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Abstract Understanding non-Darcian flow of shear-thinning fluids through rough-walled rock fractures
is of vital importance in a number of industrial applications such as hydrogeology or petroleum
engineering. Different laws are available to express the deviations from linear Darcy law due to inertial
pressure losses. In particular, Darcy’s law is often extended through addition of quadratic and cubic terms
weighted by two inertial coefficients depending on the strength of the inertia regime. The relations
between the effective shear viscosity of the fluid and the apparent viscosity in porous media when inertial
deviations are negligible were extensively studied in the past. However, only recent numerical works have
investigated the superposition of both inertial and shear-thinning effects, finding that the same inertial
coefficients obtained for non-Darcian Newtonian flow applied in the case of shear-thinning fluids. The
objective of this work is to experimentally validate these results, extending their applicability to the case of
rough-walled rock fractures. To do so, flow experiments with aqueous polymer solutions have been
conducted using replicas of natural fractures, and the effects of polymer concentration, which determine
the shear rheology of the injected fluid, have been evaluated. Our findings show that the experimental
pressure loss-flow rate data for inertial flow of shear-thinning fluids can be successfully predicted from the
empirical parameters obtained during non-Darcian Newtonian flow and Darcian shear-thinning flow in a
given porous medium.

1. Introduction

Non-Darcian flow through rough-walled rock fractures are of vital importance in numerous industrial appli-
cations such as geothermal energy production, CO2 underground storage, and oil recovery [Radilla et al.,
2013; Tosco et al., 2013]. In particular, shear-thinning fluids are commonly used in petroleum engineering
and soil remediation to stabilize the injection front through mobility reduction. Injection of a shear-thinning
fluid into a heterogeneous subsurface induces cross flow between higher and lower-permeability layers.
Mobility reduction behind the polymer solution in a higher-permeability layer then creates a transverse
pressure gradient that promotes fluid migration into less permeable layers [Silva et al., 2012]. Also, a number
of fracturing fluids used in hydraulic fracturing present shear-thinning behavior, so knowledge of the flow
rate-pressure gradient relationships is most valuable [Lavrov, 2015; Perkowska et al., 2016]. Most shear-
thinning fluids used in remediation studies contained the biopolymer xanthan [Zhong et al., 2008; Truex
et al., 2015]. Other polymers such as Carboxymethylcellulose [Zhang et al., 2016] and guar gum [Hern�andez-
Espri�u et al., 2013] are also widely used in drilling fluids for enhanced hydrocarbon recovery. Motivated by
the wide range of industrial applications in which understanding non-Darcian flow of shear-thinning fluids
is of key importance, the objective of the present work is to investigate the effects of the shear rheology of
the injected fluid on the pressure losses generated during single-phase flow through fractures. In order to
achieve this goal, a series of experiments are presented in which aqueous solutions of xanthan biopolymer
with different polymer concentration are injected through two replicas of rough-walled natural fractures
(granite and Vosges sandstone).

Darcy’s law [Darcy, 1856] is generally used to model single-phase flow of incompressible Newtonian fluids
through porous media. Nevertheless, this model is only valid when inertial forces are negligible compared
to viscous forces [Schneebeli, 1955; Hubbert, 1956; Scheidegger, 1960; Chauveteau and Thirriot, 1967]. Both
theoretical and empirical models taking into account the extra pressure losses due to inertial effects were
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presented in previous works [Miskimins et al., 2005]. In particular, two different inertial regimes were identi-
fied: the strong inertial regime and the weak inertial regime. Forchheimer’s empirical law [Forchheimer,
1901] is commonly used to model the strong inertial regime through addition of a quadratic pressure drop
term to Darcy’s law to describe the deviations from linearity:
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where DP
L is the pressure drop per unit of length, Q is the volumetric flow rate, l the viscosity of the injected

fluid, K is the intrinsic permeability, A is the cross-sectional area, q is the fluid density, and b is the inertial
coefficient. Forchheimer’s law has been experimentally validated [Dullien and Azzam, 1973; Geertsma, 1974;
MacDonald et al., 1979; Rasoloarijaona and Auriault, 1994] and has found some theoretical justifications
[Cvetkovic, 1986; Giorgi, 1997; Chen et al., 2001].

In the case of the weak inertial regime, which occurs at moderate values of the Reynolds number, deviations
from the linear relationship between flow rate and pressure loss were shown to follow a cubic function of
the mean velocity in the porous media [Mei and Auriault, 1991; Firdaouss et al., 1997; Fourar et al., 2004;
Rocha and Cruz, 2010].
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where c is a dimensionless inertial coefficient. Reynolds number can be specifically defined for weak inertia
cubic law as [Radilla et al., 2013].
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Cubic law was obtained from numerical simulations in a 2-D periodic porous medium [Barrère, 1990;
Firdaouss and Guermond, 1995; Amaral Souto and Moyne, 1997] and also by using the homogenization tech-
nique for isotropic homogeneous porous media [Mei and Auriault, 1991; Wodie and Levy, 1991]. This law was
shown to be in agreement with experimental data [Firdaouss et al., 1997]. Fourar et al. [2004] demonstrated
that the transition zone between cubic and quadratic inertial deviations is reduced in the case of 3-D flows
as those in granular media.

