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Data-Driven Upscaling of Orientation Kinematics in Suspensions 
of Rigid Fibres

Adrien Scheuer1, 3, *, Amine Ammar2, Emmanuelle Abisset-Chavanne3, Elias Cueto4, 
Francisco Chinesta5, Roland Keunings1 and Suresh G. Advani6

Abstract: Describing the orientation state of the particles is often critical in fibre suspen-
sion applications. Macroscopic descriptors, the so-called second-order orientation tensor 
(or moment) leading the way, are often preferred due to their low computational cost. Clo-
sure problems however arise when evolution equations for the moments are derived from 
the orientation distribution functions and the impact of the chosen closure is often unpre-
dictable. In this work, our aim is to provide macroscopic simulations of orientation that 
are cheap, accurate and closure-free. To this end, we propose an innovative data-based 
approach to the upscaling of orientation kinematics in the context of fibre suspensions. 
Since the physics at the microscopic scale can be modelled reasonably enough, the idea 
is to conduct accurate offline direct numerical simulations at that scale and to extract the 
corresponding macroscopic descriptors in order to build a database of scenarios. During 
the online stage, the macroscopic descriptors can then be updated quickly by combining 
adequately the items from the database instead of relying on an imprecise macroscopic 
model. This methodology is presented in the well-known case of dilute fibre suspensions 
(where it can be compared against closure-based macroscopic models) and in the case of 
suspensions of confined or electrically-charged fibres, for which state-of-the-art closures 
proved to be inadequate or simply do not exist.

Keywords: Fibre suspensions, data-driven upscaling, closure approximations.

1 Introduction
In processes involving fibre suspensions ( e.g. composite manufacturing, papermaking, bi-
ological and pharmaceutical applications, food-processing and cosmetics industries, 
etc.), predicting the evolution of particle orientation is critical since the rheology of the 
material and its final properties depend on the microstructure. Classically, three 
modelling scales can be distinguished: the microscopic, mesoscopic and macroscopic 
scales.
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At the microscopic scale, the orientation of a single particle is identified by a unit vector p
aligned with the particle axis. In the case of a Newtonian suspending fluid, the evolution of
the rod orientation is governed by Jeffery’s equation [Jeffery (1922)]

ṗJ = ∇v · p− (∇v : (p⊗ p))p, (1)

whith ∇v the unperturbed fluid velocity  gradient. These kinematics, derived under the
assumptions of a Stokes flow, lay the foundation for nearly all models used today. Extend-
ing Jeffery’s theory to account for various internal or external effects, including Brownian 
effects [Chinesta (2013)], bending phenomena [Abisset-Chavanne, Férec, Ausias et al.
(2015)], particle inertia [Scheuer, Grégoire, Abisset-Chavanne et al. (2018)], electrical 
forces [Perez, Abisset-Chavanne, Barinsiski et al. (2015)], wall effects [Perez, Scheuer, 
Abisset-Chavanne et al. (2016); Scheuer, Abisset-Chavanne, Chinesta et al. (2016)] is 
readily achievable using a dumbbell representation of a rod [Bird, Curtiss, Armstrong et 
al. (1987); Binetruy, Chinesta and Keunings (2015)]. Despite the richness of the possible 
descriptions at the microscopic scale, the computational effort to efficiently track millions 
of particles (as in scenarios of industrial interest) is in general unaffordable. Coarser de-
scriptors are thus called for.
At the mesoscopic scale, the information regarding the orientation state of a population of 
particles is contained in a scalar probability density function (pdf) ψ(x, t, p), that provides 
the fraction of particles with a given conformation p at any position x and time t. Solving 
the associated Fokker-Planck equation, governing the time evolution of the pdf, is however 
a challenge for traditional numerical methods, due to the inherent high-dimensionnality of 
the problem. Particle methods have long been used to conduct simulations at that scale 
[Öttinger (1996)], and very few works addressed the continuous Fokker-Planck equation 
[Lozinski and Chauvière (2003); Chauvière and Lozinski (2004)]. Notable progress were 
made recently [Chinesta, Ammar, Leygue et al. (2011)] with the introduction of the Proper 
Generalized Decomposition [Ammar, Mokdad, Chinesta et al. (2006, 2007)], able to 
address high-dimensional PDEs.
At the macroscopic scale, the pdf is substituted by its first moments, provinding a crude, 
yet concise description of the orientation state in the material. In the case of fibres, due 
to the symmetry of the pdf, odd-order moments vanish. The so-called second and fourth 
order orientation tensors, introduced by Advani et al. [Advani and Tucker (1987)], read 
respectively

