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Abstract—Wepresent an approach to solving the problemof haptic and visual

misalignment inCAVEs. The approachmoves thecollision box for the virtual screen’s

buttons to coincidewithwhere the user perceives their virtual location. Different filtering

strategieswere used.Weevaluated thealgorithmswith simulations andwith real subjects.

& THE RECENT IMPROVEMENTS in high perfor-

mance immersive systems, mostly achieved with

enhancements in visual systems, bring a flow of

new applications of virtual reality in the industry.

At Renault, these new uses bring specific requi-

rements in terms of interactions, as engineers

aim to work on virtual car prototypes with their

regular methods (transformations, explorations,

measurements, cut planes, etc.) in immersive sys-

tems. However, strong visual/haptic mismatches

prevent users from effectively using interaction

modalities.1 Due to these mismatches, the visual

and the haptic workfield are not collocated and

the users do not see what they touch where they

touch. Hence, few interaction methods are actu-

ally implemented in these systems.

In this paper, we evaluate the use of different

filtering strategies meant to determine where the

users try to touch buttons. The data collected

allows the system to move the collision box of

the buttons according to the previous interac-

tions. Such a systemwould increase the precision

of the user’s interactions and reduce their mis-

takes. We optimized several algorithms and per-

formed an experiment to validate our findings.

RELATED WORK

Visual Match

The CAVE itself has some particularities that

must be considered when implementing the



correct interaction modality. Unlike in head-

mounted displays, the users see their own body

(and hands) in a CAVE. This should be an advan-

tage for natural interaction, but it is also a

source of problems.

The event of a touch is binary whereas the

visual perception of depth is continuous; it is

hence important that visual and haptic contacts

are matched. However, seeing objects too far or

too close while touching them is a common com-

plaint from CAVE’s users. There are known

causes, like the mismatch between the tracked

three-dimensional (3-D) glasses that are used to

calculate the frustrums from the eyes’ point of

view and the actual eyes. Different interpupillary

distances, eye depths and nose heights lead to

an offset between the theoretical and the real

eyes, resulting in a different spatial perception

between users.

It has also been established that distance and

scale perception can be inaccurate in CAVEs,

depending on the quantity of objects of known

size, the photorealism of the scene, the quality of

the visual system, and even the duration of the

simulation.5 The brain, lacking visual cues to get a

robust spatial perception, can give unreliable

information, resulting in drifts.6 Research has

shown that these drifts of human perception can

be reduced with interaction, tasks, and context,7,8

but little is known about this topic as of yet.

These issues are significant, as there is a low

probability that the users see their hand and the

virtual point they want to touch at the same

location.9

Interaction Modalities

Cave Automatic Virtual Environments

(CAVEs) are immersive virtual reality systems

where images are projected on the walls of a

room-sized cube. Multiple research works evalu-

ated different interaction systems in CAVEs. The

key of an effective interaction is relevant feed-

back that can be attained through software and/

or hardware. Several experiments demonstrated

that kinesthetic feedback,2 cutaneous feedback,3

and sensory substitution4 can all significantly

enhance the interaction capabilities of virtual

environments.

However, these modalities also have their

own flaws, depending on their type: price,

bulkiness, software/hardware compatibility,

ergonomics, or even capabilities. Kinesthetic

systems are especially expansive and unhandy.

Sensory substitution is the easiest solution to

implement, as it only requires a software solu-

tion and a tracking system. It does not prevent

users from passing through objects. Neverthe-

less, visual cues and sounds can be relevant and

help people in their interactions. This study is

focused on sensory substitution for its higher

compatibility with CAVEs and its flexible usage.

Existing Solutions

There exist a few methods to handle the mis-

match between the haptic and the visual work-

space, like the clutching, scaling, and bubble

interaction techniques.10 However, these meth-

ods are often designed to enlarge the range of

interaction devices, not to colocate the haptic

and the visual workspace.

