
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/15175

To cite this version :

Sabeur MEZGHANI, Mohamed EL MANSORI, Faissal CHEGDANI - Experimental study of coated
tools effects in dry cutting of natural fiber reinforced plastics - Surface and Coatings Technology -
Vol. 284, p.264-272 - 2015

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/15175
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/
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This work aims to investigate the tribological effects of coated tools on the surface finish of natural fiber rein-
forced plastics (NFRPs) during profilemilling processwith particular emphasis on the natural fiber cuttingmech-
anisms and tool wear. Both up-milling and down-milling configurations were considered. The cutting
experiments were carried out on unidirectional flax fibers reinforced polypropylene resin (UDF/PP) using
three different cutting tools. Uncoated tungsten carbide, titanium diboride (TiB2) coated and diamond coated
were used to conduct profilemilling tests. Tribological cutting contacts were evaluated bymeasuring the specific
cutting energy. Surface state was acquired by a scanning electronicmicroscope (SEM) and an optical microscope
(OM). Surface topographywasmeasured using a 2D Surfascan stylus profilometer. MachinedNFRP surface finish
was characterized using standard and multiscale analysis based on wavelets transform.
Results show that the cutting edge radius made by tool coating has a significant effect on surface finish. Natural
fiber shearing ismore efficient once the removed chip thickness exceeds the cutting edge radius value.Moreover,
it had been demonstrated that the pertinent scales for surface finish analysis are between50 μmand 1mmwhich
correspond to the multiscale fiber reinforcement structure. Furthermore, and unlike the uncoated tool, TiB2 and
diamond coatings allow a good wear resistance of the cutting tools against the tribological solicitations of flax
composite machining.

1. Introduction

Natural fiber reinforced plastics (NFRPs) constitute a real challenge
for academia and industry since they are becoming a real substitute to
synthetic fiber composites in several industrial applications which not
require high structural performances [1–5]. Many factors engage the
use of natural fibers in composite industry, such as the low production
cost, the good mechanical properties, the valorization of local resources
and the enhancement of materials and technologies taking into account
the environmental impacts and the sustainable development [6,7].

Machining of composites such asmillingprocess is an essential oper-
ation to facilitate the parts assembly in addition to the finishing of final
products [8]. However, it's a complicated operation because of the het-
erogeneity in the internal structure of composite materials [9]. For all
these raisons,many scientific studies are interested inmachiningof syn-
thetic fiber composites to address the effect of process parameters, fiber
orientation, and tool coating [10–17].

In the case of NFRP, thesemachining operations require the scientific
understanding of the tribo-contact nature between the cutting tools and
the different phases that are present inside the NFRP regarding the pro-
cess parameters, the natural fiber structure and the tool properties.

Unfortunately, the few studies that have addressed these issues have
remained focused on the overall influence of process parameters on cut-
ting forces, delamination factor and the global surface roughness of
NFRP by using the statistical analysis of variance (ANOVA). The main
outcome of these studies is that the feed rate has the larger contribution
to themachining response [18–27]. Indeed, cutting forces, delamination
factor and global surface roughness increase by feed rate increasing.
Moreover, some comparative studies [24,26] between NFRP and glass
fiber reinforced plastics (GFRP) show that themachining of NFRP gener-
ates low cutting forces but high delamination factor comparing to GFRP.
However, standard surface roughness reveals a similar behavior be-
tween GFRP and NFRP that include high natural fiber stiffness [20].
Thus, previous work of the authors [28] addressed the multiscale influ-
ence of the natural fiber type (particularly the fiber stiffness) on the tri-
bological behavior of NFRP during profile milling process. This study
showed that the effect of fiber type is more relevant at fiber bundle
scales and the machined surface roughness level decreases linearly by
fiber stiffness increasing at this scale range. This proves that natural
fiber type has an influence on the contact stiffness during the NFRP/
tool interaction. Nevertheless, natural fiber structure and stiffness are
not the only factors that control the cutting contact stiffness. Indeed,
the effect of tool properties, such as the tool coating, can have a signifi-
cant impact on the tribological performances duringmachining of NFRP
by affecting the cutting edge surface properties and the edge radius.
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Then, this paper purposes the study of the multiscale effect of coated
cutting tools on the NFRP surfaces after profile milling process. The
tribo-energetic approach [28–30] was used to reveal the physical cut-
ting mechanisms that are related to the tribological contributions
of both coating and machining parameters. The multiscale approach
[28,31,32] was hence used to identify the effect of the cutting contact
conditions on the machined NFRP surface quality. The idea is to take
into account the cutting scale related to the machining parameters.
The induced machining damages on both the NFRP workpieces and
the coated tool have also been investigated.