a(x, t) =

∫
S

(p⊗ p)ψ(x, t,p)dp (2)

and

A(x, t) =

∫
S

(p⊗ p⊗ p⊗ p)ψ(x, t,p)dp, (3)

where the integration is performed on the unit sphere S.
These orientation tensors exhibit particular properties. a and A are completely symmetric,
that is

aij = aji (4)

and

Aijkl = Aijlk = Akijl = Alijk = Aklij , etc. (5)



Moreover, due to the normalisation condition of ψ, the trace of a equals 1.
The second-order orientation tensor has an intuitive physical interpretation. A high value of
the first (resp. second and third) diagonal component of a indicates that the particles tend
to orient along this x- (resp. y- and z-) direction. If all the diagonal components are 1

3 , the

2

orientation tensor suggests three-dimensional random orientation state, but triaxial or any 
other orientation state that gives this average is also possible. This is an example of the 
inherent ambiguity of crude macroscopic descriptors. When two diagonal components are 
equal to 1 the tensor suggests two-dimensional random or planar biaxial orientation state.
Finally, a unit diagonal component indicates full alignment in that direction.
The time evolution of the second-order orientation tensor is readily obtained using Jeffery’s
kinematics Eq. (1)

ȧ = ∇v · a + a · (∇v)T − 2A : ∇v. (6)

However, this expression involves the fourth-order orientation tensor A. Unfortunately, 
the time derivative of the fourth-orientation tensor, using the same rationale, involves the 
sixth-orientation tensor and so on. Thus, a closure approximation is required.
Much research has focused on developing accurate and stable closure approximations, in-
dicating that the problem is far from being solved. We propose in the sequel an overview of 
the closures proposed in the literature; an in-depth discussion of the subject can be found 
in Jack et al. [Jack and Smith (2004, 2007)].

• Simple closures: linear (LIN) [Hand (1962)] (exact in the case of isotropic orien-
tations), quadratic (QUAD) [Hinch and Leal (1976)] (exact for aligned fibres) and
hybrid (HYBR) [Advani and Tucker (1987)] (combining the two previous ones);

• Composite closures: attempting to approximate directly the second-order tensor A : ∇v
[Hinch and Leal (1976)];

• Orthotropic closures: attempting to express A in the principal axis of a [Cintra and
Tucker (1995)];

• Natural closures: natural (NAT) [Dupret and Verleye (1999)] and IBOF [Chung and
Kwon (2002)] are fitted closures based on the most general expansions of A in terms of
a and ∇v;

• Neural-newtork-based closures: NNET [Jack, Schache and Smith (2010)] and
NNORT [Qadir and Jack (2009)];

• Closures for the sixth-order orientation tensor: such as LIN6, QUAD6, HYBR6 
[Advani and Tucker (1990)], or even invariant-based fitted closures INV6 and IBF6 
[Jack and Smith (2005, 2006)].

The macroscopic scale offers a simple and crude description of the microstructure. Simu-
lations at that scale are thus much cheaper, explaining why this description is preferred in
industrial applications. The pdf is substituted by some of its moments, sacrificing the level
of detail and the involved physics in favour of computational efficiency. Closure approxi-
mations remain however an issue.