Using the asymptotic expansions method in a thin cylindrical channel with oscillating walls and averaging
over the channel diameter, Buès et al. [2004] and Panfilov and Fourar [2006] presented a macroscopic flow
equation which proved to be in good agreement with numerical simulations in rectangular and cylindrical
fractures at high flow rates. This flow equation was expressed in the form of a full cubic law:
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where b and c are the inertial coefficients which may be positive or negative, depending on the channel geom-
etry. In this full cubic law, the quadratic term describes the pure inertia effect caused by an irreversible loss of
kinetic energy due to flow acceleration and the cubic term corresponds to a cross viscous-inertia effect caused
by the streamline deformation due to inertia forces. This macroscopic flow equation is valid not only in the
Darcian flow regime but also, to some limited extent, for the non-Darcian flow regimes. Obtaining b and c
through fitting to experimental data is of valuable interest as it would permit comparison to previous theoretical
predictions by oly obtained from porosity, permeability, and roughness of the porous medium [Cornell and Katz,
1953; Geertsma, 1974; Neasham, 1977; Noman and Archer, 1987; L�opez, 2004, Agnaou et al., 2013; Agnaou, 2014].

Analogously to the case of cubic law, Reynolds number can be defined for full cubic law as [Radilla et al., 2013]:
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Previous experimental works demonstrated that Darcy’s law fails to predict pressure drops in fractures
when inertial effects are relevant [Zimmerman et al., 2004; Radilla et al., 2013]. Radilla et al. [2013] modeled
single-phase flow experiments by means of the full cubic law and presented an elegant method to compare
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fractures in terms of hydraulic behavior versus flow regime using the intrinsic hydrodynamic parameters.
Besides, a geometrical model for nonlinear fluid flow through rough fractures was proposed and evaluated
through numerical simulations by Javadi et al. [2010]. Also, several authors showed that the intrinsic permeabili-
ty K and the cross-sectional area A used in equations (1–5) can be written as functions of the hydraulic aperture
of the fracture h [Witherspoon et al., 1980; Brown, 1987; Zimmerman and Yeo, 2000; Brush and Thomson, 2003]:

K5
h2

12
(6)

A5hw (7)

where w is the fracture width.

The specific objectives of the present study are to investigate how shear-thinning behavior affects the rela-
tionships between Reynolds number and pressure losses in fractures and validate previous numerical and
theoretical predictions which stated the uniqueness of the inertial coefficients for a given porous medium,
extending their applicability to the case of rough-walled rock fractures. To do so, flow experiments with
aqueous polymer solutions have been conducted using replicas of natural fractures, and the effects of poly-
mer concentration, which determine the shear rheology of the injected fluid, have been addressed. In this
work, we first hypothesize that the differences between the pressure drops measured during the flow of
the investigated shear-thinning fluids through rough-walled rock fractures and the pressure drop as pre-
dicted from the shear viscosity of the fluid can be explained in terms of inertial effects generated in the
porous medium flow. This hypothesis is then validated through analysis of the experimental results.

2. Non-Darcian Flow of Shear-Thinning Fluids in Porous Media

The use of Newtonian assumption in equations (1–5) is not realistic in the case of shear-thinning fluids, lead-
ing to important errors. Indeed, l depends on Q for these fluids, so this relationship must be included in
the mentioned equations. In addition, although numerical and theoretical studies have stated that the iner-
tial coefficients b and c do not depend on the fluid rheology, no experimental evidence has been pre-
sented. In particular, Tosco et al. [2013] demonstrated through numerical experiments that the value of the
inertial parameter b is independent of the viscous properties of the fluid. Also, c was analytically and numer-
ically shown to be a porosity-dependent parameter by Firdaouss et al. [1997] and by Yazdchi and Luding
[2012]. Therefore, experimental validation of these results is most valuable. A potential experimental issue
concerns elongational flows, which are known to induce extra pressure losses as compared to those pre-
dicted by pure shear flow during the injection of solutions of polymers presenting a certain degree of flexi-
bility through changing cross-sectional area media such as porous media [Rodr�ıguez et al., 1993; M€uller and
S�aez, 1999; Nguyen and Kausch, 1999; Seright et al., 2011; Amundarain et al., 2009]. This was attributed to the
formation of transient entanglements of polymer molecules due to the action of the extensional compo-
nent of the flow. Measurement of extensional viscosity is tricky and several methods have been proposed
for its determination [Schunk et al., 1990; Petrie, 2006; Collier et al., 2007]. One of the simplest methods con-
sists in the use of an opposed-jet device [Willenbacher and Hingmann, 1994; Gonz�alez et al., 2005]. However,
important differences between the results obtained by the available methods were reported [Petrie, 2006].