Many CAVEs do not handle visual drift. They

settle for inaccurate interactions, no interactions

at all, or interactions with a virtual tool. Virtual

tools, displayed by the CAVE, encounter the same

drift as the rest of the virtual environment. They

are thus easier to interact with, as users easily

immerse themselves into avatars not sharing the

same location (computer mice are a good exam-

ple), and interactions are efficient with them.11,12

In other fields, solutions exist to improve the

performance of inaccurate interactions. For

example, the patent FR3028968B1 describes a

car human-machine interface (HMI) system that

predicts the intention of users to ease their inter-

actions by moving the buttons. Likewise, devel-

opers of smartphones’ virtual keyboards use

tricks to improve performance: although the

process is invisible, the size of keys are changing

after every tap, on the grounds of probabilities

and known dictionaries.

These two solutions are transparently chang-

ing the collision boxes of the buttons to adapt to

the user’s errors, and this is what we aim to

reproduce in CAVEs.

OBJECTIVES AND HYPOTHESIS

Scope of This Study

The HMI designers of car dashboard touch-

screen software currently test their creations on

desktop tablets. They should be able to evaluate



them easily in driving conditions, in the correct

vehicle, without building a new prototype every

time. Virtual reality offers the flexibility and con-

venience that they seek, on the condition that

the interaction modalities reach sufficient per-

formance and reliability.

This research is the third part of a series of

studies carried out to evaluate the performance

of interactions in CAVEs for HMI design pur-

poses.6,7 The interactions are limited to a bi-

dimensional plane representing the dashboard

touchscreen of a virtual car. Handling only two

dimensions allows easier design and evaluation

of the interaction system, before porting it to tri-

dimensional use-cases.

We aim to reduce the visual mismatch dis-

cussed earlier, as it is often responsible for the

poor interaction experience. Following the exam-

ple of what exists in other fields that also encoun-

ter interaction performance issues, we wish to

implement an algorithm that can shift the colli-

sion box of buttons depending on the drift of the

user. Natural interactions with the hand are tar-

geted, as these interactions are desired in indus-

trial usage and they face a significant mismatch

between the virtual objects and the user’s hand.

Hypothesis

Two major hypotheses are assumed in this

experiment.

� We assume that the users unconsciously try

to reach the center of the buttons when

touching them.13 In this experiment, subjects

were specifically instructed to hit the center

of the buttons to make sure that the study

would not be biased.

� On the basis of other studies and observa-

tions, we assume that there are two kinds of

spatial drifts encountered by users.

� A systemic offset, mainly due to morpho-

logic disparities and system imperfections,

depending on the system, the point of

view, and posture.5

� An uncertainty offset, due to the brain

lacking robust perception cues.14

Hence the algorithm has to handle both off-

sets as well as possible.

BUILDING THE ALGORITHM

How it Should Operate

In technical terms, the algorithm is supposed

to move the collision box of the buttons to make

it coincide with what the user sees. For example,

if a user perceives a button too much on the

right compared to the model, the collision box

moves to the right, as represented in Figure 1.

The global mechanics of this system require

specifications to define the behavior of the algo-

rithm with more precision.

� The visual representation must never move,

and the operation is invisible for the user.

� The collision box cannot go too far from its

initial position to keep it from being lost.

� The operation must compute in real time.

� The operation must significantly enhance the

performance of the interactions and be

appreciated by the users.

� The operation must take into account human

error.

Figure 1. The collision box of the button is moving regardless of its visual.



Different Algorithms

Different strategies were implemented for

testing purposes. For each solution, ðxi; yiÞ rep-
resents the coordinates of the center of the colli-

sion box and (x,y) represents the coordinates of

the last interaction.

1. Linear filtering – The simplest method, fol-

lowing a linear equation (1).

xiþ1 ¼ xi þK x� xið Þ
yiþ1 ¼ yi þK y� yið Þ

�
(1)

2. Quadratic filtering – Not much more compli-

cated, but a different behavior (2).

xiþ1 ¼ xi þK � ffiffiða
p

x� xiÞ
yiþ1 ¼ yi þK � ffiffiða

p
y� yiÞ

�
(2)

3. Mobile means filtering – This kind of filtering

takes more interactions into account, to han-

dle human errors more smoothly (3).

xiþ1 ¼
Pi

k¼i�mþ1
Kk�xkð Þ

m

yiþ1 ¼
Pi

k¼i�mþ1
Kk�ykð Þ

m

8<
: (3)

4. Fuzzy logic filtering – A complex algorithm

intended to adapt quickly and handle human

errors.15

5. PID regulators16 and Kalman filters17 were

considered, but these are adapted to dynamic

use cases, whereas our interfaces are not

moving within the environment.