In this work, we propose a methodology aimed at providing data-driven macroscopic sim-
ulations of orientation kinematics that are cheap and closure-free. The approach consists 
of an offline step, the construction of a database of scenarios obtained from accurate mi-
croscopic simulations, and an online step, the data-driven macroscopic simulation itself.
Data-driven approaches have surged over the last decade as a new paradigm in simulation-
based engineering. Unprecedented possibilities were introduced in Dynamic Data Driven 
Application Systems (DDDAS) [Darema (2004); Michopoulos, Farhat and Houstis (2004)], 
entailing the ability to incorporate additional data into an executing application, improving 
modelling methods and prediction capabilities. Kirchdoerfer et al. [Kirchdoerfer and Ortiz 
(2016)] developed a strategy to carry out mechanical calculations directly from ex-
perimental material data (and pertinent constraints and conservation laws), thus bypassing 
the empirical material modelling step of conventional approaches. Closely related, the 
works of Peherstorfer et al. [Peherstorfer and Willcox (2015, 2016)] focus on constructing 
reduced-order models directly from data, inferring the full-order operators without the 
need to construct them explicitly, or even to have a direct knowledge about the 
governing models.
The paper is structured as follows. Section 2 explains the main idea of our data-driven 
upscaling approach. In Section 3, this methodology is first illustrated in the well-known 
case of dilute fibre suspensions, where it can be compared against macroscopic closure-
based models. Its relevance is then shown in the case of confined fibre suspensions, for 
which closures proved to be inadequate [Perez, Scheuer, Abisset-Chavanne et al. (2016); 
Scheuer, Abisset-Chavanne, Chinesta et al. (2016)]. Finally, we apply this framework 
in a more complex case involving semi-concentrated suspensions of electrically-charged 
rods, for which no reliable macroscopic model is available. We draw in Section 4 the main 
conclusions of this work.

2 Data-driven upscaling of orientation kinematics
The main idea behind our data-driven approach is the following: Since the physics at the 
microscopic scale can be modelled reasonably enough, we can conduct expensive accurate 
offline direct numerical simulations at that scale and extract the corresponding macroscopic 
descriptors in order to build a database of scenarios. During the online stage, the macro-
scopic descriptors can then be updated quickly by combining adequately the items from the 
database instead of relying on a sometimes imprecise macroscopic model (usually involv-
ing closure approximations).
This methodology is depicted schematically in Fig. 1. Specifically, the two stages are as 
follows:

• Offline stage: construction of the data-base. A large amount of microscopic simu-
lations involving populations of N fibres are run, exploring a wide range of initial
orientation configurations. Moreover, the different scenarios may also include vari-
ations in the suspension parameters, such as the flow velocity gradient, the fibre vol-
ume fraction (influencing the inter-particle interactions), the confinement state (see
below), the applied electric field in the case of charged particles (see below); these
parameters are collectively referred to as α. For each population of fibres, the macro-
scopic descriptors, (a, ȧ, α), are computed from the microscopic ones, (pi, ṗi, α),
i = 1, . . . , N , in order to build a database of scenarios. An additional step, not ex-
plored in this paper, is to reconstruct a map ȧ = f(a, α) from interpolations of the
items in the database [Gonzálea, Chinesta and Cueto (2018)].
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Figure 1: Data-driven approach to fibre orientation kinematics

Our aim is to present a general framework for the upscaling of orientation kinematics in
suspensions of rigid fibres. More advanced and sophisticated techniques can be used to per-
form efficiently both offline and online stages. On the one hand, the offline construction of
the database can be recast in the general context of Design of Experiments (DoE) method-
ology [Eriksson, Johansson, Kettaneh-Wold et al. (2000)], to help decide which scenarios
of interest to consider. Latin hypercube sampling [McKay, Beckman and Conover (1979)]
is a popular sampling technique to explore parameter spaces in experimental designs. On
the other hand, during the online data-driven simulation, the comprehensive lookup in the
database could be substituted either by the evaluation of an interpolation map f (as dis-
cussed in the perspectives) or alternatively using classical regression methods over the
database items, or using machine-learning techniques and neural-networks trained over
the database entries.

