also on the influence of the nearby bubbles.
Even if a positive local divU does promote vaporization, it will
mostly trigger the expansion of the smallest nuclei, while the
big ones may be weakly affected, due to the preponderant influ-
ence of the smaller nearby bubbles. In the compression phase,
i.e., when divU becomes negative, the bubble/bubble inter-
actions remain crucial, leading to the collapse of the smallest
bubbles, while the biggest one can survive and even sometimes
continue to expand. Unlike the expansion phases, the behavior
of the bubbles at this stage is not influenced anymore by the
nucleus initial size.



The local pressure resulting from these interactions
exhibits multiple peaks which are the signature of the col-
lapses of the small bubbles. When no bubble implosion does
occur, like at the beginning of the compression phases, the
local pressure is consistent with the evolution of the ambient
pressure. It suggests that the large amplitude pressure varia-
tions resulting form the local collapses of small bubbles should
be considered, in addition to the ambient pressure evolution,
to calculate the instantaneous local pressure in the liquid and
eventually evaluate the flow aggressiveness and the subsequent
erosion.

The initial concentration of nuclei in the water is taken
into account by the model, which is not the case in many
previous cavitation models. This is a noticeable advantage,
since it was, for example, written in the final report of the 23th
ITTC (International Towing Tank Conference) that the devel-
opment of new predictive methods for cavitation inception
taking into account the water quality is strongly recommended
(Mehmet, 2002).

APPENDIX: DERIVATION OF THE VELOCITY
DIVERGENCE

The pressure equation is

p± =
1
2


p10 exp(−α1(t ± x/c)) + p20 exp(−α2(t ± x/c))

∗ cos

*
,

3∑
i=0

νi((t ± x/c))i+
-
2π(t ± x/c) + φ




∗ [1 + tanh(n1(t ± x/c))] ∗ [1 + tanh(n2(∆ − (t ± x/c)))].

(A1)

The constants are given in Table I.
The liquid velocity ul, divU, and ∂

∂t (divU) are

ul = −
1
ρlc

p−(t, x) +
1
ρlc

p+(t, x), (A2)

divU =
∂ul

∂x
= −

1
ρlc

∂p−(t, x)
∂x

+
1
ρlc

∂p+(t, x)
∂x

, (A3)

∂

∂t
(divU) =

∂2ul

∂t∂x
= −

1
ρlc

∂2p−(t, x)
∂t∂x

+
1
ρlc

∂2p+(t, x)
∂t∂x

,

(A4)

where p− and p+ denote the pressure waves traveling from
negative x or from positive x, respectively. Using the velocity
divergence, its time partial derivative, and the control vol-
ume, we obtain q̇m and qm. To simplify the calculations of the
velocity divergence and its time partial derivative, one poses

Xa
1 = p10 exp(−α1(t + ax/c)), (A5)

Xa
2 = p20 exp(−α2(t + ax/c)), (A6)

Xa
3 = cos


*
,

3∑
i=0

νi((t + ax/c))i+
-
2π(t + ax/c) + φ


, (A7)

Xa
4 = 1 + tanh(n1(t + ax/c)), (A8)

Xa
5 = 1 + tanh(n2(∆ − (t + ax/c))), (A9)

where a is − or +. Then, it is simple to calculate
∂Xa

i
∂x ,

∂Xa
i

∂t , and
∂2Xa

i
∂t∂x . Using this change of variables, we have

pa =
1
2

[
Xa

1 + Xa
2 ∗ Xa

3

]
∗
[
Xa

4

]
∗
[
Xa

5

]

=
1
2

(
Xa

1 + Xa
23

)
∗ Xa

45 =
1
2

Xa
123Xa

45, (A10)

∂pa

∂x
=

1
2

(
Xa

45

∂Xa
123

∂x
+ Xa

123

∂Xa
45

∂x

)
, (A11)

∂2pa

∂t∂x
=

1
2
*
,
Xa

45

∂2Xa
123

∂t∂x
+
∂Xa

45

∂t

∂Xa
123

∂x
+ Xa

123

∂2Xa
45

∂t∂x

+
∂Xa

123

∂t

∂Xa
45

∂x

)
, (A12)

where Xa
23 = Xa

2 Xa
3 , Xa

123 = Xa
1 + Xa

23, and Xa
45 = Xa

4 Xa
5 .

Equations (A10)–(A12) enable to determine ul, divU, and
∂
∂t (divU).

Equations (A11) and (A12) depend on the following
equations:

∂Xa
123

∂x
=
∂Xa

1

∂x
+
∂Xa

23

∂x
, (A13)

∂Xa
123

∂t
=
∂Xa

1

∂t
+
∂Xa

23

∂t
, (A14)

∂2Xa
123

∂t∂x
=
∂2Xa

1

∂t∂x
+
∂2Xa

23

∂t∂x
, (A15)

∂Xa
45

∂x
= Xa

5

∂Xa
4

∂x
+ Xa

4

∂Xa
5

∂x
, (A16)

∂Xa
45

∂t
= Xa

5

∂Xa
4

∂t
+ Xa

4

∂Xa
5

∂t
, (A17)

∂2Xa
45

∂t∂x
= Xa

5

∂2Xa
4

∂t∂x
+ Xa

4

∂2Xa
5

∂t∂x
+
∂Xa

5

∂t

∂Xa
4

∂x
+
∂Xa

4

∂t

∂Xa
5

∂x
.

(A18)

Equations (A13)–(A15) depend on the following equations:

∂Xa
23

∂x
= Xa

3

∂Xa
2

∂x
+ Xa

2

∂Xa
3

∂x
, (A19)

∂Xa
23

∂t
= Xa

3

∂Xa
2

∂t
+ Xa

2

∂Xa
3

∂t
, (A20)

∂2Xa
23

∂t∂x
= Xa

3

∂2Xa
2

∂t∂x
+ Xa

2

∂2Xa
3

∂t∂x
+

Xa
3

∂t

∂Xa
2

∂x
+

Xa
2

∂t

∂Xa
3

∂x
. (A21)

Thus, using Xa
i ,

∂Xa
i

∂x ,
∂Xa

i
∂t , and

∂2Xa
i

∂t∂x (where a stands for − or +
and i = 1,2, . . . 5), which are easy to calculate, pa, ul, divU,
and ∂

∂t (divU) can be determined.
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