The empirical Carreau model [Carreau, 1972] is one of the most popular models to represent the shear-
thinning behavior of semidilute polymer solutions [Sorbie et al., 1989; L�opez et al., 2003; Rodr�ıguez de Castro
et al., 2016] commonly used in Enhanced Oil Recovery (EOR) and soil remediation. The Carreau equation is

based on molecular network theory and is often presented as l2l1
l02l1

5 11 k _cð Þ2
h in21

2
, where l is the viscosity

at a given shear rate _c, l0 and l1 are the zero shear rate and infinite shear rate viscosities, respectively, n
is the power-law index, and k is the time constant. The values of l0, l1, n, and k are determined by the
polymer concentration under given pressure and temperature conditions. In the region far from the low

shear viscosity plateau, i.e., when _c � 1
k, Carreau’s law leads to the following expression:

l � l11 l02l1ð Þkn21 _cn215l11a _cn21 (8)

with a5 l02l1ð Þkn21. From this expression, it can be observed that all the combinations of l0 and k pro-
viding the best fit to a set of l versus _c experimental data will result in the same value of the parameter a in
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the case in which no experimental data are available within the low shear rate viscosity plateau. Therefore,
the actual values of l0 and k cannot be properly determined in this case.

The importance of inertial effects in the porous medium can be quantified through comparison of the cal-
culated shear viscosity to the actually observed equivalent viscosity. The equivalent viscosity in the porous
medium leq is defined as the quantity that must replace the viscosity in Darcy’s law to result in the same
pressure drop actually measured [Tosco et al., 2013]. Indeed, both inertial and shear-thinning effects are
encompassed in leq. In the case of a rectangular fracture, leq is expressed as:
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The apparent shear rate in the porous medium has to be determined in order to calculate the ‘‘in situ’’ shear
viscosity lpm. The apparent shear rate _cpm of shear-thinning fluids flowing through a porous medium can
be defined by dividing the mean velocity Q/A by a characteristic microscopic length of the porous media
[Chauveteau, 1982; Sorbie et al., 1989; Perrin et al., 2006; Tosco et al., 2013; Rodr�ıguez de Castro et al., 2016].
This microscopic length is usually taken as

ffiffiffiffiffi
Ke
p

with e being the porosity of the porous medium. From the
definition of cross-sectional area (equation (7)), it is expected that in the particular case of fractures the
porosity is close to unit. Therefore, _cpm can be defined as:
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where a is a empirical shift factor known to be a function of both the bulk rheology of the fluid and the
porous media [Chauveteau, 1982; L�opez et al., 2003; L�opez, 2004; Comba et al., 2011; Sorbie et al., 2013]. Con-
sequently, in the case of Carreau fluids flowing at moderate and high shear rates lpm can be obtained from
equation s (8) and (10):
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3. Materials and Methods

3.1. Experimental Setup and Procedure
A set of experiments was conducted injecting aqueous polymer solutions through transparent epoxy resin
replicas of natural rough-walled rock fractures. The original fractures used in this work are a Vosges sand-
stone sample with dimensions 26 cm long and w 5 14.8 cm wide, and a granite sample with dimensions
33 cm long and w 5 15.5 cm wide. Details of the fabrication process of these fracture replicas can be found
elsewhere [Isakov et al., 2001; Nowamooz et al., 2013]. The aperture maps of the fractures were determined
using the image processing procedure based on the attenuation law of Beer-Lambert presented by
Nowamooz et al. [2013] and Radilla et al. [2013]. These aperture maps have been included as supporting
information Figures S1 and S2 and are referenced in the text of the present article. Both aperture maps
clearly show high spatial variability of the fracture aperture fields. For both fractures, smaller apertures are
located at the center and the larger apertures are located near the inlet and the outlet of the fractures. The
lower half of the Vosges sandstone fracture aperture field shows higher variability than the upper half, while
for the granite fracture, the spatial variability appears to be relatively high across the entire fracture area. A
detailed analysis of the aperture variability and distribution in both fractures was performed by Nowamooz
et al. [2013]. As explained by these authors, granite fracture aperture field is more variable (heterogeneous)
than the Vosges sandstone one. Also, the authors shown that the spatial variability of the fracture aperture
field, especially the constricted areas at the center of the fractures, was shown to result in the creation pref-
erential paths for the flow of the fluid. These effects are expected to be more important in the case of
shear-thinning fluids as the pressure loss sensitivity to aperture is higher (shear viscosity depends on the
local aperture).

The fluid was injected from a tank situated upstream of the fracture using a volumetric pump (EcoMoineau
M Series, PCM, France), and its flow rate was measured with a positive displacement flow meter (Model
LSM45, Oval, Japan). A differential pressure sensor (DP15 Variable Reluctance Pressure Sensor, Validyne,
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USA) was used to measure the pressure drop over a distance of L 5 20.5 cm in the case of the Vosges sand-
stone fracture and L 5 27 cm in the case of the granite fracture. The injected fluid was continuously recircu-
lated to the upstream tank after passing through the fracture. A sketch of the experimental setup is
included as supporting information Figure S3.

The procedure followed in our experiments was similar to the one used in the single-phase flow experi-
ments conducted by Radilla et al. [2013]. In this procedure, the fractures were saturated with CO2 prior to
saturation with polymer solution in order to avoid generation of air bubbles. Once saturated with polymer
solution, a set of 26 different flow rates ranging from 9 to 250 L/h were imposed for the flow through the
fracture and the corresponding steady state pressure drops were measured. The room temperature was
kept constant at 188C 6 1.