• Online stage: macroscopic data-driven simulation. At each time step, we identify in
the database the closest items to the current orientation state (and suspension param-
eters) a(t, α) and combine them to obtain the instantaneous evolution kinematics. In
the case where the mapping f was built, this evolution is readily obtained using f .
And so on for the next time steps.



3 Illustration of the framework
In this section, we propose an illustration of the methodology that has just been presented,
in the case of suspensions of rods. In particular, we explain how to practically construct
the database and the metrics use to measure the distance between orientation tensors. We
first discuss the classical unconfined dilute case, for which there is a long history of macro-
scopic models, allowing us to assess the performance of our approach. We will then dis-
cuss the relevance of the method for confined suspensions, for which traditional macro-
scopic models fail. Finally, we will discuss the case of semi-concentrated suspensions
of electrically-charged fibres, using microscopic direct numerical simulations inspired by
molecular dynamics.

3.1 Unconfined dilute suspensions of rods immersed in a simple shear flow

In the case of dilute suspensions of rods immersed in a Newtonian fluid, the kinematics of
each particle follow Jeffery’s equation, Eq. (1). In this section, we consider that the sus-
pension undergoes a simple shear flow, whose velocity field is given by v =

[
γ̇z 0 0

]T ,
with γ̇ = 1 s−1. In this flow, it is known that the fibres simply align in the flow field
(x-direction).

3.1.1 Database construction

The database is built by following the evolution of populations of N = 5000 particles.
In order to cover a wide range of initial configurations, a physically-reasonable choice is
to consider initial orientations as “Gaussian” distributions. Since fibre orientations can be
depicted as points on the unit sphere, we consider Von Mises-Fisher distribution of mean
m (unit orientation vector) and variance s. Fig. 2a depicts an example of such a distri-
bution. These orientation states were sampled from the Von Mises-Fisher distributions
using the normal-tangent decomposition property of the distribution on the sphere, see
[Chen (2015)] for additional details and the Matlab implementation. In this study, we con-
struct two databases, the first with (nm, ns) = (10, 15) (150 initial configurations), and the
second, more comprehensive with (nm, ns) = (20, 12) (240 initial configurations). The
nm individual mean values are uniformly distributed over the sphere and the ns variances
range from 0.05 (fibres nearly aligned) to 1.75 (fibres nearly uniformly distributed all over
the sphere). For each population, we run the flow simulation during 30 seconds, and com-
pute each 10−1 second the macroscopic descriptors a and ȧ from the individual pi and ṗi

(i = 1, . . . , N ) as

a =
1

N

N∑
i=1

pi ⊗ pi (7)

and

ȧ =
1

N

N∑
i=1

ṗi ⊗ pi + pi ⊗ ṗi. (8)

3.1.2 Data-driven simulation

During the online stage, we identify in the database theK items adbk (k = 1, . . . ,K) closest
to the current orientation tensor a(t). 
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Figure 2: Example of distributions of initial orientations used to build the database

To do so, we use the euclidean distance applied to the vectorized forms of the orientation 
tensors, composed of its independent components:

vec(a) =
[
a11 a22 a12 a13 a23

]T
. (9)

Then, we compute a weighted average of theK corresponding kinematics ȧdbk to derive the
instantaneous evolution ȧ that can be applied to have the orientation tensor at the next time
step, that is

a(t+ ∆t) = a(t) + ∆t ȧ. (10)

The reconstruction weights are obtained by solving the minimization problem

minwk

∥∥∥∥∥vec
(
a(t)

)
−

K∑
k=1

wkvec
(
adbk
)∥∥∥∥∥

2

(11)

such that
K∑
k=1

wk = 1 (12)

wk ≥ 0. (13)