The Fuzzy Logic Algorithm

As it provided the best results in simulations

(described further), the fuzzy logic algorithm needs

more details. It is built on additional specifications:

� It must take into account the past successes

and errors from the users.

� It must not consider one isolated missed

interaction. One cannot remain focused all

the time and to err is human.

� It must rapidly correct if the user suddenly

drifts.

To respond to these inquiries, we set up four

linguistic variables.

� The proximity to the last interaction

(A, [�100, 100], {Near, Medium, Far}).

� The proximity to the last weighted mobile

mean

(B, [�100, 100], {Near, Medium, Far}).

� The correction wanted relative to the last

interaction

(X, [0, 100], {Low, Medium, High}).

� The correction wanted relative to the last

weighted mobile mean

(Y, [0, 100], {Low, Medium, High}).

The fuzzy membership functions are Gauss-

ian functions represented in Figure 2. Their sum

is 1 all along [�100,100], their parameters are

fixed to m ¼ 50 and s ¼ 15.

We use Zadeh operators as fuzzy operators, a

common replacement of basic operators. The

fuzzy output function fz depends on the mem-

bership of one interaction in the linguistic sets A

and B.

fz is the final function, the sum of normalized

partial functions (see Equation (4)). The 6 partial

functions lead to 6 linear corrections (with gains

Ki), getting closer to the last interaction and the

weighted mobile mean. The algorithm is thus

also subject to the adjustments of the gains of

each partial function.

fz ¼
X
i

fz Xið Þ þ
X
i

fz Yið Þ (4)

The matrix of decisions, defined in (5) and (6),

is arbitrary and is the key to achieve our objec-

tives. For example, if the current interaction is far

from the last one but near the mobile mean, the

partial function fzðY2Þ 2 ðA2 \ B0Þ is predomi-

nant.

Figure 2. Standard Gaussian functions of fuzzy

sets. The centered red function is for Near/Low sets,

the blue one is for Medium set, and the fringe green

function is for Far/High sets. The equations are

fðtÞ ¼ exp �1
2 ðt�m

s
Þ2.



fz X0ð Þ 2 A0 \B0ð Þ [ A1 \B0ð Þ [ A2 \B0ð Þ
fz X1ð Þ 2 A0 \B1ð Þ [ A1 \B1ð Þ
fz X2ð Þ 2 A0 \B2ð Þ

8<
: (5)

fz Y0ð Þ 2 A0 \B0ð Þ [ A0 \ B1ð Þ [ A0 \B2ð Þ
fz Y1ð Þ 2 A1 \B0ð Þ [ A1 \ B1ð Þ
fz Y2ð Þ 2 A2 \B0ð Þ

8<
: (6)

The more an interaction belongs to the

fuzzy sets ruling a partial function (following

the Gaussians laws), the more the gain of the

partial function (7) will grow.

fz Xið Þ xð Þ ¼ Ki x; yð Þ � x (7)

Kiðx; yÞ depends on the membership in the

fuzzy sets defined in the matrix of decisions.

IN LESS TECHNICAL TERMS Whenever a subject

interacts, his interaction coordinates are com-

pared with his previous interaction coordinates

and with the coordinates of the weighted mean

of his five previous interactions. The Gaussian

functions of Figure 2 are applied to determine

the degree of membership of the mobile mean

and the last interaction in near, medium, and far

fuzzy sets. We apply the rules of the matrix of

decisions to obtain the partial fz functions.

Finally, we sum and multiply the partial func-

tions and their gains to obtain the final function

that drives the movement of the collision boxes.