2. Material and methods

2.1. Multiscale NFRP cutting structure

The understanding of NFRP cutting behavior is difficult due to the
complex structure of the natural fibers inside the composite materials.
Fig. 1 shows that machining the NFRP is extremely dependent on the
analysis scale because it's directly related to the physical cutting scale
between the tool and the natural fibers. Indeed, at microscopic scale,
the cutting contact is between the tool edge and the elementary fiber
(Fig. 1(c)) which has a high mechanical properties assured by the
microfibrilar cellulosic structure along the fiber axis [33,34]. At the
mesoscopic scale, the cutting contact is between the tool edge and
the fiber bundle (Fig. 1(b)) because the natural fibers are gathered in
bundles of elementary fibers and the bundle cohesion is insured by
pectin interfaces that have a very low mechanical performance [35].
This construction causes a significant decrease of the mechanical prop-
erties of the fiber bundle comparing to the single elementary fiber in
terms of stiffness and strength [36]. At the macroscopic scales, the cut-
ting contact is between the tool edge and the composite structure that

include the fiber bundles and the polymer matrix (Fig. 1(a)). The mac-
roscopic composite structure is characterized by another decrease of
themechanical properties because of the low properties of the polymer
matrix [37,38]. Consequently, the analysis of the physical cutting inter-
actions cannot be made without taking into account the real cutting
scale.

2.2. Coated cutting tools

Three iso-geometry helical carbide end mills with 10 mm of diame-
ter and composed of two cutting edgeswith 30° of helix anglewere pro-
vided by “Sandvik Coromant — FR” with different coating properties.
Uncoated tungsten carbide (H10F), monolayer physical vapor deposi-
tion (PVD) titanium diboride (TiB2) coated (A4CA) and multilayer
chemical vapor deposition (CVD) diamond coated (A4BX) are consid-
ered. Fig. 2 shows that each coating type generates different cutting
edge sharpness. Table 1 summarizes the cutting tool characteristics.
The edge radius of each cutting tool wasmeasured using a 2D Surfascan
stylus profilometer.

PVD coating process is made using sputter technology. During
sputtering, the parts in the vacuum chamber for coating are first heated.
Then, they are etched by bombardment with argon ions. This makes the
metal surface pure and clean from any atomic contamination. A high
negative voltage is then applied to the sputtering sources which contain
the coating material. The resulting electrical gas discharge leads to the
formation of positive argon ions that are accelerated in the direction
of the coating material, which is atomized by the bombardment. The
evaporated particles of atomized metal react with a gas that is intro-
duced to the chamber and contains the component of the hard coating
to be deposited. In traditional processes, the coating material must be
melted. This inevitably creates droplets that form defects in the coating

Fig. 1. Principal cutting scales for NFRP. a) Macroscopic scale. b) Mesoscopic scale. c) Microscopic scale.

Fig. 2. SEM images of the cutting edge for each coated cutting tool: a) H10F, b) A4CA and c) A4BX.
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structure and lead to a very rough surface. During sputtering, these drop-
lets do not appear and the coating surface still smooth (Fig. 2(b)).