Remark: The choice of the definition of distance i s definitely a delicate question. An 
ideal choice would be to have access to the “geodesic” distance on the manifold described 
by the trajectories of the second-order orientation tensors, but such a distance is far from 
obvious. In this work, we choose to stick with the Euclidean distance (as described above), 
that provided satisfactory results, as long as there are enough samples on the manifold.
Fig. 3 shows two examples of simulations. In each case, only the diagonal components of 
the orientation tensors are depicted: the solid colour lines correspond to the discrete 
orientation tensor (computed for validation purposes); the discontinuous colour lines cor-
respond to the data-driven orientation tensor (here K = 5) and the discontinuous grey lines 
correspond to the closure-based macroscopic models (for the QUAD, HYBR and IBOF 
closures). 
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puted for validation purposes); the discontinuous colour lines correspond to the data-driven 
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In these examples, we can see that the data-driven simulations perform quite well, as does 
the macroscopic model using the fitted IBOF closure. The QUAD and HYBR closures 
tend however to accelerate the orientation transients.
Regarding the computational costs, closure-based models run two order of magnitude 
faster (0.03 s) than microscopic simulations (30 s using N = 5000 fibres). The data-driven 
ap-proach lies in-between, requiring 3s, but there is room for improvements since we con-
sider here, as a proof-of-concept, a naive implementation (using extensive searches in the 
database to identify the neighbouring points for example).

3.1.3 Performance assessment

In order to assess properly the performance of our approach, we compare the predictions 
of the macroscopic data-driven simulations and closure-based macroscopic models with 
microscopic simulations. Specifically, we average the L2 relative error computed on the 
first diagonal component a11 of the second-order orientation tensor over nc random initial 
distributions composed of N fibres. The average L2 relative error is defined as

Ē =
1

nc

nc∑
c=1

Ec, (14)

with

E =

√√√√∫ (amacro
11 (t)− amicro

11 (t)
)2

dt∫ (
amicro
11 (t)

)2
dt

, (15)

where amacro(t) is computed either using the data-driven approach or a closure-based
model. As before, we consider the QUAD, HYBR and IBOF closure approximations and
amicro(t) is obtained form the expensive discrete microscopic simulations. The error esti-
mator here is based on the first diagonal component of the orientation tensor only, since in
the case of a shear flow, the suspending fibres tend to align in the flow field, and thus a11 is
an approximate indicator of the alignment state as it approaches unity.
The results of this comparative study (nc = 500) are shown in Fig. 4. We observe that
the data-driven approach shows improved performance compared to conventional closure-
based models (QUAD or HYBR) but state-of-the-art fitted closures (IBOF) still provides
the lowest upscaling error. As expected, using the most comprehensive database (with
(nm, ns) = (20, 12)) improves the accuracy of the data-driven method.

3.2 Confined dilute suspensions of rods immersed in a simple shear flow

We now move to confined suspensions of rods, that is suspensions flowing in gaps narrower
than the fibre length. The gap walls now prevent the particle from rotating freely and some
trajectory, passing outside the flow domain are thus forbidden. We have shown in previ-
ous work [Perez, Scheuer, Abisset-Chavanne et al. (2016); Scheuer, Abisset-Chavanne,
Chinesta et al. (2016, 2018)] that in that case, the fibre kinematics can be written as Jef-
fery’s equation augmented with an additional term that prevents the fibre from leaving the
flow domain,

ṗ = ṗJ + ṗC, (16)

where ṗC = − (ṗJ ·n)
(1−(p·n)2)(n − (p · n)p), with n a unit vector normal to the gap wall (the

contact force is assumed to be orthogonal to the wall, friction being neglected).
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Equipped with these new fibre kinematics, we can follow the same rationale as in the uncon-
fined case. We consider a configuration where the confinement is strong: the ratio between 
the gap height H and the fibre length L is set t o H  =  0 .2. The suspension undergoes the
same simple shear flow as before.

Database construction The construction of the database is similar as in the previous 
case, except that the initial orientation states are now given by distributions that are Gaus-
sian in the azimuthal direction and uniform across the narrow gap height. An example is 
depicted in Fig. 2b. The mean vectors m are uniformly distributed on the equator, and the 
variance s ranges from 0.05 (concentrated) to 1.75 (all over the allowed domain).