Adding Some Constraints

In theory, this algorithm can make the colli-

sion boxes drift indefinitely. Previous research

has shown that the spatial perception of users

can drift but can also suddenly return to a previ-

ous state. Our system might not be prepared for

such a situation. To prevent this, we tested two

types of constraint systems.

� A binary constraint algorithm, preventing the

algorithm from placing the collision boxes

further than a certain value.

� A linear constraint algorithm, diminishing

the action of the algorithm past a certain

value. The linear constraint decreases a gain

K from 1 to 0 when the collision box is moved

away from 50% to 100% of its size.

The algorithm should also prevent collision

box overlap. In our algorithm, all collision boxes

move the same distance at the same time. It

prevents overlap and it allows the system to use

data from all the buttons and be efficient faster.

Testing Through Resimulation

The data of 30 subjects touching a series of

buttons, collected from previous experiments,

was used to evaluate and adjust the algorithms.

We ran simulations where the algorithms were

applied to their interactions, with specific strate-

gies and sets of parameters. Running these oper-

ations before an actual experiment allowed the

reproduction of what subjects did thousands of

times, to test hundreds of sets of parameters.

Two indicators were considered, the relative

error of the interaction (between �50 and þ50)

and the number of missed interactions.

� Linear filtering, as simple as it is, already

provides decent results. For K 2 [0.2,0.4], the

relative error of interactions is diminished

by more than 10%. Nevertheless, there are

two major drawbacks.

� It does not take into account that no user

accurately hits the center every time. It

overreacts when the user misses the cen-

ter from time to time.

� It does not keep any data about previ-

ous interactions, it does not learn from

repetition.

� Quadratic filtering is a slight enhancement,

but it inherits the same drawbacks as linear

filtering. The best performance was achieved

with (K,a) ¼ [1.2,0.4].
� Weighted mobile means provide better

results. After adjusting the parameters, the

relative error is reduced by almost 15%.

We adjusted not only the size of the

mobile mean, but also the weight of each

iteration. We observed that 4 or 5 itera-

tions provides the best results, and the

optimal weights are {3, 2.5, 2.5, 2.5, 2.5} for

the iterations {n � 1, n � 2, n � 3, n � 4,

n � 5}. However, there are still many

missed interactions.

� Fuzzy logic provides the best results with

relative errors decreased by nearly 25% in

simulations. Figure 3 shows the repartition

of interactions on the buttons, with and

without the algorithm. A lot of optimiza-

tions were required to achieve this result



and the following values were found for

the Ki gains.

K0 ¼ 0:215
K1 ¼ 0:41
K2 ¼ 0:69

8<
:

These values may be too precise for us, as

too much optimization would make the algo-

rithm data dependent. Therefore, it needs to be

tested with new subjects.

� The binary constraint system worsened the

performance, whereas the linear constraint

reduces the number of errors without

degrading the performance.

Thanks to their best combines results, we

chose to implement the fuzzy logic algorithm,

associated with the linear constraints, into a vir-

tual HMI. This implementation aims to evaluate

this method with new subjects and data.

VALIDATION OF THE ALGORITHM
The data used in resimulations is incomplete,

as no coordinates were collected about failed

interactions during the recordings. Thus, we

cannot know yet if our system could have turned

a failed interaction into a successful one. There-

fore, we conducted an experiment to compare

the performance of real subjects with and with-

out the algorithm.

Materials and Methods

This experiment took place in Renault P3I

(Industrial Immersive Integration Platform)

CAVE, a 4-sided virtual reality room powered by

ultra-short throw full HD Panasonic projectors. It

provided active stereoscopy, optical tracking

with A.R.T. infrared technologies, and a 3-finger

tracked glove to acquire interactions. The virtual

scene was displayed by Oktal SCANeR Studio18

and placed the subjects inside a virtual car. A

custom software was displayed on their dash-

board touchscreen (see Figure 4). The sensory

substitution was rendered on the touchscreen

whose virtual buttons would change their color

when touched.

Fifteen subjects took part in this experiment.

Each one of them is a Renault employee to

observe confidentiality restrictions. They were

males and females, most of them between 25 and

50 years old. Their specificities were known by

the questionnaires, oral questions, and verbatim

records. Their feelings were collected in the end

via a questionnaire.