CVD technology is used to produce diamond coating using the hot
filament process where the diamond is produced from gas. In H2-CxHy

gas atmosphere, carbon is turned into pure, crystalline diamond in a
vacuum. This can produce up to four carat diamond per hour. It can be
deposited as a micro-crystalline, nano-crystalline or multilayer coating.
Multilayer technology ensures maximum stability by interlocking the
individual layers within the coating. CVD diamond coating used in this
study is a multilayer micro-crystalline coating (Fig. 2(c)).

2.3. Unidirectional flax/polypropylene composite workpieces

NFRPworkpieces (Fig. 3(a)) used in this study are supplied by “Com-
posites Evolution—UK”. They are composed of unidirectional longflaxfi-
bers and polypropylene matrix (UDF/PP) as continuous warp flax yarns
that aremaintained in the longitudinal direction by syntheticweft yarns
(Fig. 3(b)). Warp yarns are commingled flax/PP with 40% vt of UDF and
60% vtof PP (approximately 50%wt for each constituent). Thewarp yarn
diameter is approximately 1 mm. The weft yarns are composed of co-
polyamide/polyester co-spun. The incidence of weft yarns is 1 yarn
per 2.5mm (Fig. 3(b)), giving an areal weight of 14 g/m2 (approximate-
ly 5% of the total fabric). Table 2 summarizes themechanical properties
of each constituent as provided by the supplier.

2.4. Cutting tests

Profile milling experiments were performed on instrumented
DMU60 monoBLOCK® five axes CNC machine by testing two cutting

configurations which are the up-milling and the down-milling as
described in Fig. 3(b and c). Experimental system was mounted on
a Kistler dynamometer (type 9255B) in order to measure the
cutting forces. Tests have been conducted on dry cutting contact
conditions at different feed rates. All other cutting parameters were
kept constant. The milling process parameter values are presented in
Table 3. In order to get reliable results, each test was repeated three
times under identical conditions and with a new cutting tool at each
time.

Geometrical and superficial variations of each workpiece samples
have been measured at five locations using a 2D Surfascan stylus
profilometer according to the ISO4287 standard. The tip radius of the di-
amond stylus is 2 μm. The surface micro-profile on each specimen was
taken along the machining direction over a sampling length of 2 μm.
The evaluation length is 16.8mmand a cut-off of 0.8mm is used to eval-
uate the arithmeticmean deviation of roughness (Ra) profile parameter.
Microscopic observations of UDF/PP surface state were made by a scan-
ning electron microscope (SEM) (JSM— 5510LV) at low vacuummode.
Typical representative surface morphology as induced by milling of
each experimental configuration was taken into account for the micro-
scopic analysis. Milled surface defects were evaluated by an optical mi-
croscope (Nikon SMZ — 10).

3. Results and discussion

3.1. Natural fiber cutting mechanisms

In order to understand the effect of tool coating on the cuttingmech-
anisms of flaxfibers inside theNFRP, the specific cutting energywas cal-
culated from cutting forces [28] for each cutting test configuration. Fig. 4
shows that the up-milling specific cutting energy (Fig. 4(a)) is less than
the down-milling specific cutting energy (Fig. 4(b)); especially at low

Table 1
Coating characteristics of each studied cutting tool.

H10F A4CA A4BX

Substrate WC WC WC
Coating process – Monolayer PVD Multilayer CVD
Coating composition – TiB2 Diamond sp3

Coating thickness (μm) – 2 ±0.7 7 ±1

Hardness (HV) 1600 4000 10,000
Measured edge radius (μm) 5.3 ±0.6 7.5 ±0.5 11.3 ±0.7

Fig. 3. a) Photograph of theworkpiece sample showing the worksurface. b) Structure of the flax fiber reinforcement. c) Schematization of the up-milling configuration. d) Schematization
of the down-milling configuration.

Table 2
mechanical properties of the NFRP samples and their constituents.