3.2. Fluid Properties
Four xanthan gum aqueous solutions with polymer concentrations Cp of 0, 200, 500, and 700 ppm were
used as injected fluids in the present experiments. Xanthan gum is a commonly used viscosifier obtained
through fermentation of Xanthomonas campestris bacteria [Garcia-Ochoa et al., 2000; Palaniraj and Jayara-
man, 2011; Wadhai and Dixit, 2011]. In solution state, an isolated xanthan macromolecule is more or less rig-
id and is of typically 1 lm of contour length [Mongruel and Cloitre, 2003] and a transverse size of
approximately 2 nm. Additional information about its chemical composition, structure, and other physico-
chemical properties can be found elsewhere [Song, 2007].

Each solution of 60 L were prepared by dissolving xanthan gum in filtered water containing 400 ppm of NaN3 as a
bactericide. The xanthan gum powders were progressively dissolved in water while gently mixing with a custom-
made overhead device. Once prepared, the polymer solutions were characterized by means of a stress-controlled

rheometer (ARG2, TA Instruments)
equipped with cone-plate geometry at a
constant temperature of 188C 6 1, fol-
lowing a procedure previously presented
in the literature [Rodr�ıguez de Castro,
2014; Rodr�ıguez de Castro et al., 2014]. Vis-
cosity measurements at very low shear
rates were not possible with the used
equipment due to the difficulty to reach
steady state values with rotational rhe-
ometers at very low shear rates in the
case of low viscosity fluids as the used
solutions [Hallouche et al., 2015]. Howev-
er, this is not important in the case of the
present experiments as the involved vis-
cosity values are far from the low shear
rates viscosity plateau. A viscosity of
0.0011 Pa s was measured for the solvent
(water) and the density q of all injected
fluids was taken as 1000 kg/m3. More-
over, a set of effluent fluid samples were
collected at the outlet of the fractures
after injection at the highest flow rate.
The effluent rheograms were deter-
mined and compared to that of the
inflowing fluid in order to assess polymer
degradation and retention of the poly-
mer on the fracture walls. No significant
difference was observed between the
rheograms, so polymer degradation and
significant polymer retention were
proved to be negligible.

Figure 1. (a) Rheograms and (b) effective viscosity versus shear rate for the poly-
mer concentrations of the injected fluid. The symbols represent experimental
data and solid lines represent the fitted curves using the equation (8).
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The empirical Carreau model [Carreau, 1972] is
commonly used to represent the shear-thinning
behavior of xanthan gum semidilute solutions
[Sorbie et al., 1989; L�opez et al., 2003; Rodr�ıguez de
Castro et al., 2016]. All the viscosity values involved
in the present experiments are far from the low
shear rate plateau. For this reason, equation (8)
will be used to fit the viscosity measurements.

However, viscosity measurements must be performed within the low shear rate pleateau in order to deter-
mine the values of l0 and k in the applications in which flow at very low shear rates is involved.

Equation (8) was used to fit the experimental data shown in Figure 1, and the obtained values for a and n
are presented in Table 1. l1 was assumed to be that of the solvent, which is supported by previous studies
[Bird et al., 1987; Pauchard et al., 1999; L�opez, 2004; Saggin and Coupland, 2004; Auradou et al., 2008; Comba
et al., 2011; Wengeler, 2014; Fang et al., 2015].

From Figure 1b, it can be deduced that higher viscosities are obtained for high values of Cp and that the experi-
mental data are well described by equation (8). The data in Table 1 illustrate that the zero shear rate viscosity of
xanthan gum solutions increase with increasing Cp, while parameter a decreases. Besides, the value of n

decreases with increasing Cp, reflecting
that the shear-thinning behavior is more
pronounced at higher Cp.

4. Results and Discussions

The flow experiments were conducted
for all four polymer concentrations and
were repeated four times. For each
concentration, a total of a 104 meas-
urements (4 repetitions for each of the
26 flow rates) were completed. The
104 measures for a given polymer
concentration-fracture pair were con-
sidered to be an experimental set.

4.1. Non-Darcian Flow of a
Newtonian Fluid: Obtaining K, c;
and b From Experiments
The experimental sets of pressure gradi-
ent as a function of Q for water injection
(Cp 5 0 ppm) through both fractures are
presented in Figure 2. Directly fitting
the third-order polynomial to the whole
set of data would result in overestima-
tion of permeability [Du Plessis and Mas-
liyah, 1988; Dukhan et al., 2014]. Indeed,
by fitting the whole set of data to the
polynomial law, a part of the pressure
drop would be attributed to inertial
effects even at the lowest flow rates,
which is not realistic. Consequently, the
viscous pressure loss would be underes-
timated leading to permeability overes-
timation. To avoid this issue, h and K are
determined by following a two-steps
procedure:

Table 1. Parameters Used in Equation (8) for the Shear
Rate-Viscosity Relations Shown in Figure 1b