Data-driven simulation The data-driven simulation proceeds exactly as described in the 
unconfined case. Fig. 5  shows two examples of simulations. In each case, only the 
diagonal components of the orientation tensors are depicted: the solid colour lines corre-
spond to the discrete orientation tensor using the confined kinematics Eq. (16) (computed 
for validation purposes); the discontinuous colour lines to the discrete orientation tensor 
using Jeffery’s kinematics Eq. (1) (computed to assess the impact of confinement); the 
discontinuous dashed colour lines correspond to the data-driven orientation tensor (here 
K=5) and the discontinuous grey lines correspond to the closure-based macroscopic 
models (for the QUAD, HYBR and IBOF closures). In both examples, we note that the 
closure-based macroscopic models completely fail to address confinement configurations, 
even when the impact of confinement on the kinematics itself is low (in situations where 
few fibres actually interact with the gap wall as in Fig. 5, bottom). In other words, and as 
concluded in our previous work [Perez, Scheuer, Abisset-Chavanne et al. (2016); Scheuer, 
Abisset-Chavanne, Chinesta et al. (2016)], the main challenge with traditional macroscopic 
models involving moments of the orientation pdf lies more with representation capabilities 
in highly confined conditions than with a suitable description of the induced orientation 
kinematics. On the other hand, the data-driven approach reproduces quite well the 
predictions provided by the expensive microscopic simulations.
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Figure 5: Evolution of the diagonal components of the orientation tensor a for unconfined 
dilute suspensions of rods. The solid colour lines correspond to the discrete orientation 
tensor using the confined kinematics Eq. (16) (computed for validation purposes); the 
discontinuous dash-dotted colour lines to the discrete orientation tensor using Jeffery’s 
kinematics Eq. (1) (computed to assess the impact of confinement); the discontinuous 
dashed colour lines correspond to the data-driven orientation tensor (here K=5) and the 
discontinuous grey lines correspond to the closure-based macroscopic models (for the 
QUAD, HYBR and IBOF closures)
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Performance assessment We use the same method as before to assess the performances 
of the method (here nc = 100). The results are depicted in Fig. 6. This comparative study 
confirms the observations of the previous figure (Fig. 5). As shown in Fig. 6 (right), 
traditional closure-based models (even using a robust fitted closure) tend to mispredict the 
orientation kinematics by more than 15%, whereas the data-driven approach still concedes 
only 5% of relative error. For the sake of completeness, Fig. 6(left), computes the relative 
error with respect to the (hypothetical) unconfined kinematics, to support our claim that 
closure approximations are inadequate for initial confined configurations (independently 
of the kinematics itself).

3.3 Dilute suspensions of rods immersed in a complex flow

If we consider that the particles are immersed in a complex flow (instead of a simple shear 
flow), the same rationale can be applied. Indeed, in the dilute regime, the fibre kinematics 
are governed by Jeffery’s kinematics Eq. (1), which shows a linear dependency with the 
velocity gradient. Thus, databases can be built for elementary flows (for example: shear 
flow in the x-, y- and z-directions, uniaxial elongation in the x- and y-directions and rota-
tion flow around the x-, y- and z-directions), and during the online stage, the local velocity 
gradient is decomposed in its elementary contributions, and the outcomes of the different 
databases are weighted accordingly.

3.4 Semi-concentrated suspensions of electrically-charged rods

In the remainder of this section, we address the kinematics of electrically-charged rods 
(dipoles) immersed in a Newtonian fluid and subject to an external electric field E. A