Flax fiber PP matrix UDF/PP

Tensile modulus (GPa) 50 0.93 17.6
Tensile strength (MPa) 500 29.5 109
Maximum strain 2% 14% 1.3%

F. Chegdani et al. / Surface & Coatings Technology



andmedium feed rates. At high feed rates, the energetic results become
similar between the three cutting tools and also between the two cut-
ting configurations. Indeed, the cutting conditions are favorable at
high feed rates as these latter satisfy the concept of the minimum chip
thickness when the undeformed chip thickness is much higher than
the minimum chip thickness [39].

Energetic analysis of Fig. 4 indicates that the fiber shearing is more
easily achieved by the up-milling configuration than by the down-
milling configuration. This can be explained by the fiber maintaining
during the NFRP/tool cutting contact as described in Fig. 5. At the up-
milling configuration, the fibers to be cut are well supported by the for-
ward material as shown in Fig. 5(b). This configuration increases the
fiber contact stiffness and allows the fibers to be sheared more easily.
At down-milling configuration, the maintenance of the fibers to be cut
is insured by the behind material which is insufficient for supporting
the cutting contact interaction as described in Fig. 5(a).

Moreover, Fig. 4 shows that the coated tool effects aremore obvious at
up-milling configuration between low andmedium feed rates (Fig. 4(a)).
In fact, H10F tool generates the lowest specific energy, followed by the
A4CA tool. The A4BX tool induces the highest specific energy. This can
be explained by the cutting edge radius for each tool produced by the
coating process. The uncoated tool (H10F) has the lowest edge radius,
followed by TiB2 PVD coated tool (A4CA) and the diamond CVD coated
tool (A4BX) as shown in Fig. 2 and Table 1. Indeed, it's well known that
the more the cutting edge radius is high, the more plastic deformation
and sliding mechanisms contribute to the cutting energy, especially
when the tool edge radius comes to be on the order of the undeformed
chip thickness [40]. Consequently, low cutting edge radius leads to reduc-
ing both the sliding and the plastic deformation components and favors
the fiber shearing mechanism (i.e. reducing the specific cutting energy).

It can be concluded that both up-milling configuration and low
cutting edge radius favor the shearing mechanism of the natural fibers,
while both down-milling configuration and high edge radius favor
the plastic deformation and the springback of the natural fibers after
the milling operation. However, neither up-milling nor down-milling
configurations cannot exhibit a pure fiber shearing because of the
high flexibility of the natural fibers as they are soft by nature [41]. Conse-
quently, the natural fibers have a significant ability to be easily deformed
in contact with the cutting edge. This will favor the plastic deformation
rather than shearing of the fiber during the milling operation.

3.2. Multiscale surface finish analysis

Standard surface roughness analysis has been developed bymeasur-
ing the arithmetic mean roughness criterion Ra after the profile milling
process.

Fig. 6 presents the standard surface roughness for both up-milling
and down-milling configurations at all the feed rate range. It shows
that roughness increasing level for the down-milling configuration
(Fig. 6(b)) is strongly higher than that of the up-milling configuration
(Fig. 6(a)), especially at low and medium feed rates. The roughness
level becomes similar between the two cutting configurations at the
high feed rates for the same raisons discussed in Section 3.1.

Furthermore, A4BX cutting tool induces the highest roughness level,
followed by the A4CA then H10F. This demonstrates the functional rela-
tionship between the cutting edge radius generated by the tool coating
and the induced surface roughness. Indeed, Fig. 7 presents themicroscop-
ic states of the milled surfaces generated by the three cutting tool at low,
medium and high feed rates. It shows that, effectively, increasing the cut-
ting edge radius increases the uncutfiber extremities that exceed thema-
chined surface. However, increasing the feed rate reduces these uncut
fiber extremities. Since these latter are the main responsible of the sur-
face roughness increase [28], it can be concluded that increasing the cut-
ting edge radius increases the surface roughness and increasing the feed
rate reduces the surface roughness. It's important to note that the effect of
the roughness of coated tools (Fig. 2) was not considered as it will not
leave its mark on the milled surface because of the exceeded fibers.