Cp (ppm) a (Pa sn) l1 (Pa s) n

200 4.8 3 1023 1.1 3 1023 6.6 3 1021

500 2.4 3 1022 1.1 3 1023 5.8 3 1021

700 4.2 3 1022 1.1 3 1023 5.2 3 1021

Figure 2. Pressure gradient versus flow rate for water injection through the (a)
granite fracture and (b) Vosges sandstone fracture. Symbols represent experimen-
tal data, black solid lines represent their fit to a cubic law, red-dotted lines repre-
sent the linear term (Darcy’s law), blue-dashed lines represent the contribution of
the quadratic term to the full cubic law fit, and purple dot-dashed lines represent
the contribution of the cubic term to the full cubic law fit.
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1. In this step, the hydraulic apertures hj

obtained by only using the first j
experimental data (starting with the
lowest flow rates) are calculated by

minimizing the sum
Pj

i51
rPi2

12Qil
h3

j w

� �2

for j 5 1. . .N, with N being the number
of experimental data and l being the
measured dynamic viscosity of water
at the room temperature (0.0011 Pa s).

2. Then, the quality of N fits obtained by using the N values of hj calculated in the preceding step is evaluat-

ed by using the merit function F jð Þ5

Pj

i51

����
rPi2

12Qil

h3
j

w

rPi

����
j for j 5 1. . .N. After that, the value of j minimizing F jð Þ

was determined. The corresponding hj value was selected as the hydraulic aperture of the fracture from
which K was calculated using equation (6). The obtained values of K and h are presented in Table 2.

Once permeability was determined, the (Qi;rPi; Þ data were fitted to a full cubic law (equation (4)) through
a standard least squares method using the value of K calculated in the previous step and obtaining the val-
ues for c and b, which are also listed in Table 2.

Table 2. Permeability and Inertial Coefficients (Equation (4)) of the Used
Fracturesa

Fracture h (m) K (m2) c b (m21)

Granite 9.10 3 1024

(61%)
6.90 3 1028

(62%)
3.25 3 1025

(63%)
0

Vosges
sandstone

5.19 3 1024

(62%)
2.25 3 1028

(64%)
3.03 3 1025

(65%)
10.7

(62%)

aPercentages represent relative standard deviation.

Figure 3. leq and lpm for the polymer concentrations of the injected fluid. Symbols represent leq and solid lines represent lpm. (a), (b),
and (c) Correspond to the granite fracture. (d), (e), and (f) Correspond to the Vosges sandstone fracture.
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4.2. Equivalent and Shear Viscosity Relations
In our experiments, a was determined for each
porous medium-fluid pair by overlaying the porous
medium leq versus _capp with the bulk leq versus _c
curves as closely as possible and noting the scale
change in shear rate required to obtain the best fit.
This criterion to select a was proposed by Sorbie
et al. [1989] as a pragmatic alternative to the origi-
nal one previously proposed by Chauveteau [1982],
and was subsequently used by other authors

[Gonz�alez et al., 2005; Amundarain et al., 2009]. It should be noted that a good overlay between
both curves is only possible in the low flow rates region where no significant inertial effects occur,
as shown in Figure 3. The obtained values for a are given in Table 3. It is observed that all values lie
in the interval 1–15, in agreement with literature data [Chauveteau, 1982; Sorbie et al., 1989; L�opez
et al., 2003; Comba et al., 2011]. Moreover, lpm predicted from rheological measurements in the rhe-
ometer overlaps leq in the low flow rates region, showing that the effect of fluid-solid interactions
(e.g., polymer mechanical degradation and apparent wall slip) on the relationship between viscosity
and shear rate is negligible [Gonz�alez et al., 2005; Amundarain et al., 2009; Rodr�ıguez de Castro et al.,
2016].

4.3. Polymer Concentration Effects on Reynolds Number
While Reynolds number is directly proportional to injection flow rate for Newtonian fluids, this is not the
case when using shear-thinning fluids. Indeed, according to equation s (10) and (11), increasing the flow
rate implies a decrease in viscosity which implies in turn an extra increase in Reynolds number. The Reyn-
olds numbers obtained for the imposed flow rate were calculated through equation (3) in the case of the
granite fracture and equation (5) in the case of the Vosges sandstone fracture. lpm was used for the calcu-
lation of Reynolds number. It is highlighted that lpm accounts only for viscous effects and consistent with
the definition of Reynolds number as the ratio of inertial to viscous forces, in contrast to leq. The results

Table 3. Apparent-to-Effective Viscosity Shift Factor a for
the Used Fractures and Fluids

Cp (ppm)

a
(Granite
Fracture)

a (Vosges
Sandstone
Fracture)

200 2.4 5.4
500 5.7 5.5
700 1.5 2.1

Figure 4. (a) Rec versus Q for the granite fracture (b) Refc versus Q for the Vosges sandstone fracture. The average relative error E of a linear
fit is presented in each case.
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are presented in Figure 4. In this figure, it can be observed that Reynolds number decreases as Cp

increases for a given flow rate. Also the range of Reynolds numbers corresponding to the range of
imposed flow rates is narrower as Cp increases. This was expected given the higher viscosity values of the
most concentrated solutions.