The subjects were instructed to touch the

buttons in the center as they were turned green.

Each subject achieved six series of interactions:

three different scales, with and without the algo-

rithm, in a random order. Altogether, they

achieved 120 interactions. A first series was

always proceeded with the largest scale to allow

the subjects to grasp their task.

A subjective calibration was used to initial-

ize the space of the tracking system and to

reach an approximative setup. It allowed sub-

jects to succeed in their first interactions,

hence giving initialization data to the filtering

algorithm. The subjective calibration con-

sists of three interactions on three corners of

the screen. The tracking system can then map

Figure 3. Repartition of interactions with and without

optimized fuzzy logic algorithm. The point cloud is

tighter on the right picture. The interactions failed by

subjects during the recording could not be tested with

the algorithm (as they were not recorded), but it is

possible they could have been succeededwith it.

Figure 4. A subject is interacting with the virtual

dashboard touchscreen.



the calculated plane with the collision coordi-

nates of the dashboard touchscreen, as repre-

sented in Figure 5.

Results

We measured the relative error of subjects,

meaning the distance between the center of the

virtual button and the interaction of the subject,

relative to the size of the button. The relative

error is in the range of �50 to 50.

STATISTICS The results are paired samples, as

every subject manipulated the interface with

and without the algorithm. According to the Sha-

piro-Wilk Test, the repartition of the data is

normal. We hence used the Student’s T-test for

paired samples to evaluate the degree of signifi-

cance of our results and obtained a p-value infe-

rior to 0.001 (t � value ¼ 4.56, df ¼ 14).

RELATIVE ERROR Relative error is represented in

Figure 6. According to these results, interactions

are significantly more accurate with the filtering

algorithm. Indeed, the mean relative error of the

subjects was reduced by 30% on average, even

more than how much the simulations predicted.

The filtering system allowed subjects to succeed

some interactions that they would have failed

otherwise by touching outside of the original col-

lision box.

STATIC ERROR During the experiment, the opera-

tor could see both the haptic and visual work-

spaces. He observed that most subjects

encountered a heavy constant error that allowed

the algorithm to be this effective. However, the

algorithm needed a few (3 to 5) interactions

before being totally operative.

SATISFACTION OF SUBJECTS The subjects answered

a questionnaire at the end of the experiment.

This questionnaire, built for the purpose of the

experiment, contained the questions of Table 1.

Every question received two answers, corre-

sponding to filtered/ not filtered situations.

According to this questionnaire, all subjects

felt more confident in their interactions with the

filtering algorithm, although half of them

Figure 5. The collision coordinates of the

dashboard touchscreen is mapped with the

perceived location of the image during the initial

subjective calibration.

Figure 6.Mean relative error of subjects without

and with the fuzzy logic algorithm. The error bars

represent the standard deviation.

Table 1. Content of the questionnaire.

Question Text

1 Did you have difficulty interacting?

2 Were you hampered while interacting?

3
Do you think you succeeded touching

the center of the buttons?

4 Were you as fast as you wanted?

5
Did your vision and your interactions

feel spatially consistent?

6

How much delay did you experience

between your actions and expected

outcomes?

7
How proficient in interacting did you

feel at the end of the experience?



reported that they had trouble evaluating the

depth of the touchscreen. Indeed, this system

improved their performance but not their visual

perception. Some of them reported that they

would have appreciated a tangible haptic feed-

back to get a stronger depth mark.

DISCUSSION AND IMPLICATIONS
These results show that such a method is rel-

evant to improve the performance of interac-

tions in CAVEs. However, the strategy and set of

parameters used are specific to the use-case,

although the fuzzy logic strategy is flexible and

adaptable to many situations.

The level of performance attained is sufficient

for HMI engineering, and further implementations

will focus more on the industrial aspects of the

simulation (repeatability, time consumption, etc.).