For more understanding of the relationship between the milled sur-
face roughness, cutting parameters and the cutting edge radius induced
by tool coating,multiscale analysis of themilled surface topographywas
made using themultiscale decomposition approach. More details about
this multiscale analysis method can be found in [28]. Multiscale surface
roughness analysis was performed using themultiscale roughness spec-
trum (Ma(i)) by calculating the arithmetic mean roughness deviation
(Ma) at each scale “i” of the decomposition.

At this step of study, the mean chip thickness will be used instead of
the feed rate to evaluate the multiscale surface roughness in terms of
the removed material quantity. The mean chip thickness (hm) can be
computed from the feed rate (fz) in the case of profile milling process
using the Eq. (1) [42]. Where ae and ϕ are the depth of cut and the
tool diameter, respectively. The corresponding chip thickness values of
each feed value are presented in Table 4.

hm ¼ f z �
ffiffiffiffiffi
ae
ϕ

r
: ð1Þ

Fig. 8 shows that the roughness is at its minimum at the smallest
scale (i = 16 μm) which refers to the elementary fiber diameter
scales (between 10 and 20 μm). Both the feed and the cutting edge
radius don't significantly affect this minimum roughness as it seems
to be similar for all the experimental configurations. In fact, the
elementary fiber presents in this microscopic scale has a very high

Table 3
Process parameters used for the profile milling tests.

Milling
configuration

Feed
(mm/tooth)

Cutting speed
(m/min)

Depth of cut
(mm)

Up-milling
Down-milling

0.005
0.01
0.02
0.04
0.08
0.16

100 1

Fig. 4. Specific cutting energy for profile milling process. a) Up-milling configuration. b) Down-milling configuration.
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mechanical properties comparing to the polymer matrix as shown
in Table 2. The high elementary fiber stiffness controls the cutting
contact stiffness and, then, the effects of the feed and the edge
radius are not obvious. The roughness level increases significantly
by increasing the analysis scale until the scale i = 1 mm where
the roughness level reaches its maximum. Indeed, the more the
analysis scale increases, the more additional elementary fibers are taken
into account in the cutting scale until reaching the fiber bundles
(Fig. 1(b)). The stiffness drop from the elementary fiber to the fiber
bundle (Section 2.1) causes a significant decrease in the cutting contact
stiffness between the cutting edge and the fibers. This will reduce the
fiber shearing efficiency and, consequently, generates an important
roughness increasing. Consequently, at these high roughness levels,
the impact of feed (or chip thickness) and cutting edge radius will be
more obvious.

The multiscale analysis demonstrates the importance of considering
the analysis scale which is undeniably linked to the cutting scale as ex-
plained in Section 2.1. Therefore, the pertinent scales to analyze the
both cutting edge radius and chip thickness effect on machined surface
quality of UDF/PP are, according to the Fig. 8, between 50 μmand 1mm.
Physically, the scale i=50 μmcorresponds to theminimumdiameter of
technical flax fiber [43] while the scale i=1mm refers to the flax yarn
diameter (Section 2.3).

By analyzing the Ma spectrums of each milling configuration be-
tween 50 μmand 1mm, Fig. 8 reveals that, globally, there is a functional
relationship between the edge radius induced by the tool coating
and themean chip thickness. Indeed, theMa spectrums present two dif-
ferent behaviors in terms of both chip thickness (hm) values and edge
radius (rε) values:

• When hm b rε: The surface roughness presents its highest levels and
decreases significantly by chip thickness increasing because we are
in the unfavorable cutting conditions that favor sliding and plastic de-
formation as explained in Section 3.1.

• When hm N rε: The effect of chip thickness becomes insignificant and
the surface roughness level reaches its minimum as the favorable cut-
ting conditions are achieved.