Moreover, the average relative errors E resulting from the fit of Reynolds as a function of Q using a linear model

were calculated in each case as E5

PN

j51

jfit Qjð Þ2Reynoldsj j
Reynoldsj

N , with N being the number of experimental data. These aver-

age errors are shown in Figure 4 for both fractures.

Figure 5. Pressure losses due to shear and inertial dissipation as a function of Rec and Refc corresponding to (a) Granite – water, (b) Granite
– 200 ppm solution, (c) Granite – 500 ppm solution, (d) Granite – 700 ppm solution, (e) Vosges – water, (f) Vosges – 200 ppm solution, (g)
Vosges – 500 ppm solution, and (h) Vosges – 700 ppm solution.
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4.4. Extension of Weak Inertia Cubic
Law and Full Cubic Law to Shear-
Thinning Fluids
The total pressure loss through the frac-
ture DPtotal results from the superposi-
tion of two contributions [Gonz�alez
et al., 2005; Tosco et al., 2013], one of
them DPshear being strictly related to
the shear viscosity of the shear-
thinning fluid and the other one
DPinertial being related to the inertial
effects arising at high flow rates:

DPtotal5DPshear1DPinertial (12)

The shear contribution to the pressure
loss can be expressed from Darcy’s law
as follows:

2DPshear5
lpmQ

KA
L (13)

where lpm is the porous medium vis-
cosity as defined by equation (11).

On the other hand, the inertial contri-
bution to the pressure loss is obtained
from the nonlinear terms of equation
(4) and is expressed as:

2DPinertial5 bq
Q
A

� �2

L1
cq2

lpm

Q
A

� �3

L

(14)

DPinertial and DPshear were calculated
and presented in Figure 5 as a function

of Reynolds number and Cp for both fractures. It is noted that l used in the definition of Reynolds number,
i.e., in equations (3) and (5), has been taken as being the viscosity of the solvent in previous works [Gonz�alez
et al., 2005; Amundarain et al., 2009]. However, as shown in the preceding subsection, shear-thinning behav-
ior has an important effect on the range and values of Reynolds number. Consequently, in the present work
lpm was used in in equations (3) and (5) instead of water viscosity.

Figure 5 shows that DPinertial is negligible below a certain value of Reynolds number, i.e., within the shear-
thinning Darcy regime. Two types of criteria, the Reynolds number and the Forchheimer number, have
been proposed in the literature to identify the onset of non-Darcian flow. A review on these criteria was pre-
sented by Zeng and Grigg [2006]. In the present study, the critical value of Reynolds number, named Re�c for
the granite fracture (cubic law) and Re�fc for the Vosges sandstone fracture (full cubic law), will be defined as
being the one for which DPinertial is approximately 5% of DPtotal. Consequently, inertial effects will be consid-
ered to be significant only above this critical Reynolds number. Re�c and Re�fc were calculated for the granite
and the Vosges sandstone fractures, respectively, for all values of Cp considered and the results are pre-
sented in Figure 6.

For a full cubic law, the pressure gradient during the flow of shear-thinning fluids is given by combination
of equations (4) and (11):

2
DP
L

5
lpm

K
Q
A

1bq
Q
A

� �2

1
cq2

lpm

Q
A

� �3

(15)

with b50 in the particular case of weak inertia regime (for the granite fracture).

Figure 6. Critical Reynolds numbers versus polymer concentration for (a) Granite
and (b) Vosges sandstone fractures.
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The values of b and g obtained from water injection (Table 2) were used for all the injected fluids, indepen-
dently of Cp to predict DPtotal and DPinertial. These predictions are represented in Figure 7 (solid lines) tog-
hether with the experimental results (symbols). It is noticed that predictions are in good agreement with
experiments both for the total and the inertial pressure differences.

5. Discussion

As can be observed in Figure 2, the Qi;rPi;ð Þ data corresponding to the granite fracture are well fitted by a
weak inertia cubic law, as the deviations from linearity follow a cubic function of Q with no quadratic contri-
bution. Therefore, it can be deduced that viscous effects dominate the flow at the lowest Q (Q< 3 3 1025

m3/s) and extra pressure losses due to cross viscous-inertia effects become important at moderate and high
flow rates. In the case of the Vosges sandstone fracture, these deviations are not fully described by the
cubic term and an additional quadratic term (full cubic law) is needed to correctly fit the experimental data.
From these observations, it can be deduced that a weak inertia regime dominates the flow of water through
the granite fracture while a transition from weak to strong inertial regime where cross viscous-inertia effects
are significant occurs in the case of the Vosges sandstone fracture.

Figure 3 shows that equivalent viscosity undergoes a drop in value corresponding to shear-thinning Darcy
regime followed by an increase in the inertial regime. This is in good agreement with the numerical

Figure 7. Total and Inertial pressure losses as a function of Q corresponding to (a,b,c,d) Granite and (e,f,g,h) Vosges sandstone fractures.
Symbols represent experimental data and solid lines represent predictions using b and c obtained from water injection.
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experiments conducted by Tosco et al. [2013] and applies for all values of Cp. It is highlighted that the inertial
regime occurs at high flow rates that lie in the region close to the upper Newtonian plateau of viscosity where
the shear-thinning behavior is moderate. Also, lpm is higher for polymer solution injection in granite fracture
than in Vosges sandstone fracture. This was expected given the lower shear rates experienced by the fluid in
the most permeable fracture. In contrast, the values of leq corresponding to the high shear flow region are
very close in both fractures. Also, the differences between leq and lpm are more important in the case of
Vosges sandstone because of the existence of quadratic inertial pressure losses.