multi-scale modelling of such suspensions (in the dilute case) was already proposed in
[Perez, Abisset-Chavanne, Barinsiski et al. (2015)]. A microscopic model governing the
evolution ṗ of a single rod is obtained from a micromechanical derivation using a dumbbell
representation of the particle and reads ṗ = ṗJ + ṗE, where ṗE depends on the external
electric field E and the charge q of the rod dipole. The proposed macroscopic model is
however tainted with non-reliable closure approximations that make it impractical to use.
We could of course apply the same rationale again, building on top of this modified Jeffery
equation. However, we want to consider here a semi-concentrated suspension, that is we
want to account for the effects of fibre-fibre interactions as well. Moreover, we want to
emphasize that the data-driven methodology proposed in this work is general and does not
depend on the technique used to conduct the microscopic simulations. Therefore, we use
microscopic direct numerical simulations inspired by molecular dynamics (MD).
This fine scale simulation technique i s based on the following a ssumptions: ( i) each rod 
consists of a set of connected particles; (ii) inter-particle interactions are described from 
appropriate potentials, in particular, the Lennard-Jones potential V LJ and two other poten-
tials, V E and V B, used to describe respectively the rod elongation and bending; (iii) the 
rods are subject to inertial, hydrodynamic (drag) and electrical forces. A description of the 
inner workings of this molecular dynamics simulation is out of the scope of this paper but 
the details can be found in Perez et al. [Perez, Scheuer, Abisset-Chavanne et al. (2018)].
Specifically, the microscopic MD simulations follow the evolution of N electrically-charged 
rods interacting with each other in a periodic representative volume element. Fig. 7a
shows the initial isotropic configuration of the particles. As before, we consider here a
simple shear flow, whose velocity field is given by v =

[
γ̇z 0 0

]T , with γ̇ = 1 s−1. The
electric field points upwards in the z-direction and the charge q on each rod extremity is
set to q = 1 C. In the absence of an electric field, the fibres tend to align in the flow field,
as illustrated in Fig. 7b, that shows the final orientation state of the fibres when E = 0
NC−1. Conversely, when the electric field is strong, the fibres cannot align in the flow and
the final orientation is along an inclined axis (the inclination depends on the intensity of
the electric field), as illustrated in Fig. 7b, that shows the final orientation state of the fibres
when E = 50 NC−1.

Database construction In this illustration, we only vary the number of particles N in
the suspension (that is the concentration of the suspension and thus the potential number
of inter-particles interactions) and the intensity of the external electric field E. Adding a
variation of the shear rate γ̇ or the initial orientation state (as in two previous illustrations) is
a straightforward extension. Therefore, the databases are built by following the evolution of
populations of N = 100, 200, . . . 800 particles subjected to an electric field E of intensity
ranging from 0 to 60 NC−1. The shear rate is fixed, γ̇ = 1 s−1 and the isotropic orientation
state is always chosen as initial configuration. In each case, we run the MD simulation
during 10 seconds, and compute each 10−1 second the macroscopic descriptors a and ȧ
from the individual pi and ṗi (i = 1, . . . , N ). Due to the stochastic nature of the MD
simulations, the simulations are run ten times and the results are averaged over the ten
realizations.
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Figure 7: Periodic representative volume element containing N = 500 interacting 
electrically-charged fibres used in the molecular dynamics simulations. The suspension 
is subject to a simple shear flow and an electric field E is applied in the +z-direction