It can be concluded, by the standard and themultiscale surface anal-
ysis, that reducing the surface roughness (i.e. activating the naturalfiber
shearing mechanism) amounts to be achieved by the feed rates which
can generate chip thicknesses higher than the edge radius of the cutting
tool (i.e. to be in the favorable cutting conditions as explained in
Section 3.1).

It's interesting to note the insignificance of the tool hardness on the
profile milling results regarding the energetic analysis and the surface
roughness. Indeed, even if there is an important difference of the hard-
ness values between the three studied cutting edges (Table 1), this
hardness difference cannot influence the cutting results because of the
very lowhardness of theUDF/PPworkpieces that can be negligible com-
paredwith that of the cutting tools. TheUDF/PP hardness has beenmea-
sured and it is around 11 HV. Then, a significant changing of cutting tool
hardness seems to be not able to affect the cutting interaction and cut-
ting mechanisms.

3.3. Induced machining defects

3.3.1. Fluffing defect
Fluffing is among themost known defects in composite processing in-

dustry. Fluffing of flax fibers is observed at both top and bottom edges of
milled surface as shown in Fig. 9. The top fluffing (Δx) corresponds to the
fluffing defect produced by the exit of the cutting edge. The bottom
fluffing (Δy) corresponds to the fluffing defect produced by the entry of
the cutting edge. Thus, Δx and Δy, which correspond respectively to the
uncut fibers length at the top and the bottom edges of milled surface,
were measured after each test using the optical microscope.

Fig. 9 shows that the fluffing defect is more apparent at the top edge
of themilled surface (i.e. the exit of the cutting edge). The down-milling

Fig. 5. Schematization of the natural fiber behavior during milling operation. a) Down-milling configuration. b) Up-milling configuration.

Fig. 6. Standard surface roughness after profile milling process of UDF/PP. a) Up-milling configuration. b) Down-milling configuration.

F. Chegdani et al. / Surface & Coatings Technology



configuration generatesmore fluffing defect than the up-milling config-
uration. Moreover, the effect of the cutting edge radius on the fluffing
length is more obvious at up-milling configuration in which the A4BX
tool (i.e. the highest cutting edge radius) causes the highest fluffing
length. The H10F tool (i.e. the lowest cutting edge radius) causes the
lowest fluffing length.

The fluffing defect can also be explained by the fibermaintaining as-
pect (Section 3.1). Indeed, the natural fibers that are present at the two
extreme edges of the milled surface did not have a sufficient maintain-
ing during the cutting operation and they tend to deform more than
those present inside the composite. In addition, increasing the cutting
edge radius favors the fiber deformation more than the fiber shearing.
Then, increasing the cutting edge radius for the fibers at the two
extreme edges of the worksurface will greatly reduce their shearing
efficiency (i.e. increasing the uncut fiber extremities at the two edges
of the milled surface).

3.3.2. Tool wear
Due to the non-abrasive character of natural fibers that participates

in a slowwear evolution of the cutting tools comparing to the synthetic
fibers [41], no wear was detected after the profile milling tests. Then,
each cutting tool has been engaged to conduct an accelerated cyclic
machining of a UDF/PP workpiece. 50milling cycles were consecutively
done for each cutting tool. Eachmilling cycle was realized on 200mmof
UDF/PP cutting lengthwith 100m/min of cutting speed and 32mm/min
of feed speed. Thus, each wear test took approximately 5 h.

Cutting tool wear has been investigated by SEM observations and cut-
ting edge radiusmeasurement after the acceleratedwear tests in order to
compare them with the initial measurements of Table 1. After the wear

test, no wear appearance was detected by the SEM observations on the
cutting edge of the TiB2 coated (A4CA) and the diamond coated (A4BX)
tools. Only the uncoated tool (H10F) shows the signs of wear at the tip
of the cutting edge as shown in Fig. 10. Indeed, Fig. 10(b) shows that,
after the accelerated wear test, significant microcracks at the tip of
the cutting edge was detected but no surface structure modification of
the flank face was observed. This can be due to the mechanical damage
(subsurface damage, microcracks, …) induced by the manufacturing
process of the cutting tools and, especially, the finishing process of the
cutting edgewhich causes an initial microcracks at the tip of the cutting
edge (Fig. 10(a)). According to Fig. 10(c), only the H10F cutting edge ra-
dius increased. This proves, effectively, the presence of wear at the tip
the H10F cutting edge. Therefore, the milled surface roughness can in-
creasewith time as the cutting edge radius increases with time because
of wear.