The range of variation of leq increases as Cp increases for both fractures. This is a consequence of the higher
degree of shear-thinning presented by the most concentrated solutions as shown in Figure 1. Besides, the
range of variation of leq is wider for the granite than for the Vosges sandstone fracture. This is due to the
higher shear rates to which the fluid is subjected during its flow through the granite Vosges fracture.
Indeed, these higher shear rates lie in the region close to the upper Newtonian plateau viscosity where the
shear-thinning behavior is less significant. It is also observed that the difference between leq and lpm is
more pronounced in the case of the Vosges sandstone fracture for all considered values of Cp. Moreover,
stronger differences between leq and lpm were found at the lowest polymer concentration for the granite
fracture while this difference remains approximately constant at all concentrations for the Vosges sandstone
fracture. This implies that polymer solution injection is more efficient for reducing the relative importance
of inertial pressure losses in the case of the most permeable fracture (granite fracture).

Figure 4 shows that while Reynolds number is a linear function of Q for Cp 5 0 ppm, this is not the case for
higher concentrations due to the extra increase in Reynolds number arising from shear-thinning behavior.
However, deviations from linearity are less marked for the Vosges sandstone fracture. This is a consequence
of the higher shear rates generated by the smaller apertures of this fracture, which lie in the region close to
the upper Newtonian plateau viscosity where the shear-thinning behavior is less significant as presented in
the preceding subsection.

The measured pressure losses were higher in the case of the most permeable fracture (Vosges sandstone)
as can be observed in Figure 5. One can remark that, in contrast to Newtonian fluids, the shear contribu-
tions of shear-thinning fluids (Cp> 0) are not linear with Reynolds number as expected from the rheograms
presented in Figure 1. It is remarked that DPshear is always higher than DPinertial within the investigated range
of Reynolds numbers. In particular, Dwinertial is less important in the case of the granite fracture, which is
coherent with the weaker inertial regime (cubic law) obtained in subsection 3.1. Besides, DPinertial are lower
as Cp increases, due to the lower values of Reynolds number.

It is remarked in Figure 6 that the range of critical Reynolds number is narrow for both fractures (0.25–0.34
for granite and 0.037–0.058 for Vosges sandstone), showing no decisive effect of Cp within the investigated
range.

From equations (2) and (3), D totalð can be expressed as follows:

2DPtotal5
l
K

Q
A

L 11Re2
c

� �
(16)

Therefore, the critical Reynolds number predicted by cubic law must satisfy the condition
Dhinertial=Dntotal5Re�c 2= 11Re�c 2

� �
50:05, which gives Re�c50.23.

In the transitional inertia regime Dntotal can be expressed, from equations (4) and (5), as:

2DPtotal5
l
K

Q
A

L 11Refc1
c

Kb2 Re2
fc

� �
(17)

In this case, the critical Reynolds number predicted by full cubic law must satisfy the condition
DPinertial=DPtotal5 Re�fc1

c
Kb2 Re�fc2

� 	
= 11Re�fc1

c
Kb2 Re�fc2

� 	
50:05. Assuming that the values of b and c

obtained for water apply to all considered Cp, a value of Re�fc5 0.037 is obtained. This value is very close to
those experimentally determined, which is coherent with uniqueness of inertial coefficients for a given
porous medium independently of the injected fluid [Hayes et al., 1996; Tosco et al., 2013]. It should be noted
that according to both cubic and full cubic laws, the onset of inertial effects occurs at Rec5 0, which is not
realistic. Consequently, a nonzero inertial pressure loss is predicted at the actual onset of inertial effects.
This explains that the obtained values for the critical Reynold numbers are slightly higher than predicted.
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The results and comparison presented in Figure 7 prove that, within the range of porous media and fluids
investigated in this work, b and c do not depend on the rheology of the injected fluid. Therefore, when
compared to Newtonian fluids, only the aditional empirical parameter a is needed to predict the relations
between pressure drop and flow rate during the inertial flow of shear-thinning fluids in fractures. However,
a can be determined through noninertial flow experiments in the studied porous medium. Consequently,
the pressure losses generated at high flow rates, where inertial effects are important, can be predicted from
(1) the results of shear-thinning Darcian flow experiments (determination of a) and (2) Newtonian flow
experiments (determination of b and c) in the investigated porous medium.

6. Summary and Conclusions

Motivated by the wide range of industrial applications in which understanding non-Darcian flow of shear-
thinning fluids is of key importance, we have investigated the effects of the shear rheology of the injected
fluid on the pressure losses generated during flow through fractures. To do so, we have conducted a series
of single-phase flow experiments injecting aqueous solutions of xanthan biopolymer with different polymer
concentration through two replicas of rough-walled natural fractures (granite and Vosges sandstone).