Drift of Spatial Perception

The hypothesis of spatial perception drift is

confirmed by the fact that this algorithm worked

successfully. The data is in accordance with this

assumption, as it shows that each user encoun-

tered a floating drift, slightly changing through-

out the experiment. However, we cannot be

certain to know all the reasons for this. We know

that there is an actual offset due to morphologic

disparities and system imperfections, but there

are other sources, like the uncertainty drift dis-

cussed earlier. The floating perception proves

that we do not understand everything that hap-

pens in virtual environments as of yet.

What if it Fails

Moving the collision boxes of the buttons is not

without drawbacks. If some subject drifts too

much and suddenly recalibrates his perception, he

or shemay fail his next interaction. The constraints

factor added in the algorithmprevents the subjects

from drifting too far, and thus prevent them from

failing interactions if their perception goes back to

a previous state. However, a quick recalibration

method should be implemented to secure any

remaining failures. It can use gesture recognition to

detect whenever users are attempting (and failing)

to interact and offer them to proceed with a fast

subjective recalibration. The recalibration would

involve a few interactions on a dedicated 3-D inter-

face for the algorithm to be operative again.

Generalization

This method is specific to pressing virtual

buttons on a flat surface and is not ready for

another use. However, using fuzzy logic (or even

simpler algorithms) to filter the interactions of

the users should be generalized. Further studies

will focus on finding generic sets of parameters

that may allow the method to be compatible

with more use-cases. More issues will also need

dedicated studies:

� How can the filtering data collected from a

button in one position and orientation can

be used for a second button in another posi-

tion and orientation?

� How can the filtering include the third dimen-

sion (depth)?� How can the method take the position and

orientation of the head in the account? How

can eye tracking improve our issues?

These issues are difficult to handle for now,

as the system does not tackle the root causes.

Instead of moving the collision engine which is

supposed to be accurate, it should move the

images that actually are the real issues.

To achieve this, a similar algorithm could

move the virtual eyes instead of the collision

engine, following the equations of Figures 7 and

8. However, to prevent users from becoming

completely lost, the environment must not move

after each interaction, therefore this kind of algo-

rithm needs to make its move only rarely. Each

interaction can add a contribution to the loca-

tion of the eyes, but the system cannot proceed

with the correction too often, thereby making

real-time filtering impossible.

Nevertheless, such an algorithm may serve

the calibration purpose, acting as a visual

calibration system for any simulation involving

CAVE-like technologies and interactions. It can

be fast, user-friendly and without any storing of

confidential data (like morphology). Users would

only need to proceed with a few specific inter-

actions and the algorithm would interpret where

their eyes are, based on geometry formulas

related to independent degrees of freedoms of

the eyes (eye height, eye depth, interpupillary

distance).

It could be used simultaneously with a real-

time filtering to reduce the dynamic errors, as it



would only provide a correction to static ones.

Of course, we need further studies to evaluate a

protocol that can set-up such a calibration with

a sufficient accuracy.

CONCLUSION
In this study, we tried to filter subjects’

interactions to solve the mismatch between the

haptic and the visual workspace in CAVEs. We

aimed to improve the performance of interac-

tions for HMI virtual engineering. Instead of

moving the visual side of the simulation, we

built an algorithm that moves the collision

boxes of the buttons depending on where the

subjects seem to see the buttons. After testing

different strategies, we implemented a fuzzy

logic algorithm for an actual experiment

with 15 subjects and it provided significant per-

formance improvements to their interactions.

Our findings offer a better understanding of the

nature of visual perception drift and solutions

to counterbalance it.

Perspectives

Other studies are needed to make this con-

cept generalizable to more interfaces. We plan

to build generic sets of parameters and to

make the system handle the whole virtual

workspace.

These results will lead to the design of a simi-

lar algorithm to implement a low-level calibra-

tion: by moving directly the virtual eyes instead

Figure 8. Quantitative influence of eye height difference. The relation between the measured offset and the

eye height is x ¼ e � d
dþD.

Figure 7. Quantitative influence of eye depth difference. The relation between the measured offset and the

eye depth is x ¼ ðD�e�dÞ
D�e � 2�e2�a

e2 þ a2 � ðD�e
cosaÞ

2.



of the haptic work field, we plan to reduce the

systematic error.
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