It can be concluded that coating allows the avoiding of wear
initiation at the tip of the cutting edge when milling UDF/PP. Introduc-
ing hard coating (like TiB2 or diamond) to tungsten carbide cutting
edge can protect it against the strictest solicitations in this sensitive
area of the cutting tool thanks to their high hardness presented in
Table 1. This can let the induced surface roughness constant with time
until the wear initiation of the coating.

4. Conclusion

The effect of coated tools on theUDF/PP profilemillingperformances
had been investigated in this study by comparing the cutting behaviors
of uncoated tungsten carbide tool with both TiB2 coated and diamond
coated tools. This studywas conducted at dry cutting conditions by test-
ing both the up-milling and the down-milling configurations. The fol-
lowing conclusions can be drawn:

• Up-milling configuration is more suitable than down-milling configu-
ration for the profile milling of UDF/PP at low andmedium feed rates.
Up-milling configuration favors the shearing mechanism of the flax

Fig. 7. SEM images showing the microscopic surface quality after up-milling process with the three different coating properties.

Table 4
Equivalent chip thickness values for the different feed values.

Feed (mm/tooth) 0.005 0.01 0.02 0.04 0.08 0.16
Chip thickness (μm) 1.6 3.2 6.4 12.8 25.6 51.2

F. Chegdani et al. / Surface & Coatings Technology 



fibers thanks to the high fiber maintaining during the cutting opera-
tion. The fiber maintaining is very low at the extreme edges of the
worksurface which causes fluffing defects.

• Both TiB2 and diamond coatings increase the cutting edge radius. Con-
sequently, increasing the cutting edge radius favors the plastic defor-
mation of flax fibers, in addition to their springback, when interacting
with the cutting tool. Then, increasing the cutting edge radius in-
creases the milled surface roughness.

• Multiscale analysis demonstrates the significance of taking into
account the analysis scale. For the UDF/PP milling, the pertinent
scales to evaluate the surface topography of the milled surface rough-
ness are between 50 μmand 1mm. These scales are, typically, between
the technical fiber diameter and the yarn diameter. Moreover,

multiscale analysis confirmed the relationship between the cutting
edge radius and the mean chip thickness. Thus, the shearing mecha-
nism is activated when the chip thickness is higher than the cutting
edge radius.

• Only the uncoated tool shows signs of wear on the tip of the cutting
edge in formofmicrocracks. This damage causes a significant increasing
of the cutting edge radius and then a surface roughness increasing of the
NFRP with time. The non-abrasive nature of flax fibers does not affect
the coating structure of both TiB2 and diamondwhich have a high hard-
ness. Then, the choice of the cutting tool for machining the NFRP
composites requires a good compromise between the cutting edge
sharpness and the tool coating. This will provide an efficient natural
fiber cutting associated with long tool life.

Fig. 8.Multiscale surface roughness ofmilledUDF/PP. a) Up-milling byH10F. b) Up-milling by A4CA. c) Up-milling by A4BX. d)Down-milling byH10F. e)Down-milling by A4CA. f) Down-
milling by A4BX.

Fig. 9. a) Optical microscope image showing the top fluffing (Δx) and the bottom fluffing (Δy). b) Top fluffing of up-milled surfaces. c) Top fluffing of down-milled surfaces. d) Bottom
fluffing of up-milled surface. e) Bottom fluffing of down-milled surfaces.
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