Data-driven simulation The data-driven simulation is a bit different from what was pre-
sented in the two previous illustrations, since we now have two parameters that influence 
the kinematics of the suspension: The number of particles in the system N (that influences 
the amount of fibre-fibre interactions) and the intensity of  the external electric field E. 
During the online stage, we intend to carry a simulation characterized at each time t by the 
current number of fibres in the system (Nt) and the current value of the electric field 
intensity (Et). Among the databases at our disposal, we then identify the ones that best 
match the value of the current parameters (for example if (Nt, Et) = (225, 35) we keep the 
four databases built for N = 200 and 300 and E = 30 and 40 NC−1) and compute the 
weights needed for a bilinear interpolation of these results. For each one of these, we 
proceed as described before, looking within the individual database to find the K  closest 
orientation tensors to the current orientation tensor and combining them adequately. 
Finally, these individual results are then combined using the bilinear weights computed just 
before. These manipulations might appear a bit tedious but are fairly easy and they actually 
provide a flexible way to handle for example time-varying electric fields fr om th e static 
databases. Proceeding in this way allows us to actually interpolate among the parameter 
space, even though the parameters are not of the same order of magnitude. Indeed, inter-
polating directly on the data triplet (N, E, a) would not have provided meaningful results, 
at least with the Euclidean distance, due to disparity of the quantities at stake.
Fig. 8 shows three examples of simulations, in the case of weak, medium and strong 
external electric field. In each case, only the diagonal components of the orientation tensors 
are depicted: the solid colour lines correspond to the discrete orientation tensor obtained 
from MD simulations (computed for validation purposes) and the discontinuous colour 
lines correspond to the data-driven orientation tensor. As described previously, in the case 
of a nearly zero electric field ( Fig. 8, top), the fibres tend to align in th e flow field (x-
direction) and thus the first diagonal component of the orientation tensor is dominant. On 
the contrary, when the electric field is strong ( Fig. 8, bottom), the particles are mostly 
aligned in the z-direction and thus the third diagonal component of a is important. When the 
electric field is of medium intensity ( Fig. 8, middle), the fibres tend to align in an 
intermediate orientation and the first and third components of a  are in balance. In the 
three examples, the data-driven approach was in excellent agreement with the fine-scale 
simulations.

Performance assessment Again, we use the same method as before to assess the per-
formances of the method. The number of random configurations (value of N  and E ) is 
nc = 100. In this case, there is however no macroscopic model to compare with. We found 
that the data-driven method concedes only 5.9% of relative error with respect to fine-scale 
MD simulations.
Regarding the computational costs, in this example, the data-driven approach runs in less 
than a second whereas MD simulations, inherently expensive, require from 30 to 500 sec-
onds depending on the number of particles in the system.

4 Conclusion and perspectives
We presented a data-driven methodology aimed at providing efficient closure-free macro-
scopic simulations of the orientation of suspended rigid fibres, using a database of pre-
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Figure 8: Evolution of the diagonal components of the orientation tensor a for semi-concentrated 
suspensions of electrically-charged rods. The solid colour lines correspond to the discrete 
approach obtained from MD simulations (computed for validation purposes) and the 
discontinuous colour lines correspond to the data-driven approach. From top to bottom: weak, 
medium and strong external electric field E



computed scenarios obtained from accurate direct computations at the microscopic scale. 
We show the relevance of this approach in the well-known case of dilute fibre suspen-
sions, where it performs as well as state-of-the-art closure based models, but also for sus-
pensions of confined or electrically charged f ibres, for which conventional closure-based 
methods proved to be inadequate and reliable macroscopic models are simply not 
available. Therefore, this method appears as an appealing and “easy-to-set-up” technique 
in situations where closure-based models are unsatisfactory or have not been developed 
yet, including in situations where the physics at stake is complex (for example in the 
case of fibre-fibre interactions), provided that adequate microscopic simulation techniques 
are available.
In addition to the many situations where this methodology could be applied, many perspec-
tives are envisioned for a data-driven approach in the context of fibre suspensions. First, 
even at the microscopic scale, Jeffery’s equation could be replaced by some kinematics 
learned from experimental observations, especially in the case of non-Newtonian matrix 
suspensions for which there is no counterpart available (with the exception of Brunn’s 
work [Brunn (1977)] for second-order fluid in the limit of low Weissenberg and the recent 
multi-scale modelling based on that model [Borzacchiello, Abisset-Chavanne, Chinesta et 
al. (2016)]). Second, a data-driven approach to predictions of the suspension rheology is 
to be explored.
Another track, mentioned in the description of our data-driven approach but not explored in 
this paper, is the possibility of interpolating the items in the databases in order to build an 
approximation map that could be used directly during the online stage. The recent works 
on multi-dimensional interpolation techniques based on the Proper Generalized Decom-
position (PGD), in particular the sparse PGD [Ibáñez, Abisset-Chavanne, Ammar et al.
(2018a)] and the local PGD [Ibáñez, Abisset-Chavanne, Chinesta et al. (2018b)], open the 
way for interesting perspectives in that direction.
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