K, c, and b were determined for both fractures from water flow experiments by means of a rigorous proce-
dure, showing that different inertia regimes occur in each fracture (weak inertia regime for granite, transi-
tional inertia regime for Vosges sandstone). In both cases, cubic and full cubic law proved to fit very well
the experimental data. Also, the importance of inertial effects in the porous medium was quantified through
comparison of the calculated shear viscosity to the equivalent viscosity observed in the fractures. Indeed,
leq was shown to undergo a drop in value within the shear-thinning Darcy regime followed by an increase
in the inertial regime, in good agreement with previous numerical experiments [Tosco et al., 2013]. These
results were extended to all tested values of Cp. Stronger differences between leq and lpm were found at
the lowest polymer concentration for the granite fracture while this difference remains approximately con-
stant at all concentrations for the Vosges sandstone fracture, showing that adding polymer is more efficient
for reducing the relative importance of inertial pressure losses in the case of the most permeable fracture
(granite).

The effects of Cp on Reynolds number were assessed, showing nonlinearity of Reynolds number versus Q
for shear-thinning fluids and finding lower values and narrower ranges of variation of Reynolds number for
high values of Cp. Moreover, deviations from linearity were found to be less marked for the Vosges sand-
stone fracture. This is attributed to the higher shear rates generated by the smaller apertures of this fracture,
which lie in the region close to the upper Newtonian plateau viscosity where the shear-thinning behavior is
less significant.

For the first time, inertial and shear contributions to pressure loss have been identified for the flow of shear-
thinning fluids in fractures. DPinertial and DPshear were calculated and presented as a function of Reynolds
number and Cp for both fractures. DPinertial is less important in the case of the granite fracture, given the
weaker inertial regime (cubic law). Besides, the inertial pressure losses are lower as Cp increases, due to the
reduction in Reynolds number values. No significant dependence between Cp and the onset of inertial
effects was observed. However, the obtained values for the critical Reynolds number were slightly higher
than those predicted by the cubic and the full-cubic laws. This is explained by the unrealistic inertial effects
introduced by both laws at low values of Reynolds numbers.

The values of b and c obtained from water injection were used to predict DPtotal and DPinertial for all the
injected fluids, independently of Cp. The obtained results were in good agreement with experiments both
for the total and the inertial pressure differences, proving that, within the range of porous media and fluids
investigated in this work, b and c do not depend on the rheology of the injected fluid. Therefore, when
compared to Newtonian fluids, only the aditional empirical parameter a is needed to predict the relations
between pressure drop and flow rate during the inertial flow of shear-thinning fluids in fractures. However,
a can be determined through noninertial flow experiments in the studied porous medium. Consequently,
the pressure losses generated at high flow rates, where inertial effects are important, can be predicted from
(1) the results of shear-thinning Darcian flow experiments (determination of a) and (2) Newtonian flow
experiments (determination of K, b, and c) in the investigated porous medium. As an alternative, if the
pore-level structure of the medium is known sufficiently in detail (e.g., from 3-D microtomography imaging),
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a, b, c, and K can be determined from the expressions presented in the literature [Cornell and Katz, 1953;
Geertsma, 1974; Neasham, 1977; Noman and Archer, 1987; Agnaou et al., 2013; Agnaou, 2014] or from 2-D or
3-D pore-scale flow simulations following the procedure proposed by Tosco et al. [2013]. Besides, the influ-
ence of a on DPinertial has been shown to be weak in our experiments as the involved shear rates are close
to the upper Newtonian plateau of viscosity.

The experimental results presented in this paper enabled us to validate, adapt, and extend available macro-
scopic flow equations to the case of shear-thinning fluids. Moreover, previous theoretical [Hayes et al., 1996]
and numerical [Tosco et al., 2013] results stating uniqueness of inertial coefficients for a given porous media
have been experimentally tested and validated. We have now demonstrated the uniqueness of b for all test-
ed polymer concentration. Also, our hypothesis that the differences between DPtotal and DPshear can be
explained in terms of inertial effects has been validated, as no evidence of extra pressure drop arising from
elongational viscosity was found. Therefore, it has been proved that the apparent shear-thickening
observed during flow of polymer solutions at high flow rates, which is usually attributed to elongational
flow dissipation, can be explained in terms of inertial dissipation in the present experiments. This may the
consequence of the minor geometrical complexity of fractures as compared to that of most granular porous
media. However, only weak and transitional inertia regimes were explored in our experiments, so important
elongational effects are not dismissed at higher flow rates and polymer concentrations. Indeed, porous
media flow was turbulent in some previous works reporting extension-thickening [Amundarain et al., 2009].

Also, these results may provide useful guidance for the selection of the polymer concentration and the
injection flow rate when injecting aqueous polymer solutions. In particular, the obtained relationships can
be implemented in chemical flood simulation software for soil remediation and EOR so as to provide a
more realistic alternative to the Newtonian assumption allowing a better prediction of Q versus Ds at the
pilot plant and reservoir scales. The results of this work should now be extended to stronger inertia regimes
and to other types of porous media with different permeability and more complex internal geometries than
fractures, where elongational effects may be observed.
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